

Supplementary Materials for

Hyperexcitable arousal circuits drive sleep instability during aging

Shi-Bin Li et al.

Corresponding author: Luis de Lecea, llecea@stanford.edu

Science **375**, eabh3021 (2022) DOI: 10.1126/science.abh3021

The PDF file includes:

Materials and Methods Supplementary Text Figs. S1 to S14

Other Supplementary Material for this manuscript includes the following:

MDAR Reproducibility Checklist

Materials and Methods

Animals

Experiments with mice were performed following the protocols approved by the Stanford University Animal Care and Use Committee in accordance with the *National Institutes of Health Guide for the Care and Use of Laboratory Animals*. Discomfort, distress, and pain were minimized with anesthesia and analgesic medications. Mice were housed in a temperature- and humidity-controlled animal facility with a 12-h/12-h light/dark cycle (9 am light on, Zeitgeber time 0/ZT 0), unless otherwise specified. Mice had ad libitum access to standard laboratory mouse food pellets and water. 2-3 month young male adult wild type (WT) mice were acquired from Jackson Laboratory (Jax) and 18 month old WT male mice were acquired from National Institute on Aging (NIA). OX(Hcrt)-ataxin3 heterozygotes (*15*), Hcrt-IRES-Cre knock-in (Hcrt::Cre) heterozygotes (*20*), OX(Hcrt)-eGFP heterozygotes (*29*) and tyrosine hydroxylase (TH)-IRES-Cre knock-in (TH::Cre) heterozygotes (European Mouse Mutant Archive; EMMA ID: EM:00254) (*49*) were backcrossed onto C57BL/6J background. Male mice were used in the experiments, unless otherwise specified. Mice at an age younger than 5 months belonged to the young group, whereas mice older than 18 months were considered as aged. Animals from multiple litters were randomly assigned to control or experimental group under each experimental paradigm. Group sizes were determined based on earlier publications (*13, 50, 51*).

EEG-EMG electrode preparation and implantation

Mini-screw (US Micro Screw) was soldered to one tip of an insulated mini-wire with two tips exposed, and the other tip of the mini-wire was soldered to a golden pin aligned in an electrode socket. A micro-ring was made on one side of an insulated mini-wire with the other end soldered to a separate golden pin in the electrode socket. Each electrode socket contained 4 channels with 2 mini-screw channels for EEG recording and 2 micro-ring channels for EMG recording as described in earlier work from our lab (*12, 47, 50*). The resistance of all the channels was controlled with a digital Multimeter (Fluke) to be lower than 1.5 ohms for ideal conductance. Mice were mounted onto an animal stereotaxic frame (David Kopf Instruments) under anesthesia with intraperitoneal injection of a mixture of ketamine (100 mg/kg) and xylazine (20 mg/kg). Two

mini-screws were placed in the skull above the frontal (AP: -2 mm; ML: \pm 1 mm) and temporal (AP: 3 mm, ML: \pm 2.5 mm) cortices for EEG signal sampling and two micro-rings were placed in the neck muscles for EMG signal acquisition. Electrode socket was secured with Metabond (Parkell, Japan) and dental acrylic on skull for recording in freely moving mice. Buprenorphine SR (0.5 mg/kg) was administered subcutaneously to mice before and after surgery for pain relief. After surgery, revertidine (5 mg/kg) was administered (intraperitoneal) to mice to facilitate recovery from anesthesia.

Virus injection with and without fiber optic implantation

Optogenetic experiments: 0.3 µl AAV-DJ-EF1 α -DIO-hChR2(H134R)-eYFP viruses (ChR2-eYFP, 6.5 × 10¹² gc/ml, Stanford Virus Core, Lot no. 4176) was delivered to LH (AP: –1.35 mm, ML: ± 0.95 mm, DV: –5.15 mm) of anesthetized young (3 to 5 months) or aged (18 to 22 months) Hcrt::Cre mice with a 5 µl Hamilton microsyringe according to stereotaxic coordinates determined on a Kopf stereotaxic frame. AAV-DJ-EF1 α -DIO-eYFP viruses (eYFP, 6.9 × 10¹² gc/ml, Stanford Virus Core, Lot no. 3010) was used as control or for in vitro pharmacology experiments. A glass fiber (200 µm core diameter, Doric Lenses, Franquet, Québec, Canada) was implanted with the tip right above the injection site for optogenetic stimulations later on. After fixing the glass fiber with Metabond, the EEG/EMG electrodes were implanted with dental acrylic fixation. Similar procedure was performed for virus injection in TH::Cre mice targeting LC NA neurons (AP: – 5.46 mm, ML: ± 1.2 mm, DV: – 3.6 mm). Mice were allowed to recover for at least 2 weeks to get sufficient virus expression before connecting to the EEG/EMG recording cables and optical stimulation patch cord. EEG/EMG electrode and fiber optic implantation were omitted in the mice infected with ChR2-eYFP or eYFP viruses used for in vitro electrophysiology experiments.

Fiber photometry: For fiber photometry, 0.3 μ l AAV vectors encoding GCaMP6f (AAV-DJ-EF1 α -DIO-GCaMP6f, 1.1×10^{12} gc/ml, Stanford Virus Core, Lot no. 3725) were delivered to LH (AP: – 1.35 mm, ML: \pm 0.95 mm, DV: – 5.15 mm) of young (3 to 5 months) or aged (18 to 22 months) Hcrt::Cre mice with a 5 μ l Hamilton micro-syringe. A glass fiber (400 μ m core diameter, Doric Lenses) was implanted with the tip at the injection site for GCaMP6f signal acquisition afterwards. EEG/EMG electrodes were implanted following

fixation of fiber optic and secured with Metabond and dental acrylic. Mice were allowed to recover for at least 2 weeks to get sufficient virus expression before connecting to the EEG/EMG recording cables and fiber photometry recording patch cord.

Single-nucleus RNA-sequencing (snRNA-seq): To label telomeres in the nuclei, 0.3 µl AAV vectors encoding Cre-dependent DsRed-hTRF2 (52) (AAV-DJ-DIO-DsRed-hTRF2, 1.95×10^{12} gc/ml, customer viruses packaged at Stanford Virus Core, Lot no. 4422) were bilaterally injected to the LH (AP: -1.35 mm, ML: ± 0.95 mm, DV: -5.15 mm) of young (3 months) and aged (18 months) male and female Hcrt::Cre mice [3 mice per condition (young/aged male/female)].

EEG-EMG recording and analysis

Mice were singly-housed after surgery and allowed to recover for 1 week with access to food and water ad libitum before EEG/EMG recording. EEG/EMG signals were amplified through a multiple channel amplifier (Grass Instruments) and acquired with VitalRecorder (Kissei Comtec Co.) with a sampling frequency of 256 Hz followed by offline signal analysis. The bandpass was set between 0.1 and 120 Hz. Raw EEG/EMG data were exported to Matlab (MathWorks, Natick, MA, USA) and analyzed with custom scripts and Matlab builtin tools based on described criteria (12) to determine behavioral states. Cataplexy-like EEG/EMG pattern was determined based on the criteria described in the original publication reporting the OX(Hcrt)-ataxin3 narcolepsy mouse model (15) and the consensus definition of cataplexy in mouse models of narcolepsy: (i) \geq 10 sec of EMG atonia; (ii) EEG with theta band domination; (iii) behavioral immobility preceded by \geq 40 sec of wakefulness (30). For optogenetic and fiber photometry recording experiments, simultaneous EEG/EMG signals were recorded to determine behavioral states. The latency of sleep-to-wake transition and the duration of wakefulness following optogenetic stimulation during sleep were determined in SleepSign (Kissei Comtec Co.) with indication of stimulation timestamps on the raw EEG/EMG signals. EEG power spectral analysis was performed with the same method as described earlier (13). EEG band power calculation was based on: delta (1 to 4 Hz); theta (4 to12 Hz). EEG band power comparison between vehicle- and KCNQ2/3 ligand-treated groups was conducted based on signals during 1 hour (for vehicle versus XE991)

and 3 hours (for vehicle versus flupirtine) following injection for wakefulness and NREM sleep based on the dynamic of drug's effect. As both XE991 and flupirtine postponed REM sleep onset, EEG band power was computed based on the initial REM sleep epoch after injection of vehicle/drug. The investigator was blind to the group information while conducting the EEG/EMG data analysis.

In vivo optogenetic stimulation

After recovery and sufficient virus expression (>2 weeks), mice injected with viruses expressing Credependent ChR2-eYFP were connected to EEG/EMG recording cables and fiber optic patch cords (200 μ m core diameter, Doric Lenses) for one week acclimation in special cages with open top which allowed mice to move freely. Following acclimation, optogenetic stimulation with a range of frequencies (1, 5, 10, 15, and 20 Hz, controlled by A.M.P.I. Master 8) and a range of blue light (473 nm) intensities (1, 5, 10, 15, and 20 mW, Laserglow Technologies, calibrated with Thorlabs light meter) was performed. Each stimulation train consisted of 15 ms light pulses for 10 sec with a given light intensity and frequency according to a randomized 5 (light intensities) × 5 (frequencies) matrix generated in Matlab. Sleep-to-wake transition experiments were performed between ZT5-ZT9 of their inactive phase when mice have a strong sleep pressure. Light stimulations were delivered to mice within 30 sec of NREM or REM sleep onset to determine the latency of sleep-to-wake transition and duration of wake bout following optogenetic stimulation. The onset of light stimulation was time-stamped during recording for offline analysis afterwards.

Fiber photometry signal acquisition and analysis

After recovery, sufficient virus expression (>2 weeks), and habituation to EEG/EMG cable and fiber optic patch cord (400 μ m core diameter, Doric Lenses), mice injected with AAV viruses expressing Cre-dependent GCaMP6f were connected to EEG/EMG recording setup and a custom-built fiber photometry setup (*50*). Briefly, a 470 nm LED (M470D3, Thorlabs, NJ, USA) was sinusoidally modulated at 211 Hz and passed through a GFP excitation filter followed by a dichroic mirror (MD 498, ThorLabs) for reflection. The light stream was sent through a high NA (0.48), large core (400 μ m) optical fiber patch cord (Doric Lenses, Québec, Canada), which was connected with a zirconia connector (Doric Lenses, Québec, Canada) to the dental

acrylic-secured fiber optic implant (0.48NA, 400 µm, Doric Lenses, Québec, Canada) with the tip on the injection site. Separately, a 405 nm LED was modulated at 531 Hz and filtered by a 405 nm bandpass filter and sent through the optical fiber patch cord to mouse brain to evoke reference fluorescence, which was independent of Ca²⁺ release. GCaMP6f fluorescence and reference fluorescence were sampled by the same fiber patch cord through a GFP emission filter (MF525-39, ThorLabs), and center-aligned to a photodetector (Model 2151, Newport, Irvine, CA, USA) with a lens (LA1540-A, ThorLabs). The analog signals were amplified by two lock-in amplifiers for GFP fluorescence and reference fluorescence respectively (30 ms time constant, model SR380, Stanford Research Systems, Sunnyvale, CA, USA). Matlab-based custom software was used to control the LEDs and sample both the GFP fluorescence and reference fluorescence through a multifunction data acquisition device (National Instruments, Austin, TX, USA) with 256 Hz sampling frequency in a real-time manner. $\Delta F/F$ was obtained by subtracting the reference fluorescence signal from the 470 nm excited GFP emission signal to remove the system interference. The optical fiber patch cord was photobleached to minimize autofluorescence prior to recording according to the user manual (Doric Lenses, Québec, Canada). The recording was conducted between ZT5-ZT9 of their inactive phase when mice have a strong sleep pressure.

To reveal the Hcrt neuronal activity in driving behavioral pattern changes, we used a bottom-up analysis strategy, i.e., GCaMP6f data were staged independent of simultaneous EEG/EMG signals. We then separated the increased GCaMP6f into two categories: GCaMP6f transients during sleep (G^S) and GCaMP6f epochs associated with wakefulness (G^W) (Fig. 1). All the G^S and G^W were staged from the same amount of recording conducted during ZT5-ZT9 from equal group size (1 hour/each mouse, n = 6 mice each group) for comparison of Hcrt neuronal activity between young and aged mice. All the GCaMP Δ F/F transients with a Z score >1% (equals GCaMP6f Δ F/F value ~0.3-0.6 for individual animal) of the highest Δ F/F value of the entire trace were staged. After data staging, each GCaMP6f epoch was normalized to its own 5 sec baseline with time 0 defined for the beginning of GCaMP6f rising phase. Heatmaps were generated for each category based on 10 sec of normalized GCaMP6f epochs with 5 sec prior to and 5 sec after time 0. A Z score was calculated by

subtracting the mean value of GCaMP6f trace prior to time 0 from the mean value of GCaMP6f after time 0 and an averaged Z score based on each animal was used for statistical comparisons. As the $G^S Z$ score was generally small, only the G^S transients with Z score > mean ($G^S Z$ score) – 3×SEM ($G^S Z$ score) were included with ideal signal-to-noise ratio for subsequent analyses. By definition, all the G^W epochs were qualified for analyses. G^S scatter plot was generated with the duration of G^S against its peak value, and G^W scatter plot was generated with the duration of wake-associated G^W epoch against its maximum peak value (maximum GCaMP6f Δ F/F, if given epoch appeared with multipeaks). Animal-based frequencies of G^S and G^W were compared between the young and aged groups. Durations of sleep, wake, and S-W epochs were compared. Spearman correlation analysis with a linear fit was perform between G^W frequency (counts/hour) and mean sleep bout duration. The investigator was blind to the group information while conducting the GCaMP6f data staging.

Chemical preparation and application

XE991 dihydrochloride (Cat. no. 2000, referred to as XE991) and flupirtine maleate (Cat. no. 2867, referred to as flupirtine) were purchased from Tocris. XE991 was prepared in saline with a concentration of 50 μ M for in vitro electrophysiology and prepared in saline with a concentration of 0.2 mg/ml for in vivo experiment with a dosage of 2 mg/kg (0.1 ml/10g, intraperitoneally). 5 mM flupirtine stock solution (0.9% saline containing 0.3% dimethyl sulfoxide/DMSO, v/v) was added to artificial cerebrospinal fluid (ACSF) to reach a concentration of 50 μ M for in vitro electrophysiology. Flupirtine was prepared at a concentration of 2 mg/ml in 0.9% saline containing 0.3% DMSO (v/v, vehicle) for in vivo experiments with a dosage of 20 mg/kg (0.1 ml/10g, intraperitoneally). Flupirtine solution was ultrasonicated prior to application. Counterbalanced crossover design was used for in vivo pharmacology experiments to reveal the drug's effect. Two rounds of drug administrations were separated by at least one week for a complete wash-out of drug's effect. 4-Aminopyridine (4-AP) was purchased from Sigma-Aldrich (Cat. no. 275875). 100 mM 4-AP stock solution (0.9% sodium chloride/saline as vehicle) was added to ACSF to reach a concentration of 50 μ M for in vitro electrophysiology (Merck) was prepared at a concentration of 2 mg/ml in a mixture

(v/v, vehicle) of 50% 0.9% saline and 50% Poly ethylene glycol (average Mn 400, PEG400, Sigma-Aldrich Cat. no. 202398) for in vivo pharmacology experiment as previously described (*13*).

In vitro electrophysiology

All the in vitro electrophysiology experiments were performed during the light phase (ZT3-ZT9). 3-9 mice were used each group. Slices were randomly assigned to groups examining effects of XE991 or flupirtine on M current in the in vitro pharmacology experiments.

Slice preparation: Mice from both groups were decapitated after anesthesia with sevoflurane or perfused with ice-cold slicing solution under anesthesia. To increase the chances of acquiring a healthy slice, we used a sucrose-based or choline-based ACSF for brain slice preparation to reduce the cell excitotoxicity and loss during slice preparation (53). After decapitation, the brain was rapidly dissected and immersed in ice-cold sucrose/choline-based ACSF slicing solution (pH 7.4, 95% O₂ / 5% CO₂). 300 µm-thick coronal brain slices containing Hcrt neurons with eYFP fluorescence were sectioned using a VT1200s vibratome (Leica Microsystems). After ~20 min incubation at ~35 °C, the slices were stored at room temperature. Slices were used for maximally 5 hours after dissection. Experiments were performed at room temperature 21° to 24 °C. Recording and data analysis: During experiments, slices were superfused with a physiological extracellular solution containing: 125 mM NaCl, 2.5 mM KCl, 25 mM NaHCO₃, 1.25 mM NaH₂PO₄, 25 mM D-glucose, 2 mM CaCl₂, and 1 mM MgCl₂ (pH 7.4 in 95% O₂ / 5% CO₂, ~325 mOsm). Neurons were chosen based on eYFP expression and visualized with an Olympus BX51WI with Nomarski optics connected to a camera (Qimaging). Thick wall borosilicate pipettes (1B150F-4, World Precision Instruments Inc.) were pulled using a P-97 puller (Sutter Instruments) and electrodes with a resistance of 3-6 megohms were used for recording. Intracellular solution used for whole-cell recording contained: 120 mM K-methyl-sulfonate, 10 mM NaCl, 10 mM EGTA, 1 mM CaCl₂, 10 mM HEPES, 0.5 mM NaGTP, 5 mM MgATP, pH adjusted to 7.2 with KOH, osmolarity adjusted to 305 mOsm with sucrose; 0.2% biocytin was added for post-hoc staining. Neurons were recorded under current-clamp to examine excitability, or under voltage-clamp to examine PSCs. 1 sec step currents from -50 pA to 300 pA were used to evoke AP firing. For optogenetic stimuli, a 15 ms blue light

pulse (3.4 mW, calibrated with Thorlab light meter) was given at 1 Hz, 5 Hz, 10 Hz, 15 Hz and 20 Hz in a randomized manner for 10 sec to compare light-induced activity between the young and aged groups, and the interval between sweeps was 20 sec. Data were acquired with a Multiclamp 700B amplifier (Axon Instruments, USA), and sampled at 10 kHz. Stimulus generation and data acquisition were performed using pClamp 10. Data were analyzed using Stimfit 0.14.9 (www.stimfit.org) and R 3.5.1 (the R project for statistical computing). RMP values were measured and averaged from temporal windows (at least 50 ms prior to the peak of a given AP for spontaneously firing neurons) with minimal membrane potential variance (*54*). The RMPs were determined without predicted/measured junction potential correction. All the amplitudes of APs and spikelets were calculated from RMPs. Depolarization events with a peak value above – 20 mV, and with a half width shorter than 6 ms were qualified for spikelet analyses. PSC recording from non-fluorescent neuron innervated by fluorescent Hcrt neuron expressing ChR2-eYFP was performed as illustrated in fig. S4A. For the PSC failure analysis, a success PSC was considered when a current deflection bigger than 10 pA occurred time-locked to the light pulse. The investigators were blind to the group information while conducting the data analyses.

LC neurons were recorded in slices prepared from WT young (2 to 3 months) and aged (18 to 21 months) mice, infused with biocytin, followed by antibody staining against tyrosine hydroxylase (TH). Only the neurons positive for both biocytin and TH were included for data analyses.

 $I_{\rm M}$ recording: For recording of the slowly deactivating M-current ($I_{\rm M}$) mediated by KCNQ2/3, perforated patch recordings were used to maintain the integrity of second messenger signaling cascades and minimize current rundown. The pore-forming antibiotic nystatin was dissolved in DMSO at 50 mg/ml. This stock solution was diluted in an internal pipette solution and vortexed and ultrasonicated for a final concentration of 100 to 200 µg/ml. Pipette tips were prefilled by brief immersion into antibiotic-free solution and then pipettes were back filled with nystatin. After the cell-attached configuration was attained, the access resistance was periodically monitored with hyperpolarizing voltage steps (10 mV, 20 ms) and capacitative transients were cancelled. After 10 to 20 minutes, recording was started once the access resistance stabilized. The

recording was terminated if a sudden change in access resistance occurred. Extracellular solution contained 4-AP (5 mM) to minimize contamination by other potassium currents, and AMPARs, glycine receptors and GABA_A receptors were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX, Tocris Cat. no. 0189, 10 μ M), strychnine (Sigma-Aldrich Cat. no. S0532, 1 μ M), (2R)-amino-5-phosphonopentanoate (APV, Tocris Cat. no. 0106, 100 μ M) and bicuculline (Sigma-Aldrich Cat. no. 285269, 10 μ M). *I*_M was recorded using a standard deactivation protocol (1000 ms hyperpolarizing steps to -30 mV from a holding potential of -20 mV every 10 sec, inter-sweep holding potential – 20 mV). *I*_M did not inactivate with this protocol, while contamination by other voltage-gated currents was minimized. *I*_M was measured as the inward relaxation current caused by deactivation of *I*_M during this voltage step (Fig. 4, G and H). After obtaining at least a stable 5 min baseline, XE991 (50 μ M) or flupirtine (50 μ M) was applied. The effect of XE991 or flupirtine was determined by comparing averaged *I*_M amplitudes over a 5 min period just before XE991 or flupirtine application with averaged *I*_M amplitudes during the 5 to 10 min period after XE991 or flupirtine application.

Array tomography (AT)

Tissue preparation: Array creation and immunohistochemistry were described in detail in a previous publication (55). In short, a small piece of tissue (~2 mm high by 1 mm wide by 1 mm deep), covering the LH containing eYFP-labeled Hcrt neurons, was microwave-fixed in 4% Paraformaldehyde (PFA). The fixed tissue was then dehydrated in graded steps of ethanol, and then embedded in LR White resin overnight at 50 °C. The embedded tissue was sectioned on an ultramicrotome at a thickness of 70 nm and placed as a ribbon array directly on gelatin or carbon coated glass coverslips. The ultrathin physical sectioning allows AT to achieve true isotropic voxels of ~100 nm. To assure that the brain tissue from animals were prepared and imaged in as similar conditions as possible, all samples were paired starting at the tissue preparation step. Thus, young and aged animals were prepared in tandem, placed on the same coverslip, stained together and imaged together. Furthermore, to minimize the impact of locational differences in the gathered tissue, multiple blocks were generated from LH of each mouse, and screened at 20× using 4',6-diamidino-2-phenylindole (DAPI) fluorescence. Then similar tissue blocks were used for further analysis.

Immunohistochemistry: Immunohistochemistry was then carried out on the arrays using primary antibody against KCNQ2 (Alomone Cat. no. AGP-065). The primary antibodies were visualized via fluorescence-labeled secondary antibody: (Alexa 594, Invitrogen Cat. no. A11076), and mounted in SlowFade Gold antifade with DAPI (Invitrogen Cat. no. S36938).

Microscopy: Wide-field imaging of ribbons were accomplished on a *Zeiss* Axio Imager.Z1 Upright Fluorescence Microscope with motorized stage and Axiocam HR Digital Camera as previously described (*56*). A position list was generated for each ribbon array of ultrathin sections using custom software modules written for Axiovision. Single fields of view were imaged for each position in the position list using a *Zeiss* 63×/1.4 NA Plan-Apochromat objective.

Image Registration and Processing: Image stacks from AT were imported into Fiji (ImageJ) and aligned using both rigid and affine transformations with the Register Virtual Stacks plugin. The aligned image stacks were further registered across image sessions using Fiji and TrackEM. The aligned and registered image stacks were imported into Matlab and deconvolved using the native implementation of Richardson-Lucy deconvolution with empirical or theoretical PSFs with 10 iterations (*56*). Custom functions were written to automate and facilitate this workflow.

eYFP Segmentation: eYFP delimited protein amount was calculated using custom Matlab software. eYFP volumes were slightly dilated via morphological operations and used to segment protein data in image space. Segmentation custom functions were used to quantify the number and amount of proteins encapsulated by eYFP.

Single-nucleus isolation, FACS sorting, RNA library preparation and sequencing

3 weeks after virus injection, mice were deeply anesthetized using isoflurane and perfused with $1 \times PBS$. The brains were rapidly dissected and transferred to a chilled metal Brain Slicer Matrix (Zivic Instruments, 500 μ m coronal slice intervals), and the brain sections containing Hcrt neurons (AP: – 1.0 ~ – 2.0 mm) were sliced and transferred to 1× PBS on ice. Bilateral hypothalamic areas (LH) were identified and dissected under a stereoscope. LH tissue blocks were then transferred to a glass dounce homogenizer (Sigma-Aldrich) on ice

and homogenized in 1 ml Homogenization Buffer (57) containing Tris (pH 8.0, 10 mM), sucrose (250 mM), KCl (25 mM), MgCl₂ (5 mM), Triton-X100 (0.1%), RNasin Plus RNase Inhibitor (0.5%, Promega Cat. no. N2615), SUPERase InTM RNase Inhibitor (0.5%, ThermoFisher Cat. no. AM2694), Protease Inhibitor Cocktail (1×, Promega Cat. no. G6521), DTT (0.1 mM) and DAPI (1:1000, Invitrogen Cat. no. D3571). LH tissue blocks from 3 mice per condition (young/aged male/female) were pooled each condition for isolation of nuclei. The nuclei were released by sequentially applying 10 to 12 strokes of the loose dounce pestle and 10 to 12 strokes of the tight dounce pestle on ice, followed by filtering the suspension through a 35 µm cell strainer (Falcon). The nuclei were then spun down by centrifugation (10 min, 900× g at 4 °C) and resuspended in the Wash Buffer (1× PBS containing 0.8% BSA, 0.5% RNasin Plus RNase Inhibitor and 0.5% SUPERase InTM RNase Inhibitor). The single-nucleus suspension was further washed twice in Wash Buffer by centrifugation (10 min, 900 \times g at 4 °C). Fluorescence activated cell sorting (FACS) was performed using the 70 µm nozzle and optimal gates collecting the DsRed/DAPI double positive events and excluding debris and doublets. Sorted DsRed+ single nuclei were confirmed using a fluorescence microscope, and manually counted using a hemocytometer. snRNA-seq libraries were prepared using 10x Genomics Chromium Single Cell 3' Reagents v3 following manufacturer's instructions. Briefly, the concentration of single nuclei solution prepared from dissected LH tissue was determined using DAPI staining and Trypan Blue staining. The nuclei solution was loaded onto a Chromium Chip B to capture seven to ten thousand nuclei in droplets containing the reverse transcription reagents. After reverse transcription, the now barcoded cDNA was recovered and amplified for 12 polymerase chain reaction (PCR) cycles. After qualitative and quantitative control of the cDNA, the final libraries were constructed by fragmenting the cDNA, End Repair, and A-Tailing. After adapter ligation, the libraries were amplified for 11 PCR cycles. The libraries were sequenced using an Illumina MiSeq v3 150-cycle kit to check library quality and confirm the number of captured nuclei. Then all the barcoded samples were mixed and deep sequenced on an Illumina HiSeqX sequencing machine across 4 different lanes to avoid lane variability and potential lane failure.

snRNA-seq data analysis

Illumina fastq files were processed through the 10x Genomics cellranger pipeline according to the manufacturer's instructions. Briefly, reads were aligned to the mm10 mouse genome using a custom gtf annotation file which labeled all 'transcripts' as 'exons', thus allowing to count intronic as well as exonic reads. The four libraries were then combined using cellranger *aggr* command to match sequencing depth per cell across libraries. All further processing of the genes X cells count matrix was performed in Seurat V3 (*58*) using scTransform normalization (*59*). First, the population of Hcrt+ neurons were identified out of all sequenced cells by coarse Louvian clustering of the entire sequencing dataset. Only one cluster showed Hcrt expression. This cluster was then separately subclustered, and all doublet clusters were removed. No large batch effects were observed at this level. A core set of three clusters, all of which expressed Hcrt at high levels, served as the basis for the analysis of age related effects.

CRISPR/SaCas9-mediated Kcnq2/3 gene disruption in Hcrt neurons

The target sites of *Kcnq2/3* genes for Staphylococcus aureus CRISPR/Cas9 (CRISPR/SaCas9) were designed by CHOPCHOP (<u>http://chopchop.cbu.uib.no</u>) (*60*). The target sequences were as follows: sgKcnq2: 5'-CGCGTGTGGAGTCGGGCGCGC-3', sgKcnq3: 5'-GCGGCCACCGCCCTCCAGCAG-3'. Oligonucleotides encoding guide sequences were purchased from Sigma-Aldrich and cloned individually into BsaI fragment of pX601 (Addgene plasmid 61591). U6-sgKcnq2 and U6-sgKcnq3 fragments were PCR-amplified, respectively using pX601-sgKcnq as a template. Amplified fragments were cloned tandemly into MluI-digested pAAV CAG FLEX mCherry by Gibson assembly method. The primers used were as follows; Gibson1-F: 5'-TAGGGGTTCCTGCGGCCGCAGAGGGGCCTATTTCCCATG-3', Gibson1-R: 5'-ATAGGCCCTCTCTAGAAAAAATCTCGCCAAC-3', Gibson2-F: 5'-

TTTTTCTAGAGAGGGCCTATTTCCCATG-3', Gibson2-R: 5'-

TCATTATTGACGTCAATGGAAAAAATCTCGCCAACAAGTTG-3'. AAV constructs carrying nontargeting guide sequences (5'-GCGAGGTATTCGGCTCCGCGT-3') were used as control. For the Credependent SaCas9 construct, SaCas9 fused with 3× HA tag was PCR amplified using pX601 as a template. Amplified fragment was cloned into AscI/NheI-double digested pAAV-U6-SaCas9gRNA(SapI)-CMV-

SaCas9-DIO-pA (Addgene plasmid 113691). Next, the plasmid was digested by MluI and applied to selfligation to remove U6 promoter and single-guide RNA (sgRNA) scaffold sequences. pAAV CMV-DIO-SaCas9-3HA (SaCas9), pAAV U6 sgKcnq2-U6 sgKcnq3 CAG FLEX mCherry (sgKcnq2/3) and pAAV U6 sgControl-U6 sgControl CAG FLEX mCherry (sgControl) were packaged into AAV-DJ by the Wu Tsai Neurosciences Institute Gene Vector and Virus Core at Stanford University.

20 young (6 to 8 weeks old) Hcrt::Cre mice were separated into two groups in a random manner (n = 10/group). Under anesthetics and analgesic, according to the Hcrt neuron field coordinates as described above, one group received bilateral stereotaxic injection of a 0.6 μ l (each side, 0.3 mm apart in depth) mixture of SaCas9 (2.4 × 10¹³ gc/ml) and sgControl (6.24 × 10¹² gc/ml) and implanted with EEG/EMG electrodes to serve as the control group. The other group received bilateral stereotaxic injection of a 0.6 μ l mixture of SaCas9 and sgKcnq2/3 (2.97 × 10¹² gc/ml) and implanted with EEG/EMG electrodes to monitor the effect of Hcrt neuron-selective *Kcnq2/3* gene disruption on sleep architecture. After surgery, mice were connected to EEG/EMG recording cables and singly-housed with food and water ad libitum to recover, and for EEG/EMG signal recording. EEG/EMG signals were recorded continuously on day 6 and day 7 weekly up to 8 weeks (EEG/EMG recording lasted until 12 weeks in half of each group) after surgery. Following recording in week 8/12 after virus injection, slices were prepared from each group for in vitro electrophysiology experiment to determine RMP and firing property of the Hcrt neurons labeled by mCherry flag. Patch clamp recorded cells were infused with biocytin for subsequent immunostaining. The data were used for statistical analysis only if the recorded neurons were stained to co-express biocytin and HA tag.

Histology

For in vivo experiments, upon accomplishment of recordings, mice were perfused under anesthesia described above with ice-cold $1\times$ PBS and followed by 4% PFA for immunostaining against Hcrt1/OXA for Hcrt neurons, and TH for LC NA neurons. Brains were rapidly extracted, postfixed with 4% PFA at 4 °C overnight, and equilibrated in 30% sucrose in $1\times$ PBS containing 0.1% NaN₃. Then, brains were sectioned at -22 °C with a cryostat (Leica Microsystems) at a thickness of 35 µm. Slices were collected from anterior to posterior

consecutively to 24-well plates containing PBS with 0.1% NaN₃, covered with aluminum foil, and stored at 4 °C until immunostaining and imaging. Primary antibody against OXA/Hcrt1 (SC-8070, Lot no. A2915, Goat polyclonal IgG) was purchased from Santa Cruz Biotechnology. Primary antibody against TH (Chicken polyclonal anti-peptide, Cat. TYH, Lot no. TYH1897983) was purchased from Aves. Primary antibody against HA tag (Rabbit Anti-HA tag pAb, Item no. 561, Lot no. 067) was purchased from MBL International Corporation. Secondary antibodies: Alexa Fluor 488 Goat anti-chicken IgG (H+L, Ref. no. A11039, Lot no. 1094413), Alexa Fluor 488 donkey anti-goat IgG (H+L, Ref. no. A11055, Lot no. 1869589), Alexa Fluor 488 donkey anti-rabbit IgG (H+L, Ref. no. A21206, Lot no. 1910751), Alexa Fluor 647 donkey anti-goat IgG (H+L, Ref. no. A21447, Lot no. 2175459), were purchased from Invitrogen (Manufacturer: Life Technologies). Alexa Fluor 594 streptavidin conjugate (Ref. no. S11227, Lot no. 1991448) and Alexa Fluor 647 streptavidin conjugate (Ref. no. S32357, Lot no. 1738557) to label neurons infused with biocytin were purchased from Invitrogen. For the WT mice used for comparison of sleep patterns, sections around LH and LC were washed in $1 \times PBS$ for 5 minutes, 3 times and incubated in a blocking solution of PBS with 0.3% Triton X-100 (PBST) and 4% bovine serum albumin (BSA) for 1 hour. Following that, OXA/Hcrt1 primary antibody was added to the blocking solution (1:800) overnight. On the second day, sections were washed in $1 \times PBS$ for 3 times (5 min/time), and incubated in blocking buffer for 2 hours. After blocking, secondary antibody was added to the blocking buffer for 2 hours (dilution 1:800). After 3 times of 5-min $1 \times PBS$ washing, brain sections were mounted onto gelatin-coated slides, covered with Fluoroshield containing DAPI mounting media (Sigma-Aldrich, F6057) and cover glass for imaging with wild field microscope (Zeiss AxioImager, Germany) for entire section or LSM710 Confocal Microscope for enlarged visualization (Zeiss, Germany). For brain slices infected with Cre-dependent viruses, slices around the injection site were collected and stained with appropriate antibodies as described above. Alexa Fluor 594 streptavidin conjugate or Alexa Fluor 647 streptavidin conjugate for staining of biocytin was added together with the secondary fluorescent antibody for Hcrt1, TH or HA tag on the second staining day for in vitro experiment slices.

Object recognition test

Aged mice (~20 months, singly-housed with a reversed 12-h/12-h light/dark cycle, 9 pm light on, Zeitgeber time 0/ZT 0) were used to evaluate flupirtine's effect on memory ability in the object recognition task. The object recognition task was performed according to a protocol described by Leger et al. (61). The protocol consisted of habituation, familiarization and test sessions (fig. S8). During each habituation session, an individual mouse was released to the arena (34 cm \times 17 cm, non-transparent open field filled with Sani-Chip pine bedding floor) for habituation of 5 min. Each mouse underwent two habituation sessions conducted during ZT16-18 and ZT22-24 for 3 consecutive days. During the familiarization session (Day 4: ZT22-24), each mouse was allowed to explore two identical objects for a total of 5 min. Each object was placed at the same distance from the walls and corners of the field without spatial or odor cues (bedding was changed; arena and objects were cleaned with 70% ethanol before each exposure). After the familiarization session, mice were intraperitoneally injected with either vehicle or flupirtine (20 mg/kg) at the beginning of the following light phase. During the test session (Day 5: ZT22-24), mice were placed in the same arena with one of the familiar objects from the familiarization session replaced by a similar size novel object. The position of the novel object (left or right) was randomized for each mouse and each group tested. Time spent facing away from object within the 7 cm radius or climbing on object was not qualified as exploration. Mice were randomly assigned to control/flupirtine group through a counterbalanced crossover design. Two rounds of object recognition task (with two sets of familiar and novel objects) were separated by one week for a complete drug wash-out. Animal-based averaged value of two rounds of familiarization was presented. Mouse with over 65% preference for either object during the familiarization session was not qualified to proceed to the next session.

Statistics

One/two hour-binned sleep comparisons were analyzed by two-way repeated measure (RM) analysis of variance (ANOVA) (linear mixed-effects model for counterbalanced crossover design) followed by Šidák's multiple comparisons. Holm-Šidák was used for comparison based on 24 h/light/dark phase. Unpaired *t*-test with Welch's correction was used for GCaMP6f data and in vivo optogenetic data analyses. For slice

electrophysiology, Mann-Whitney *U* test, RM one-way ANOVA, two-way ANOVA were used to analyze appropriate datasets. Paired test was used for data analyses of experiments with paired design. Spearman correlation with a linear fit was performed for 2-demensional data correlation analysis. For snRNA-seq data, differentially expressed genes across ages were determined using the Wilcoxon rank-sum test, considering only those genes with a Bonferroni adjusted *P* < 0.05. Differences with *P* < 0.05 were considered significant for all experiments. In figures, *, **, ****, and † indicate *P* < 0.05, *P* < 0.01, *P* < 0.005, *P* < 0.001, and *P* < 0.0005, respectively, and ns indicates not significant. Data with error bars were reported as mean \pm SEM. Details on statistical analyses have been described in the supplementary text.

figs. S1 to S14

fig. S1. Comparison of sleep/wake patterns between young (3 months) and aged (20 months) mice. (A to F) Comparison of (A) hourly-based percentage, (B) hourly-based bout counts, (C) hourly-based mean bout length, (D) total bout length, (E) total bout counts, and (F) mean bout length of wakefulness between young and aged mice. (G to L) Comparison of (G) hourly-based percentage, (H) hourly-based bout counts, (I) hourly-based mean bout length, (J) total bout length, (K) total bout counts, and (L) mean bout length of NREM sleep between young and aged mice. (M to R) Comparison of (M) hourly-based percentage, (N) hourly-based bout counts, (O) hourly-based mean bout length, (P) total bout length, (Q) total bout counts, and (R) mean bout length of REM sleep between young and aged mice. Data indicate mean \pm SEM (A to C, G to I, M to O: two-way RM ANOVA followed by Šidák's multiple comparisons, dark phase indicated by gray shielding; D to F, J to L, P to R: Holm-Šidák; **P* < 0.05, ***P* < 0.01, *****P* < 0.005; n = 6 mice each group; statistical details are available in the supplementary text).

fig. S2. Significant Hcrt neuron loss in aged mice. (A and B) Antibody staining against Hcrt1 in brain slices spanning anterior-posterior (from bregma) -1.000 mm to -1.840 mm from a young mouse. (A) Representative young slices spaced by 0.140 mm, and (B) magnified display of the boxed region in panel A. (C and D) Antibody staining against Hcrt1 in brain slices spanning anterior-posterior (from bregma) -1.000 mm to -1.840 mm from an aged mouse. (C) Representative aged slices spaced by 0.140 mm, and (D) magnified display of the boxed region in panel C. (E) Anterior-posterior location-matched comparison of Hcrt neuron counts, and (inset) total Hcrt neuron counts between the young and aged groups. Data indicate mean \pm SEM (n = 6 mice each group; two-way ANOVA followed by Šidák's multiple comparisons; inset: unpaired *t*-test; **P* < 0.05, ***P* < 0.01, ****P* < 0.005, *****P* < 0.001, †*P* < 0.0005; statistical details are available in the supplementary text).

fig. S3. Representative EEG-EMG traces for sleep-to-wake transitions upon optogenetic stimulation of Hcrt neurons expressing ChR2-eYFP in young and aged Hcrt::Cre mice. (A) Representative LH slices containing neurons expressing ChR2-eYFP beneath the optical stimulation fiber tip stained with antibody against Hcrt1 from the young and aged groups. (B and C) (B) Less ChR2-eYFP-expressing neurons in the aged group and (C) comparable fractions of ChR2-eYFP expressing neurons positive for Hcrt1 staining in the young and aged groups (n = 8 mice each group, Mann-Whitney U test; statistical details are available in the supplementary text). (D and E) Representative traces for sleep-to-wake transitions upon optogenetic stimulation of Hcrt neurons during NREM sleep in (D) a young and (E) an aged Hcrt::Cre mouse respectively. (F and G) Representative traces for sleep-to-wake transitions upon optogenetic stimulation of Hcrt neurons during REM sleep in (F) a young and (G) an aged Hcrt::Cre mouse respectively.

Li et al.

fig. S4. Voltage-clamp recording from non-fluorescent neurons during optogenetic stimulation of Hcrt neurons in the same slice. (A) Schematic of patch clamp recording from a non-fluorescent neuron innervated by a fluorescent ChR2-eYFP expressing Hcrt neuron in a brain slice. (B and C) (B) Fractions of young and aged Hcrt postsynaptic neurons with/without PSC failures following optogenetic stimulation of Hcrt neurons at (C) different frequencies (young: n = 15 neurons from three mice versus aged: n = 18 neurons from three mice). (D) Representative synaptic current traces recorded from young and aged neurons while optogenetically stimulating ChR2-eYFP-expressing Hcrt neurons in slices. Data indicate mean ± SEM [(C) two-way ANOVA followed by post-hoc Šidák's multiple comparisons; ***P* <0.01; statistical details are available in the supplementary text].

Li et al.

fig. S5. Single-nucleus RNA-sequencing of Hcrt neurons from young and aged male Hcrt::Cre mice. (A) Flowchart of single-nucleus RNA library preparation, quality control, sequencing and data analysis. (B) Sequencing data quality control. (top left) Comparable sequencing depth and (top right) numbers of genes between young and aged Hcrt nuclei. (bottom) Similar expression profiles of representative genes in young and aged Hcrt nuclei. (C) (left) Gene expression level for t-SNE plot showing (middle top) 4 distinct Hcrt neuron clusters, and (middle bottom) young and aged Hcrt nuclei distribute similarly among these clusters. (right) Comparable fractions of each cluster in young and aged Hcrt nuclei. (D) Genes expressed with significant differences between young and aged Hcrt nuclei. (top left) Heatmap of individual Hcrt nucleus with gene expression level; (top right) volcano plot of regulation significance $-Log_{10}P$ against expression Log_2 fold change (FC) with expression level normalized to young Hcrt dataset; (bottom) significantly upregulated genes in aged Hcrt nuclei (Wilcoxon rank-sum test, considering only those genes with a Bonferroni adjusted P < 0.05; *P < 0.05, †P < 0.0005; statistical details are available in the supplementary text). (E) Percentage of Hcrt nuclei expressing *Kcnq* subtypes in young and aged male mice. Note the lower percentage of aged Hcrt nuclei actively expressing the dominant subtypes Kcnq1/2/3/5.

Li et al.

fig. S6. snRNA-seq of Hcrt neurons from young and aged female mice. (A) Sequencing data quality control. Comparable sequencing depth, numbers of genes between young and aged Hcrt nuclei. (B) (left) Gene expression level for t-SNE plot showing (middle top) 4 distinct Hcrt neuron clusters, and (middle bottom) young and aged Hcrt nuclei distribute similarly among these clusters. (right) Comparable fractions of each cluster in young and aged Hcrt nuclei. (C) Genes expressed with significant differences between young and aged Hcrt nuclei (Wilcoxon rank-sum test, considering only those genes with a Bonferoni adjusted P < 0.05; statistical details are available in the supplementary text). (D) Volcano plot of regulation significance $-\text{Log}_{10}P$ against expression Log_2 fold change (FC) with expression level normalized to young dataset. (E) Percentage of Hcrt nuclei expressing *Kcnq* subtypes in young and aged female mice. Note the lower percentage of aged Hcrt nuclei actively expressing the dominant subtypes *Kcnq1/2/3/5*.

Li et al.

fig. S7. CRISPR/SaCas9-mediated disruption of Kcnq2/3 genes in Hcrt neurons leads to NREM sleep fragmentation in young Hcrt::Cre mice. (A) 2 hour (left) binned percentage, (middle left) bout counts, (middle right) mean bout length, and (right) mean bout length based on circadian phase for wake, NREM, and REM sleep at 1 week (top), and 12 weeks (bottom) after injection of a virus mixture containing CRISPR reagents (n = 5 mice/group, dark phase indicated by gray shielding). (**B**) Images of representative slices from sgControl and sgKcnq2/3 groups infected with a virus mixture expressing fluorescent flag mCherry and HA tag following EEG-EMG recording at 12 weeks after virus injection. Patch clamp recorded cells were labeled with biocytin, and post hoc antibody staining against HA tag confirmed the cells expressing SaCas9 for data analyses. (C) Comparison of RMPs between sgControl and sgKcnq2/3 group (sgControl: n = 33 neurons from 6 mice versus sgKCNQ2/3: n = 22 neurons from 6 mice) pooled from 8 and 12 weeks after virus injection. (D) Fractions of neurons with different firing frequencies in the sgControl and sgKcnq2/3 group. (E) Representative traces with and without spontaneous firing activity. (Inset) Averaged traces for the young and aged spontaneous APs. (F) Comparisons of basic electrophysiological properties of neurons from the sgControl and sgKcnq2/3 group (sgControl: n = 15 neurons from 6 mice versus sgKCNQ2/3: n = 15 neurons from 6 mice). Data indicate mean \pm SEM [(A) left to middle right, two-way RM ANOVA followed by Šidák's multiple comparisons; (A) right, Holm-Šidák; (C) and (F) Mann-Whitney U test; *P < 0.05; statistical details are available in the supplementary text).

fig. S8. Performance of aged mice improved by flupirtine in an object recognition task. (A) Habituation session. (B) Familiarization session. (C) Test session. (A) to (C) n = 9 mice each group, unpaired *t*-test with Welch's correction, **P* < 0.05; statistical details are available in the upplementary text.

fig. S9. Cataplexy-like EEG-EMG pattern and NREM sleep fragmentation emerging during rapid OX(Hcrt) neuron loss in the OX(Hcrt)-ataxin3 narcolepsy mouse model at 5-week-old. (A) Representative EEG, EEG power spectrum, and EMG for a normal behavioral transition. (B) Representative EEG, EEG power spectrum, and EMG for a behavioral transition from wake to cataplexy-like EEG-EMG pattern. (C) Comparison of sleep architectures between OX(Hcrt)-eGFP^{+/-}-ataxin3^{-/-} (control) and OX(Hcrt)-eGFP^{+/-}-ataxin3^{+/-} (ataxin3⁺) mice at 5-week-old. (D) Representative slices from control and ataxin3⁺ mice at 5-week-old. Patch clamp recorded cells labeled with biocytin and post hoc antibody staining against OXA(Hcrt1). (E to G) (E) Representative spontaneous activities (inset, averaged traces of the spontaneous APs) recorded from control and ataxin3⁺ mice, (F) fractions of neurons with different firing frequencies, and comparison of [first panel in (G)] RMPs (n = 33 neurons from three control mice versus n = 28 neurons from three ataxin3⁺ mice) and [other panels in (G)] other AP basic electrophysiological properties (n = 17 neurons from three control mice versus n = 21 neurons from three ataxin3⁺ mice) for spontaneously firing neurons. Statistical details are available in the supplementary text.

fig. S10. Cataplexy-like EEG-EMG pattern, and wake and NREM sleep fragmentation in the OX(Hcrt)-ataxin3 narcolepsy mouse model with a near complete OX(Hcrt) neuron loss at 12-week-old. (A) Comparison of sleep architectures between control and ataxin3⁺ mice at an age of 12 weeks. (B) Immunostaining against Hcrt1 revealed a near complete OX(Hcrt) neuron loss in the OX(Hcrt)-eGFP^{+/-}ataxin3^{+/-} group which displayed significant amount of cataplexy-like EEG-EMG activity at 12 weeks. Statistical details are available in the supplementary text.

Li et al.

fig. S11. Effect of a dual Hcrt/OX receptor antagonist MK6096 (filorexant, 20 mg/kg) on sleep architecture in aged mice. (A to F) Comparison of (A) hourly-based percentage, (B) hourly-based bout counts, (C) hourly-based mean bout length, (D) total bout length, (E) total bout counts, and (F) mean bout length of wakefulness between vehicle- and MK6096-treated aged mice. (G to L) Comparison of (G) hourly-based percentage, (H) hourly-based bout counts, (I) hourly-based mean bout length, (J) total bout length, (K) total bout counts, and (L) mean bout length of NREM sleep between vehicle- and MK6096treated aged mice. (M to R) Comparison of (M) hourly-based percentage, (N) hourly-based bout counts, (O) hourly-based mean bout length, (P) total bout length, (Q) total bout counts, and (R) mean bout length of REM sleep between vehicle- and MK6096-treated aged mice. Data indicate mean \pm SEM [(A) to (C), (G) to (I), (M) to (O), two-way RM ANOVA (linear mixed-effects model) followed by Šidák's multiple comparisons, dark phase indicated by gray shielding; (D) to (F), (J) to (L), (P) to (R), Holm-Šidák; *P < 0.05, n = 9 mice each group; statistical details are available in the supplementary text].

Li et al.

fig. S12. Locus coeruleus (LC) noradrenergic (NA) neuron loss in aged mice. (A and B) Antibody staining against tyrosine hydroxylase (TH) in brain slices spanning anterior-posterior (from bregma) – 4.945 to – 6.030 mm from a young mouse. (A) Representative young slices spaced by 0.175 mm, and (B) magnified display of the boxed region in panel A. (C and D) Antibody staining against TH in brain slices spanning anterior-posterior (from bregma) – 4.945 to – 6.030 mm from an aged mouse. (C) Representative aged slices spaced by 0.175 mm, and (D) magnified display of the boxed region in panel C. (E) Anterior-posterior location-matched comparison of noradrenergic neuron counts, and (inset) total noradrenergic neuron counts between the young and aged group. Data indicate mean \pm SEM (n = 6 mice each group; two-way ANOVA followed by Šidák's multiple comparisons; inset: unpaired *t*-test; **P* < 0.05, ***P* < 0.01, *****P* < 0.001, †*P* < 0.0005; statistical details are available in the supplementary text).

Li et al.

fig. S13. Longer wake bouts with shorter latencies upon optogenetic stimulation of LC NA neurons expressing ChR2-eYFP in aged TH::Cre mice. (A) Surface plot of NREM-to-wake transition latency based on the mean value of each stimulation condition. (B and C) Comparison of NREM-to-wake transition latency based on (B) each stimulation condition and (C) the mean value for each animal (C). (D) Surface plot of wake duration based on the mean value of each stimulation condition. The cyan cutaway surface indicates the mean value for the aged group. (E and F) Comparison of wake duration based on (E) each stimulation condition and (F) the mean value for each animal. (G) Surface plot of REM-to-wake transition latency based on the mean value of each stimulation condition. (H and I) Comparison of REM-to-wake transition latency based on (H) each stimulation condition and (I) the mean value for each animal. (J) Surface plot of wake duration based on the mean value of each stimulation condition. The cyan cutaway surface indicates the mean value for the aged group. (K and L) Comparison of wake duration based on (K) each stimulation condition and (L) the mean value for each animal. (B), (C), (E), (F), (H), (I), (K), (L): Mann-Whitney U test; †P < 0.0005. Statistical details are available in the supplementary text.

fig. S14. Higher spontaneous activity in aged LC NA neurons. (A) A representative slice from a young wild type mouse showing a patch clamp recorded neuron filled with biocytin and tyrosine hydroxylase (TH) antibody staining. (B) A representative slice from an aged wild type mouse showing a patch clamp recorded neuron filled with biocytin and TH antibody staining. (C) Representative recorded traces from (top) young and (bottom) aged LC NA neurons respectively. (D) Comparison of RMPs between young and aged LC NA neurons (Mann-Whitney *U* test; young: n = 10 neurons from three mice versus aged: n = 13 neurons from three mice). (E) Fractions of neurons with different firing frequencies for young and aged LC NA neurons. Only biocytin-labeled neurons co-stained with TH antibody were used for data analyses.

Supplementary Text

Details on statistical analyses

Statistical significance abbreviations: ns (not significant) *P*>0.05, **P*<0.05, ***P*<0.01, ****P*<0.005,

*****P*<0.001, †*P*<0.0005.

MAIN FIGURES

Fig. 1	1

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
Fig. 1C.	G ^S transient	Young: n=128	Unpaired <i>t</i> -test with	Young versus	< 0.0001	ţ	t=10.59
right middle	peak	vs. Aged: n=171	Welch's correction	(vs.) Aged			
-	G ^S transient	Young: n=128	Unpaired <i>t</i> -test with	Young vs. Aged	< 0.0001	†	t=6.913
	duration	vs. Aged: n=171	Welch's correction				
Fig. 1C. right	G ^S Z score	n=6/group	Unpaired t-test with	Young vs. Aged	0.0022	***	t=4.293
bottom left			Welch's correction				
Fig. 1C. right	G ^s transient	n=6/group	Unpaired <i>t</i> -test with	Young vs. Aged	0.0612	ns	t=2.161
bottom right	frequency		Welch's correction				
Fig. 1D right	G ^w epoch	Young: n=102	Unpaired <i>t</i> -test with	Young vs. Aged	< 0.0001	†	t=6.357
middle	peak	vs. Aged: n=137	Welch's correction				
	G ^w epoch	Young: n=102	Unpaired <i>t</i> -test with	Young vs. Aged	0.0061	**	t=2.787
	duration	vs. Aged:	Welch's correction	0 0			
		n=137					
Fig. 1D. right	G ^W Z score	n=6/group	Unpaired <i>t</i> -test with	Young vs. Aged	0.0196	*	t=2.852
bottom left		•	Welch's correction				
Fig. 1D. right	G ^w transient	n=6/group	Unpaired <i>t</i> -test with	Young vs. Aged	0.0035	***	t=4.286
bottom right	frequency		Welch's correction				
Fig. 1E	Animal-based	n=6/group	Unpaired <i>t</i> -test with	Sleep Y vs. A	0.0328	*	t=2.504
	averaged		Welch's correction	Wake Y vs. A	0.0110	*	t=3.151
	sleen wake			S-W episode Y vs	0.0007	****	t=5.911
	S-W episode			A A	0.0007		0.000
Fig. 1F. G ^w	Young	n=6/group	Pearson correlation,	Slope vs. zero	0.2764	ns	F=1.586
epoch count/h	Aged	n=6/group	linear fit	Slope vs. zero	0.0372	*	F=9.447
against mean	Pooled	n=6/group		Slope vs. zero	0.0015	***	F=18.70
sleep bout		<u> </u>		*			
duration							

Fig. 2

Panel	Data	Group size	Statistic method	Comparison condition	P value	Notation	F/t statistic
Fig. 2B	Latency for	n=8 mice each group	Mann-Whitney U	1 mW, 1 Hz	0.39782	ns	N/A
	NREM-to-wake		test	1 mW, 5 Hz	0.00047	†	N/A
	transition across			1 mW, 10 Hz	0.00404	***	N/A
	stimulation			1 mW, 15 Hz	0.00995	**	N/A
	parameters:			1 mW, 20 Hz	0.00917	**	N/A
	Young vs. Aged			5 mW, 1 Hz	0.00016	†	N/A
				5 mW, 5 Hz	0.00016	†	N/A
				5 mW, 10 Hz	0.00031	†	N/A
				5 mW, 15 Hz	0.00047	†	N/A
				5 mW, 20 Hz	0.01772	*	N/A
				10 mW, 1 Hz	0.00062	****	N/A
				10 mW, 5 Hz	0.00870	**	N/A
				10 mW, 10 Hz	0.42735	ns	N/A
				10 mW, 15 Hz	0.17591	ns	N/A
				10 mW, 20 Hz	0.00016	†	N/A

				15 W. 1 H	0.00211	444	NT/A
				15 mW, 1 HZ	0.00311	*	IN/A
				15 mw, 5 Hz	0.01103	*	N/A
				15 mW, 10 Hz	0.42346	ns	N/A
				15 mW, 15 Hz	0.05252	ns	N/A
				15 mW, 20 Hz	0.00016	Ť	N/A
				20 mW, 1 Hz	0.00016	Ť	N/A
				20 mW, 5 Hz	0.08500	ns	N/A
				20 mW, 10 Hz	0.00016	†	N/A
				20 mW, 15 Hz	0.00016	†	N/A
				20 mW, 20 Hz	0.00031	†	N/A
Fig. 2C	Data in panel B	n=8 mice each group	Mann-Whitney U	Young vs. Aged	0.10490	ns	N/A
	aggregated for		test				
	individual animal						
Fig. 2E	Wake duration	n=8 mice each group	Mann-Whitney U	1 mW, 1 Hz	0.38928	ns	N/A
	following		test	1 mW, 5 Hz	0.00016	Ť	N/A
	optogenetic			1 mW, 10 Hz	0.00016	†	N/A
	stimulation			1 mW, 15 Hz	0.00016	†	N/A
	during NREM			1 mW, 20 Hz	0.00062	****	N/A
	sleep across			5 mW, 1 Hz	0.02999	*	N/A
	stimulation			5 mW, 5 Hz	0.00031	†	N/A
	parameters:			5 mW, 10 Hz	0.57374	ns	N/A
	Young vs. Aged			5 mW, 15 Hz	0.09883	ns	N/A
				5 mW, 20 Hz	0.13038	ns	N/A
				10 mW 1 Hz	0.00062	****	N/A
				10 mW, 1 Hz	0.04988	*	N/A
				10 mW 10 Hz	0.00699	**	N/A
				10 mW, 10 Hz	0.00031	+	N/A
				10 mW, 10 Hz	0.000000	***	
				15 mW 1 Hz	0.00293	****	
				15 mW 5 Hz	0.00002	*	N/A
				15 шW, 5 ПZ	0.03013	*	IN/A N/A
				15 mW, 10 HZ	0.01470	-	IN/A N/A
				15 mW, 15 HZ	0.00016	*	IN/A
				15 mw, 20 Hz	0.04056		IN/A
				20 mW, 1 Hz	0.00031		N/A
				20 mw, 5 Hz	0.00124	***	N/A
				20 mW, 10 Hz	0.00124	**	N/A
				20 mW, 15 Hz	0.014/6	*	N/A
				20 mW, 20 Hz	0.02067	*	N/A
Fig. 2F	Data in panel E aggregated for individual animal	n=8 mice each group	Mann-Whitney U test	Young vs. Aged	0.00020	Ť	N/A
Fig. 2H	Latency for	n=8 mice each group	Mann-Whitney U	1 mW, 1 Hz	0.98135	ns	N/A
	REM-to-wake		test	1 mW, 5 Hz	0.00373	***	N/A
	transition across			1 mW, 10 Hz	0.45082	ns	N/A
	stimulation			1 mW, 15 Hz	0.43761	ns	N/A
	parameters:			1 mW, 20 Hz	0.14126	ns	N/A
	Young vs. Aged			5 mW, 1 Hz	0.00016	ţ	N/A
				5 mW, 5 Hz	0.00016	†	N/A
				5 mW, 10 Hz	0.00342	***	N/A
				5 mW, 15 Hz	0.00249	***	N/A
				5 mW. 20 Hz	0.00016	†	N/A
				10 mW. 1 Hz	0.00016	+	N/A
				10 mW 5 Hz	0.00218	***	N/A
				10 mW 10 Hz	0.01243	*	N/A
				10 mW 15 Hz	0.05284	ne	N/A
				10 mW 20 Hz	0.00016	+	N/A
				15 mW 1 Hz	0.01927	*	N/A
	1				1 10.01/4/		1 1 1 / / 1

Fig. 2I Data in panel H n=8 mice each group agregated for individual animal Man. Whitney U test 1 mW, 5 Hz 0.00211 ns N/A Fig. 2I Data in panel H n=8 mice each group agregated for individual animal Man. Whitney U Young vs. Aged 0.0016 **** N/A Fig. 2I Data in panel H n=8 mice each group agregated for individual animal Man. Whitney U Young vs. Aged 0.00016 *** N/A Fig. 2I Data in panel K n=8 mice each group following optogenetic stimulation grammeters: N/A 1 mW, 5 Hz 0.00016 † N/A Young vs. Aged accould following optogenetic stimulation grammeters: N/A 1 mW, 10 Hz 0.056923 ns N/A Young vs. Aged nonooff N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 †								
Fig. 2I Data in panel H n=8 mice each group Mann-Whitney U 15 mW, 10 Hz 0.00145 ** N/A 20 mW, 1 Hz 0.00016 **** N/A 20 mW, 5 Hz 0.000218 † N/A 20 mW, 5 Hz 0.000218 † N/A 20 mW, 5 Hz 0.00030 **** N/A 20 mW, 10 Hz 0.59036 ns N/A 20 mW, 10 Hz 0.00031 **** N/A 20 mW, 20 Hz 0.00017 *** N/A 20 mW, 20 Hz 0.00017 *** N/A 20 mW, 20 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 †					15 mW, 5 Hz	0.05221	ns	N/A
Fig. 2L parameters: Young vs. Aged n=8 mice each group national structure Mann-Whitney (test) 15 mW, 15 Hz 000016 0.00415 (###) * N/A 15 mW, 20 Hz 0.00016 ### N/A 20 mW, 1 Hz 0.00016 ### N/A 20 mW, 15 Hz 0.00033 #### N/A 20 mW, 20 Hz 0.00171 ### N/A 20 mW, 20 Hz 0.00070 ### N/A 20 mW, 20 Hz 0.00016 # N/A 20 mW, 20 Hz 0.00070 ### N/A 20 mW, 15 Hz 0.00016 † N/A 20 mW, 11 Hz 0.56923 ns N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 10 mW, 11 Hz 0.00016 † N/A 10 mW, 10 Hz 0.0					15 mW, 10 Hz	0.07397	ns	N/A
Fig. 21 Data in panel H n=8 mice each group agregated for individual animal Mann-Whitney U test Young vs. Aged 0.00016 *** N/A Fig. 21 Data in panel H n=8 mice each group individual animal mann-Whitney U test Young vs. Aged 0.00470 *** N/A Fig. 21 Wake duration n=8 mice each group optogenetic stimulation during REM sleep across stimulation parameters: Young vs. Aged 0.00016 † N/A Fig. 21 Data in panel K n=8 mice each group for agregated for individual animal Mann-Whitney U test 1 mW, 1 Hz 0.00016 † N/A Fig. 21 Data in panel K n=8 mice each group arrange for agregated for individual animal Mann-Whitney U 1 mW, 5 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 5 mW, 1 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 5 mW, 1 Hz 0.00016 † N/A 10 mW, 19 Hz 0.00016 † N/A 10 mW, 1 Hz					15 mW, 15 Hz	0.01445	*	N/A
Fig. 21 point Data in panel H aggregated for individual animal n=8 mice each group test Mann-Whitney U test 1 mW, 1 Hz 20 mW, 10 Hz 20 mW, 20 Hz 000016 **** mVA N/A Fig. 21 aggregated for individual animal n=8 mice each group otogenetic stimulation Mann-Whitney U test 1 mW, 1 Hz 1 mW, 1 Hz 0.56923 0.00016 ns N/A Fig. 2K Wake duration during REM sleep across stimulation parameters: Young vs. Aged n=8 mice each group following optogenetic stimulation Mann-Whitney U test 1 mW, 1 Hz 1 mW, 10 Hz 0.00016 ↑ N/A 1 mW, 20 Hz 0.00016 ↑ N/A 1 mW, 20 Hz 0.00016 ↑ N/A 1 mW, 10 Hz 0.00016 ↑ N/A 1 mW, 12 0.00016 ↑ N/A 1 mW, 10 Hz 0.00016 ↑ N/A 5 mW, 10 Hz 0.00016 ↑ N/A 10 mW, 10 Hz 0.00016 ↑ N/A 10 mW, 10 Hz 0.00016 ↑ N/A 10 mW, 10 Hz 0.00016 ↑ N/A 10 mW, 10 Hz 0.00016 ↑ N/A					15 mW, 20 Hz	0.00218	*	N/A
Fig. 21 Data in panel H aggregated for individual animal n=8 mice each group test Man-Whitney U test Young vs. Aged 0.00171 **** N/A Fig. 21 Data in panel H aggregated for individual animal n=8 mice each group following Mann-Whitney U test Young vs. Aged 0.00470 **** N/A Fig. 22K Wake duration functioning REM stimulation during REM sleep across stimulation parameters: Young vs. Aged n=8 mice each group following Mann-Whitney U test 1 mW, 1 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 12 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 15 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 1 mW, 15 Hz 0.00016 † N/A 10 mW, 15 Hz 0.00016 † N/A 1 0 mW, 15 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 †					20 mW, 1 Hz	0.00016	***	N/A
Provide Provide <t< td=""><td></td><td></td><td></td><td></td><td>20 mW, 5 Hz</td><td>0.07280</td><td>ns</td><td>N/A</td></t<>					20 mW, 5 Hz	0.07280	ns	N/A
Fig. 21 aggregated for individual animal n=8 mice each group aggregated for individual animal Mann-Whitney U test Young vs. Aged 0.00071 **** N/A Fig. 21 aggregated for individual animal n=8 mice each group otogenetic stimulation Mann-Whitney U test 1 mW, 1 Hz 0.56923 ns N/A Fig. 2K Wake duration following optogenetic stimulation parameters: n=8 mice each group otogenetic stimulation Mann-Whitney U test 1 mW, 10 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 10 mW, 11 Hz 0.00016 † N/A 10 mW, 11 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 11 Hz <					20 mW, 10 Hz	0.59036	ns	N/A
Fig. 2L Fig. 2LData in panel H aggregated for individual animaln=8 mice each group maining memory following optogenetic stimulation parameters: Young vs. AgedN/AN/AN/AFig. 2KWake duration following optogenetic stimulation parameters: Young vs. Agedn=8 mice each group following optogenetic stimulation parameters: Young vs. Agedn=8 mice each group following stimulation parameters: Young vs. AgedMann-Whitney U test1 mW, 1 Hz 1 mW, 1 Hz 0.00016n=N/A 0.00016Simulation parameters: Young vs. Agedn=8 mice each group following parameters: Young vs. AgedMann-Whitney U test1 mW, 20 Hz 1 mW, 20 Hz 0.00016n/A n/ASimulation parameters: Young vs. Agedn=N/A n/A1 mW, 20 Hz 1 mW, 20 Multic 0.00016n/A n/ASimulation parameters: Young vs. Agedn=8 mice each group mW, 20 Hz 10 mW, 1 Hz 0.00016n/A n/ASimulation parameters: Young vs. Agedn=N/A n/A1 mW, 20 Hz 10 mW, 1 Hz 0.00016n/A n/ASimulation parameters: Young vs. Agedn=N/A n/A10 mW, 1 Hz 10 mW, 1 Hz 0.00016n/A n/ASimulation 					20 mW, 15 Hz	0.00093	****	N/A
Fig. 2I aggregated for individual animaln=8 mice each group testMann-Whitney U testYoung vs. Aged test0.00470***N/AFig. 2K following optogenetic stimulation during REM sleep across stimulation parameters: Young vs. Agedn=8 mice each group following optogenetic stimulation parameters: Young vs. Aged1 mW, 1 Hz 1 mW, 1 Hz 0.000160.00470***N/A1 mW, 20 Hz S mW, 1 Hz 0.000160.00016† N/AN/A1 mW, 20 Hz S mW, 1 Hz 0.000160.00047† N/A5 mW, 10 Hz 0.000470.00047† N/A5 mW, 10 Hz 0.000470.00047† N/A5 mW, 10 Hz 0.000470.00047† N/A10 mW, 10 Hz 10 mW, 10 Hz 0.000161 N/A10 mW, 15 Hz 10 mW, 10 Hz 0.000160.00016† N/A10 mW, 15 Hz 10 mW, 10 Hz 0.000160.00016† N/A10 mW, 15 Hz 10 mW, 10 Hz 0.000161 N/AN/A15 mW, 10 Hz 10 mW, 15 Hz 0.000161 N/A15 mW, 10 Hz 0.000					20 mW, 20 Hz	0.00171	***	N/A
aggregated for individual animal test 1 mw, 1 Hz 0.56923 ns N/A Fig. 2K Wake duration optogenetic stimulation during REM sleep across stimulation parameters: Young vs. Aged Mann-Whitney U test 1 mW, 1 Hz 0.05923 ns N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 10 mW, 11 Hz 0.00016 † N/A 10 mW, 15 Hz	Fig. 2I	Data in panel H	n=8 mice each group	Mann-Whitney U	Young vs. Aged	0.00470	***	N/A
individual animal Mann-Whitney U 1 mW, 1 Hz 0.56923 ns N/A Fig. 2K Wake duration n=8 mice each group test 1 mW, 1 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 4uring REM sleep across stimulation parameters: simulation 5 mW, 11 Hz 0.00016 † N/A Young vs. Aged 5 mW, 5 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 10 mW, 19 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.0016 † N/A 15 mW, 10 Hz 0.00016 <td></td> <td>aggregated for</td> <td></td> <td>test</td> <td></td> <td></td> <td></td> <td></td>		aggregated for		test				
Fig. 2K Wake duration n=8 mice each group Mann-Whitney U 1 mW, 1 Hz 0.56923 ns N/A following optogenetic stimulation num, 5 Hz 0.00016 † N/A itest 1 mW, 1 Hz 0.56923 ns N/A itest 1 mW, 5 Hz 0.00016 † N/A itest 1 mW, 10 Hz 0.00016 † N/A itest 1 mW, 10 Hz 0.00016 † N/A itest 1 mW, 20 Hz 0.00016 † N/A itest 5 mW, 11 Hz 0.00048 *** N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 15 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00047 † N/A 10 mW, 5 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 15 mW, 10		individual animal						
following optogenetic stimulation during REM sleep across stimulation parameters: Young vs. Aged test I mW, 5 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 10 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 1 mW, 20 Hz 0.00016 † N/A 5 mW, 1 Hz 0.00047 † N/A 5 mW, 10 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 10 Hz 0.00016 † N/A 10 mW, 15 Hz 0.00161 † N/A 10 mW, 15 Hz 0.00016 † N/A 10 mW, 16 Hz 0.00016 † N/A 10 mW, 17 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 †	Fig. 2K	Wake duration	n=8 mice each group	Mann-Whitney U	1 mW, 1 Hz	0.56923	ns	N/A
induction imulation imulation <t< td=""><td></td><td>following</td><td></td><td>test</td><td>1 mW, 5 Hz</td><td>0.00016</td><td>Ť</td><td>N/A</td></t<>		following		test	1 mW, 5 Hz	0.00016	Ť	N/A
stimulation ImW, 15 Hz 0.01041 * N/A during REM sleep across 1mW, 20 Hz 0.00016 † N/A simulation parameters: Young vs. Aged 5 mW, 1 Hz 0.00047 † N/A 5 mW, 10 Hz 0.00016 † N/A 10 mW, 1Hz 0.02191 * N/A 10 mW, 1Hz 0.0016 † N/A 10 mW, 10 Hz 0.00016 † N/A 15 mW, 11 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 20 mW, 15 Hz 0.00016 †		optogenetic			1 mW, 10 Hz	0.00016	Ť	N/A
Image: Step across stimulation parameters: Young vs. Aged 1 mW, 20 Hz 0.00016 † N/A 5 mW, 1 Hz 0.00048 *** N/A 5 mW, 5 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 20 Hz 0.00016 † N/A 10 mW, 1 Hz 0.02191 * N/A 10 mW, 10 Hz 0.00016 † N/A 15 mW, 11 Hz 0.00016 † N/A 15 mW, 11 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 20 mW, 10 Hz 0.00016 † N/A 20 mW, 15 Hz 0.00016		stimulation			1 mW, 15 Hz	0.01041	*	N/A
Sleep across stimulation parameters: Young vs. Aged 5 mW, 1 Hz 0.00948 *** N/A 5 mW, 5 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 20 Hz 0.00016 † N/A 5 mW, 20 Hz 0.00016 † N/A 10 mW, 11 Hz 0.02191 * N/A 10 mW, 10 Hz 0.00016 † N/A 15 mW, 11 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 20 mW, 11 Hz 0.00016 † N/A 20 mW, 10 Hz 0.00016 † N/A 20 mW, 10 Hz		during REM			1 mW, 20 Hz	0.00016	ţ	N/A
stimulation parameters: Young vs. Aged 5 mW, 5 Hz 0.00016 † N/A 5 mW, 10 Hz 0.00047 † N/A 5 mW, 15 Hz 0.00047 † N/A 5 mW, 20 Hz 0.00016 † N/A 10 mW, 1 Hz 0.00166 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00166 † N/A 10 mW, 10 Hz 0.0016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 15 mW, 1Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 20 Hz 0.00016 † N/A 15 mW, 20 Hz 0.00016 † N/A 20 mW, 10 Hz 0.00016 † N/A 20 mW, 10 Hz 0.00016<		sleep across			5 mW, 1 Hz	0.00948	**	N/A
parameters: 5 mW, 10 Hz 0.00047 † N/A Young vs. Aged 5 mW, 15 Hz 0.00047 † N/A 5 mW, 20 Hz 0.00016 † N/A 10 mW, 1 Hz 0.02191 * N/A 10 mW, 1 Hz 0.00166 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 15 Hz 0.00166 † N/A 10 mW, 15 Hz 0.00016 † N/A 10 mW, 15 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 10 Hz 0.00016 † N/A 10 mW, 20 Hz 0.01041 * N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 20 mW, 11 Hz 0.00016 † N/A 20 mW, 11 Hz 0.00016 † N/A 20 mW, 10 Hz 0.00016 † N/A 20 mW, 15 Hz 0.00016 † <td></td> <td>stimulation</td> <td></td> <td></td> <td>5 mW, 5 Hz</td> <td>0.00016</td> <td>Ť</td> <td>N/A</td>		stimulation			5 mW, 5 Hz	0.00016	Ť	N/A
Young vs. Aged $5 \text{ mW}, 15 \text{ Hz}$ 0.00047 \dagger N/A $5 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ mW}, 1 \text{ Hz}$ 0.02191 * N/A $10 \text{ mW}, 5 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ mW}, 5 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ mW}, 10 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ mW}, 10 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ mW}, 10 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ mW}, 20 \text{ Hz}$ 0.00101 * N/A $15 \text{ mW}, 5 \text{ Hz}$ 0.00016 \dagger N/A $15 \text{ mW}, 5 \text{ Hz}$ 0.00016 \dagger N/A $15 \text{ mW}, 10 \text{ Hz}$ 0.00016 \dagger N/A $15 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 1 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 10 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 5 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 15 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 10 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $20 \text{ mW}, 20 \text{ Hz}$ 0.00016 \dagger N/A $10 \text{ minor with test}$ 0.00016 \dagger N/A <		parameters:			5 mW, 10 Hz	0.00047	Ť	N/A
$ \left[\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Young vs. Aged			5 mW, 15 Hz	0.00047	Ť	N/A
Image: height of the second structure Image: height of the second structure					5 mW, 20 Hz	0.00016	Ť	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					10 mW, 1 Hz	0.02191	*	N/A
Fig. 2L Data in panel K n=8 mice each group Mann-Whitney U Mann-Whitney U Young vs. Aged 0.00020 **** N/A 10 mW, 10 Hz 0.00420 **** N/A 10 mW, 15 Hz 0.00161 * N/A 10 mW, 20 Hz 0.01041 * N/A 15 mW, 1 Hz 0.00016 † N/A 15 mW, 5 Hz 0.00016 † N/A 15 mW, 10 Hz 0.05315 ns N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 15 mW, 10 Hz 0.00016 † N/A 20 mW, 1 Hz 0.00016 † N/A					10 mW, 5 Hz	0.00186	***	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					10 mW, 10 Hz	0.00016	ţ	N/A
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					10 mW, 15 Hz	0.00420	***	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					10 mW, 20 Hz	0.01041	*	N/A
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					15 mW, 1 Hz	0.00031	ţ	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					15 mW, 5 Hz	0.00016	Ť	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					15 mW, 10 Hz	0.05315	ns	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					15 mW, 15 Hz	0.01041	*	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					15 mW, 20 Hz	0.00016	ţ	N/A
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					20 mW, 1 Hz	0.00016	ţ	N/A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					20 mW, 5 Hz	0.00016	ţ	N/A
Fig. 2L Data in panel K aggregated for individual animal n=8 mice each group Mann-Whitney U test Young vs. Aged 0.00020 † N/A					20 mW, 10 Hz	0.00295	***	N/A
Fig. 2L Data in panel K aggregated for individual animal n=8 mice each group test Mann-Whitney U test Young vs. Aged 0.00109 *** N/A					20 mW, 15 Hz	0.00016	ţ	N/A
Fig. 2L Data in panel K aggregated for individual animal n=8 mice each group Mann-Whitney U test Young vs. Aged 0.00020 † N/A					20 mW, 20 Hz	0.00109	***	N/A
aggregated for test	Fig. 2L	Data in panel K	n=8 mice each group	Mann-Whitney U	Young vs. Aged	0.00020	ţ	N/A
individual animal	-	aggregated for		test				
		<u>individual anim</u> al						

Fig. 3

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
Fig. 3D	Input resistance	Young: n=33 Aged: n=21	Mann-Whitney U test	Young vs. Aged	0.4488	ns	N/A
Fig. 3E	Resting membrane potential	Young: n=33 Aged: n=21	Mann-Whitney U test	Young vs. Aged	0.0165	*	N/A
Fig. 3F	Firing threshold	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.5660	ns	N/A
Fig. 3G	Difference between RMP and threshold	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.0056	**	N/A
Fig. 3H	Amplitude of AP	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.0339	*	N/A
Fig. 3I	Risetime of AP	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.2773	ns	N/A
Fig. 3J	Half duration of AP	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.5538	ns	N/A

Fig. 3K	Max. rising slope	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.1694	ns	N/A
Fig. 3L	Max. decaying slope	Young: n=12 Aged: n=9	Mann-Whitney U test	Young vs. Aged	0.3544	ns	N/A
Fig. 3N	Response attenuation upon optogenetic	Young: n=23 Aged: n=21	Two-way ANOVA	Stimulation frequency	< 0.0001	ţ	F _(4, 206) =32.18
	stimulations			Age	< 0.0001	Ť	$F_{(1, 206)} = 17.69$
				Interaction	0.8059	ns	F _{(4,} 206)=0.8059
			Post-hoc Šidák's	1 Hz	0.9728	ns	t=0.6541
			multiple comparisons	5 Hz	0.3049	ns	t=1.820
				10 Hz	0.0158	*	t=2.985
				15 Hz	0.0638	ns	t=2.503
				20 Hz	0.5438	ns	t=1.462
Fig. 3O	Spikelets upon step	Young: n=33	Two-way ANOVA	Current	< 0.0001	Ť	$F_{(7, 454)} = 15.09$
	current injection	Aged: n=26		Age	< 0.0001	Ť	$F_{(1, 454)}=26.41$
				Interaction	0.1413	ns	$F_{(7, 454)} = 1.573$
			Post-hoc Šidák's	-50 pA	>0.9999	ns	t=0.03566
			multiple comparisons	0 pA	>0.9999	ns	t=0.3015
				50 pA	0.6762	ns	t=1.511
				100 pA	0.0344	*	t=2.865
				150 pA	0.0242	*	t=2.978
				200 pA	0.0176	*	t=3.077
				250 pA	0.0488	*	t=2.748
				300 pA	0.9427	ns	t=1.037

Fig. 4

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/q statistic
Fig. 4B	Resting	n=19	Wilcoxon matched-pairs	ACSF vs. XE991	0.0012	***	N/A
_	membrane		signed rank test				
	potential						
Fig. 4C	Firing rate	n=19	Wilcoxon matched-pairs	ACSF vs. XE991	0.0078	**	N/A
			signed rank test				
Fig. 4E	Resting	n=8	RM one-way ANOVA	Across treatments	< 0.0001	†	F=64.13
	membrane		Post-hoc Tukey's	ACSF vs. solvent	0.0509	ns	q=4.146
	potential		multiple comparisons	ACSF vs. Flup	< 0.0001	†	q=14.65
				Solvent vs. Flup	0.0006	****	q=9.597
Fig. 4F	Firing rate	n=8	RM one-way ANOVA	Across treatments	0.0072	**	F=11.82
	_		Post-hoc Tukey's	ACSF vs. solvent	0.0725	ns	q=3.781
			multiple comparisons	ACSF vs. Flup	0.0210	*	q=5.087
				Solvent vs. Flup	0.0294	*	q=4.724
Fig. 4G. right	Young Hcrt M	n=6	Paired <i>t</i> -test	Before vs. after XE991	0.0048	***	t=4.824
top	current						
Fig. 4G. right	Young Hert M	n=10	Paired <i>t</i> -test	Before vs. after Flupirtine	0.0409	*	t=2.385
bottom	current						
Fig. 4H. right	Aged Hcrt M	n=7	Paired <i>t</i> -test	Before vs. after XE991	0.1799	ns	t=1.518
top	current						
Fig. 4H. right	Aged Hcrt M	n=15	Paired <i>t</i> -test	Before vs. after Flupirtine	0.0002	t	t=4.981
bottom	current						
Fig. 4I	Basal M	Y: n=25	Unpaired <i>t</i> -test with	Young vs. Aged	0.0403	*	t=2.123
	current	A: n=26	Welch's correction				
Fig. 4J. right	KCNQ2	n=4 each	Paired <i>t</i> -test	Young vs. Aged	0.0495	*	t=3.196
	quantification	group					

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
Fig. 5B. Week1	Wake	n=10 each	Two-way RM ANOVA,	Main effect of group	0.6969	ns	$F_{(1, 18)} =$
top panel 1	amount/2h	group	Post-hoc Šidák				0.1567
Fig. 5B. Week1	Wake bout	n=10 each	Two-way RM ANOVA,	Main effect of group	0.8736	ns	$F_{(1, 18)} =$
top panel 2	count/2h	group	Post-hoc Šidák				0.02606
Fig. 5B. Week1	Mean wake	n=10 each	Two-way RM ANOVA,	Main effect of group	0.4600	ns	$F_{(1, 18)} =$
top panel 3	bout length	group	Post-hoc Šidák				0.5701
Fig. 5B. Week1	Mean wake	n=10 each	Holm-Šidák	48 hour	0.8668	ns	t=0.1702
top panel 4	bout length	group		Light	0.6553	ns	t=0.4539
				Dark	0.7029	ns	t=0.3880
Fig. 5B. Week1	NREM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.7216	ns	$F_{(1, 18)} =$
middle panel 1	amount/2h	group	Post-hoc Šidák				0.1311
Fig. 5B. Week1	NREM bout	n=10 each	Two-way RM ANOVA,	Main effect of group	0.8840	ns	$F_{(1, 18)} =$
middle panel 2	count/2h	group	Post-hoc Šidák				0.02191
Fig. 5B. Week1	Mean NREM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.7202	ns	$F_{(1, 18)} =$
middle panel 3	bout length	group	Post-hoc Šidák				0.1324
Fig. 5B. Week1	Mean NREM	n=10 each	Holm-Šidák	48 hour	0.6962	ns	t=0.3968
middle panel 4	bout length	group		Light	0.7366	ns	t=0.3416
				Dark	0.9847	ns	t=0.01948
Fig. 5B. Week1	REM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.8387	ns	$F_{(1, 18)} =$
bottom panel 1	amount/2h	group	Post-hoc Sidák				0.04263
Fig. 5B. Week1	REM bout	n=10 each	Two-way RM ANOVA,	Main effect of group	0.8594	ns	$F_{(1, 18)} =$
bottom panel 2	count/2h	group	Post-hoc Sidák		0.0510		0.03229
Fig. 5B. Week1	Mean REM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.9519	ns	$F_{(1, 18)} =$
bottom panel 3	bout length	group	Post-hoc Sidak				0.003740
Fig. 5B. Week1	Mean REM	n=10 each	Holm-Šidák	48 hour	0.9471	ns	t=0.06733
bottom panel 4	bout length	group		Light	0.8476	ns	t=0.1950
				Dark	0.8366	ns	t=0.2093
Fig. 5B. Week8	Wake	n=10 each	Two-way RM ANOVA,	Main effect of group	0.6385	ns	$F_{(1, 18)} =$
top panel 1	amount/2h	group	Post-hoc Sidák				0.2283
Fig. 5B. Week8	Wake bout	n=10 each	Two-way RM ANOVA,	Main effect of group	0.0019	***	$F_{(1, 18)}=13.16$
top panel 2	count/2h	group	Post-hoc Šidák				
Fig. 5B. Week8	Mean wake	n=10 each	Two-way RM ANOVA,	Main effect of group	0.5679	ns	$F_{(1, 18)} =$
top panel 3	bout length	group	Post-hoc Šidák				0.3386
Fig. 5B. Week8	Mean wake	n=10 each	Holm-Šidák	48 hour	0.04055	*	t=2.207
top panel 4	bout length	group		Light	0.1274	ns	t=1.598
				Dark	0.1068	ns	t=1.698
Fig. 5B. Week8	NREM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.5398	ns	$F_{(1, 18)} =$
middle panel 1	amount/2h	group	Post-hoc Šidák				0.3907
Fig. 5B. Week8	NREM bout	n=10 each	Two-way RM ANOVA,	Main effect of group	0.0030	***	$F_{(1, 18)}=11.74$
middle panel 2	count/2h	group	Post-hoc Šidák				
Fig. 5B. Week8	Mean NREM	n=10 each	Two-way RM ANOVA,	Main effect of group	< 0.0001	†	$F_{(1, 18)}=37.29$
middle panel 3	bout length	group	Post-hoc Sidák				
Fig. 5B. Week8	Mean NREM	n=10 each	Holm-Šidák	48 hour	< 0.0001	Ť	t=5.085
middle panel 4	bout length	group		Light	0.000157	Ť	t=4.760
				Dark	0.002341	***	t=3.540
Fig. 5B. Week8	REM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.6737	ns	$F_{(1, 18)} =$
bottom panel 1	amount/2h	group	Post-hoc Sidák				0.1833
Fig. 5B. Week8	REM bout	n=10 each	Two-way RM ANOVA,	Main effect of group	0.3055	ns	$F_{(1, 18)}=1.112$
bottom panel 2	count/2h	group	Post-hoc Sidák				
Fig. 5B. Week8	Mean REM	n=10 each	Two-way RM ANOVA,	Main effect of group	0.7868	ns	$F_{(1, 18)} =$
bottom panel 3	bout length	group	Post-hoc Sidák				0.07540
Fig. 5B. Week8	Mean REM	n=10 each	Holm-Šidák	48 hour	0.1716	ns	t=1.424
bottom panel 4	bout length	group		Light	0.1061	ns	t=1.701
				Dark	0.8467	ns	t=0.1961
Fig. 5D	RMP	n=14 each	Mann-Whitney U test	sgControl vs.	0.0122	*	N/A
		group		sgKcnq2/3			

Fig. 6

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
Fig. 6A.	Wake	n=7	Two-way mixed effects model,	Time	< 0.0001	ť	F _(23, 276) =17.15
Row1 Panel 1	quantification in		Post-hoc Šidák	Treatment	0.8333	ns	$F_{(1, 12)} = 0.04628$
	young mice			Interaction	0.5378	ns	F _(23, 276) =0.9452
Fig. 6A.	NREM	n=7	Two-way mixed effects model,	Time	< 0.0001	ţ	$F_{(23, 276)}=16.21$
Row1 Panel 2	quantification in		Post-hoc Šidák	Treatment	0.8143	ns	F _(1, 12) =0.05762
	young mice			Interaction	0.5191	ns	F _(23, 276) =0.9591
Fig. 6A.	REM	n=7	Two-way mixed effects model,	Time	< 0.0001	ţ	F _(23, 276) =15.15
Row1 Panel 3	quantification in		Post-hoc Šidák	Treatment	0.7977	ns	F _(1, 12) =0.06867
	young mice			Interaction	0.5437	ns	$F_{(23, 276)}=0.9408$
Fig. 6A.	Wake bout count	n=7	Two-way mixed effects model,	Time	< 0.0001	ť	F _(23, 276) =10.34
Row2 Panel 1	in young mice		Post-hoc Šidák	Treatment	0.8007	ns	$F_{(1, 12)} = 0.06662$
				Interaction	0.6752	ns	F(23, 276)=0.8431
Fig. 6A.	NREM bout count	n=7	Two-way mixed effects model,	Time	0.0001	ť	F _(23, 276) =11.28
Row2 Panel 2	in young mice		Post-hoc Šidák	Treatment	0.7160	ns	$F_{(1, 12)} = 0.1388$
				Interaction	0.6661	ns	F(23, 276)=0.8500
Fig. 6A.	REM bout count in	n=7	Two-way mixed effects model,	Time	< 0.0001	ť	F _(23, 276) =13.85
Row2 Panel 3	young mice		Post-hoc Šidák	Treatment	0.3511	ns	$F_{(1,12)}=0.9413$
				Interaction	0.0734	ns	$F_{(23, 276)}=1.488$
Fig. 6A.	Mean wake bout	n=7	Two-way mixed effects model,	Time	< 0.0001	†	$F_{(23, 230)} = 7.920$
Row3 Panel 1	length in young		Post-hoc Šidák	Treatment	0.9289	ns	$F_{(1,12)}=0.008296$
	mice			Interaction	0.8540	ns	$F_{(23,276)}=0.6909$
Fig. 6A.	Mean NREM bout	n=7	Two-way mixed effects model,	Time	0.0011	***	$F_{(23, 260)} = 4.613$
Row3 Panel 2	length in young		Post-hoc Šidák	Treatment	0.6774	ns	$F_{(1,12)}=0.1735$
	mice			Interaction	0.4456	ns	$F_{(23,260)} = 1.016$
Fig. 6A.	Mean REM bout	n=7	Two-way mixed effects model.	Time	0.0643	ns	$F_{(23, 180)} = 1.534$
Row3 Panel 3	length in young	. ,	Post-hoc Šidák	Treatment	0.2584	ns	$F_{(1,12)}=1.408$
	mice			Interaction	0.0168	*	$F_{(23, 180)} = 1.814$
Fig. 6B.	Wake	n=6	Two-way mixed effects model.	Time	< 0.0001	ţ	$F_{(23, 230)}=10.48$
Row1 Panel 1	quantification in		Post-hoc Šidák	Treatment	0.3343	ns	$F_{(1,10)}=1.029$
	aged mice			Interaction	0.7784	ns	$F_{(23,230)}=0.7601$
Fig. 6B.	NREM	n=6	Two-way mixed effects model,	Time	< 0.0001	†	$F_{(23, 230)} = 9.977$
Row1 Panel 2	quantification in		Post-hoc Šidák	Treatment	0.2593	ns	$F_{(1,10)}=1.430$
	aged mice			Interaction	0.7492	ns	$F_{(23,230)}=0.7845$
Fig. 6B.	REM	n=6	Two-way mixed effects model,	Time	< 0.0001	†	$F_{(23, 230)} = 10.66$
Row1 Panel 3	quantification in		Post-hoc Šidák	Treatment	0.7245	ns	$F_{(1,10)}=0.1315$
	aged mice			Interaction	0.1686	ns	$F_{(23, 230)}=1.300$
Fig. 6B.	Wake bout count	n=6	Two-way mixed effects model,	Time	0.0011	***	$F_{(23, 230)} = 4.036$
Row2 Panel 1	in aged mice		Post-hoc Šidák	Treatment	0.1616	ns	$F_{(1,10)} = 2.285$
				Interaction	0.1602	ns	$F_{(23, 230)}=1.312$
Fig. 6B.	NREM bout count	n=6	Two-way mixed effects model,	Time	0.0003	ţ	$F_{(23, 230)} = 4.660$
Row2 Panel 2	in aged mice		Post-hoc Šidák	Treatment	0.1571	ns	$F_{(1, 10)} = 2.339$
	C			Interaction	0.1959	ns	$F_{(23, 230)}=1.261$
Fig. 6B.	REM bout count in	n=6	Two-way mixed effects model.	Time	< 0.0001	†	$F_{(23,230)}=9.518$
Row3 Panel 3	aged mice		Post-hoc Šidák	Treatment	0.5511	ns	$F_{(1,10)}=0.3806$
	8			Interaction	0.0746	ns	$F_{(23,230)}=1.491$
Fig. 6B.	Mean wake bout	n=6	Two-way mixed effects model.	Time	0.0337	*	$F_{(23, 230)}=2.809$
Row3 Panel 1	length in aged		Post-hoc Šidák	Treatment	0.8607	ns	$F_{(1,10)}=0.03240$
	mice			Interaction	0.9615	ns	$F_{(23,230)}=0.5350$
Fig. 6B.	Mean NREM bout	n=6	Two-way mixed effects model.	Time	0.0005	****	$F_{(23, 230)} = 4.820$
Row3 Panel 2	length in aged		Post-hoc Šidák	Treatment	0.0200	*	$F_{(1,10)}=7.636$
	mice			Interaction	< 0.0001	†	$F_{(23, 228)}=3.639$
Fig. 6B.	Mean REM bout	n=6	Two-way mixed effects model.	Time	0.4123	ns	$F_{(23, 181)}=1.020$
Row3 Panel 2	length in aged	~	Post-hoc Šidák	Treatment	0.6743	ns	$F_{(1,10)}=0.1873$
	mice			Interaction	0.7244	ns	$F_{(23, 181)}=0.8034$
Fig. 6G. left	Band power	n=7	Holm-Šidák	Delta	0.6307	ns	t=0.4937

				Theta	0.7331	ns	t=0.3491
Fig. 6G.	Band power	n=7	Holm-Šidák	Delta	0.3745	ns	t=0.9225
middle				Theta	0.5943	ns	t=0.5506
Fig. 6G. right	Band power	n=7	Holm-Šidák	Delta	0.1671	ns	t=1.531
				Theta	0.8701	ns	t=0.1672
Fig. 6H. left	Band power	n=6	Holm-Šidák	Delta	0.5244	ns	t=0.6529
				Theta	0.2624	ns	t=1.168
Fig. 6H.	Band power	n=6	Holm-Šidák	Delta	0.05167	ns	t=2.127
middle				Theta	0.01365	*	t=2.819
Fig. 6H. right	Band power	n=6	Holm-Šidák	Delta	0.3086	ns	t=1.057
				Theta	0.04454	*	t=2.207

SUPPLEMENTARY FIGURES fig. S1

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/q statistic
fig. S1A	Wake amount/h	n=6 each	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	0.0693	ns	F _(1, 10) =8.229
fig. S1B	Wake bout count/h	n=5 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	< 0.0001	Ť	F _(1, 10) =42.89
fig. S1C	Mean wake bout length	n=6 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	0.0008	****	F _(1, 10) =22.60
fig. S1D	Total wake bout	n=6 each	Holm-Šidák	48 hour	0.01754	*	t=2.840
Ū	length	group		Light	0.7952	ns	t=0.2666
	_			Dark	0.004842	***	t=3.601
fig. S1E	Total wake bout	n=6 each	Holm-Šidák	48 hour	< 0.0001	†	t=8.872
Ū	count	group		Light	0.004348	***	t=3.085
				Dark	< 0.0001	†	t=5.787
fig. S1F	Mean wake bout	n=6 each	Holm-Šidák	48 hour	0.0009415	****	t=4.626
U	length	group		Light	0.004970	***	t=3.585
	C C	0 1		Dark	0.003951	***	t=3.724
fig. S1G	NREM amount/h	n=6 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	0.0137	*	F _(1, 10) =8.902
fig. S1H	NREM bout count/h	n=6 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	< 0.0001	Ť	F _(1, 10) =45.83
fig. S1I	Mean NREM bout length	n=6 each group	Two-way RM ANOVA, not applicable (N/A)	Main effect of group	N/A	N/A	N/A
fig. S1J	Total NREM bout	n=6 each	Holm-Šidák	48 hour	0.01259	*	t=3.034
U	length	group		Light	0.7923	ns	t=0.2704
	C	0 1		Dark	0.002725	***	t=3.951
fig. S1K	Total NREM bout	n=6 each	Holm-Šidák	48 hour	< 0.0001	†	t=6.769
-	count	group		Light	0.0009419	****	t=4.626
				Dark	< 0.0001	†	t=7.136
fig. S1L	Mean NREM bout	n=6 each	Holm-Šidák	48 hour	< 0.0001	†	t=6.892
	length	group		Light	0.0009381	****	t=4.629
				Dark	< 0.0001	†	t=6.531
fig. S1M	REM amount/h	n=6 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	0.5170	ns	F _(1, 10) =0.4512
fig. S1N	REM bout count/h	n=6 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	0.3085	ns	$F_{(1, 10)}=1.151$
fig. S1O	Mean REM bout length	n=6 each group	Two-way RM ANOVA, not applicable (N/A)	Main effect of group	N/A	N/A	N/A
fig. S1P	Total REM bout	n=6 each	Holm-Šidák	48 hour	0.5120	ns	t=0.6798
.8. 2.1	length	group		Light	0.9875	ns	t=0.01607
	U			Dark	0.4113	ns	t=0.8573
fig. S10	Total REM bout	n=6 each	Holm-Šidák	48 hour	0.3085	ns	t=1.073
	count	group		Light	>0.9999	ns	t=0
		_		Dark	0.3219	ns	t=1.042

fig. S1R	Mean REM bout	n=6 each	Holm-Šidák	48 hour	0.9750	ns	t=0.03210
	length	group		Light	0.9588	ns	t=0.05293
				Dark	0.8881	ns	t=0.1443

fig. S2

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S2E	Hcrt neuron	Young: n=6	Two-way	Anterior-posterior	< 0.0001	Ť	$F_{(24, 250)} = 311.4$
	count	Aged: n=6	ANOVA	location (APL)			
				Age	< 0.0001	Ť	$F_{(1, 250)} = 950.0$
				Interaction	< 0.0001	Ť	$F_{(24, 250)} = 13.74$
			Šidák's multiple	APL -1.000	< 0.0001	Ť	t=6.359
			comparisons	APL -1.035	0.8011	ns	t=0.2586
				APL -1.070	0.0006308	****	t=4.892
				APL -1.105	< 0.0001	Ť	t=6.248
				APL -1.140	< 0.0001	Ť	t=7.628
				APL -1.175	< 0.0001	Ť	t=6.814
				APL -1.210	< 0.0001	Ť	t=8.256
				APL -1.245	< 0.0001	Ť	t=9.862
				APL -1.280	< 0.0001	Ť	t=8.695
				APL -1.315	< 0.0001	Ť	t=9.085
				APL -1.350	< 0.0001	Ť	t=7.579
				APL -1.385	0.009288	**	t=3.213
				APL -1.420	< 0.0001	Ť	t=9.663
				APL -1.455	< 0.0001	Ť	t=9.900
				APL -1.490	< 0.0001	Ť	t=11.84
				APL -1.525	< 0.0001	Ť	t=10.15
				APL -1.560	< 0.0001	Ť	t=7.541
				APL -1.595	0.0007528	****	t=4.774
				APL -1.630	< 0.0001	Ť	t=9.516
				APL -1.665	< 0.0001	Ť	t=6.355
				APL -1.700	0.01814	*	t=2.821
				APL -1.735	0.002556	***	t=3.991
				APL -1.770	0.0007529	****	t=4.774
				APL -1.805	0.02011	*	t=2.760
				APL -1.840	0.02628	*	t=2.605
fig. S2E.	Hcrt neuron	Young: n=6	Unpaired <i>t</i> -test	Young vs. Aged	< 0.0001	†	t=20.09
Inset	count	Aged: n=6					

fig. S3

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S3B	ChR2-eYFP+ cell count	Young: $n = 8$	Mann-Whitney U test	Young vs. Aged	0.0499	*	N/A
		vs. Aged: $n = 8$					
fig. S3C	Percentage of ChR2-eYFP	Young: $n = 8$	Mann-Whitney U test	Young vs. Aged	0.7209	ns	N/A
	neurons positive for Hcrt1	vs. Aged: $n = 8$	-				

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S4C	PSC failure	Young: n=15	Two-way ANOVA	Stimulation Frequency (Hz)	< 0.0001	†	F _(4, 153) =14.87
	percentage	Aged: n=18		Age	0.0059	**	F _(1, 153) =7.813
				Interaction	0.8490	ns	F _(4, 153) =0.3424
			Post-hoc Šidák's multiple	1 Hz	0.9944	ns	t=0.4609
			comparisons	5 Hz	0.8545	ns	t=0.9979
				10 Hz	0.7500	ns	t=1.174
				15 Hz	0.2477	ns	t=1.931
				20 Hz	0.3973	ns	t=1.673

fig. S5

Panel	Data	Group size	Statistic method	Comparison	P value	Notation
fig. S5D	Hcrt	Young: n=225 vs. Aged: n=129	Wilcoxon rank-sum test	Young vs. Aged	2.98e-11	†
	Gm42418	Young: n=225 vs. Aged: n=129	Wilcoxon rank-sum test	Young vs. Aged	3.73e-12	+
	6330403Rik	Young: n=225 vs. Aged: n=129	Wilcoxon rank-sum test	Young vs. Aged	1.02e-4	†
	Peg3	Young: n=225 vs. Aged: n=129	Wilcoxon rank-sum test	Young vs. Aged	4.68e-5	†
	Unc5c	Young: n=225 vs. Aged: n=129	Wilcoxon rank-sum test	Young vs. Aged	0.0422	*

Panel	Group size	Statistic method	Comparison	Data	<i>P</i> value
fig. S6D	Young: $n=170$ Aged: $n=165$	Wilcoxon rank-sum test	Young vs. Aged	Hcrt	3.87E-49
8. ~				6330403K07Rik	6.39E-20
				Zfp804b	1.05E-17
				Ndn	1.26E-17
				Nnat	4.08E-17
				Ubb	8.27E-14
				Cdh20	3.97E-11
				Oxr1	4.51E-11
				Itm2b	6.47E-11
				Pcsk1n	1.18E-10
				Fth1	1.45E-10
				Ptpn5	1.50E-10
				Ppia	1.66E-10
				Fst15	2.84E-10
				Grid2	3.75E-10
				Nenf	4 60E-10
				Erc2	5.13E-10
				Gm42418	7 57E-10
				C030034L19Rik	9 35E-10
				Dlgap1	1.20E-09
				Gnas	1.27E-09
				Tox	1.31E-09
				Wipf3	6.52E-09
				Gucy1a2	7.77E-09
				Stmn3	8.34E-09
				Arhgap26	1.72E-08
				Cst3	1.87E-08
				RP23-407N2.2	2.41E-08
				Tmem114	2.91E-08
				Mical2	3.67E-08
				Atp1a3	3.72E-08
				Map3k4	5.08E-08
				Gm9843	9.37E-08
				Nbea	9.39E-08
				Magi3	1.02E-07
				Ank3	1.68E-07
				Dok5	1.92E-07
				Sema6a	2.15E-07
				Ghr	2.42E-07
				Ralgapa2	2.50E-07
				Bsg	2.55E-07
				Htr2c	3.40E-07
				Dab1	3.52E-07
				Cacnala	4.07E-07
				C1ql3	4.57E-07
				Pcp4	6.50E-07
				Smyd4	6.92E-07

	Trpc7	1.00E-06
	Cfap77	1.18E-06
	PISD	1.25E-06
	Slc25a48	1.32E-06
	Cox8a	1.35E-06
	Uch11	1.57E-06
	Rasgrf2	1.61E-06
	Epha5	1.71E-06
	9530052E02Rik	1.76E-06
	Tanc2	1.77E-06
	Dnah9	1.78E-06
	Arhgap39	1.79E-06
	2900026A02Rik	2.07E-06
	Vwc21	2.65E-06
	Mkl2	2.89E-06
	Lrp1b	3.02E-06
	Adck4	3.02E-06

	-	~ .		~ .			
Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S7A Week1	Wake amount/2h	n=5 each	Two-way RM ANOVA,	Main effect of	0.6959	ns	$F_{(1, 8)} =$
top panel 1		group	Post-hoc Šidák	group			0.1642
fig. S7A Week1	Wake bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.9533	ns	$F_{(1, 8)} =$
top panel 2	count/2h	group	Post-hoc Šidák	group			0.003655
fig. S7A Week1	Mean wake bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.8158	ns	$F_{(1, 8)} =$
top panel 3	length	group	Post-hoc Šidák	group			0.05769
fig. S7A Week1	Mean wake bout	n=5 each	Holm-Šidák	48 hour	0.8152	ns	t=0.2415
top panel 4	length	group		Light	0.2665	ns	t=1.194
				Dark	0.5826	ns	t=0.5726
fig. S7A Week1	NREM	n=5 each	Two-way RM ANOVA,	Main effect of	0.8085	ns	$F_{(1, 8)} =$
middle panel 1	amount/2h	group	Post-hoc Šidák	group			0.06274
fig. S7A Week1	NREM bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.9888	ns	$F_{(1, 8)} =$
middle panel 2	count/2h	group	Post-hoc Šidák	group			0.0002100
fig. S7A Week1	Mean NREM	n=5 each	Two-way RM ANOVA,	Main effect of	0.5359	ns	$F_{(1, 8)} =$
middle panel 3	bout length	group	Post-hoc Šidák	group			0.4182
fig. S7A Week1	Mean NREM	n=5 each	Holm-Šidák	48 hour	0.6624	ns	t=0.4532
middle panel 4	bout length	group		Light	0.8018	ns	t=0.2594
				Dark	0.7870	ns	t=0.2794
fig. S7A Week1	REM amount/2h	n=5 each	Two-way RM ANOVA,	Main effect of	0.5871	ns	$F_{(1, 8)} =$
bottom panel 1		group	Post-hoc Šidák	group			0.3200
fig. S7A Week1	REM bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.5325	ns	$F_{(1, 8)} =$
bottom panel 2	count/2h	group	Post-hoc Šidák	group			0.4255
fig. S7A Week1	Mean REM bout	n=5 each	Two-way RM ANOVA,	Main effect of	N/A	N/A	N/A
bottom panel 3	length	group	not applicable (N/A)	group			
fig. S7A Week1	Mean REM bout	n=5 each	Holm-Šidák	48 hour	0.8666	ns	t=0.1734
bottom panel 4	length	group		Light	0.8800	ns	t=0.1558
-	-			Dark	0.5272	ns	t=0.6609
fig. S7A Week12	Wake amount/2h	n=5 each	Two-way RM ANOVA,	Main effect of	0.6404	ns	$F_{(1, 8)} = 0.2357$
top panel 1		group	Post-hoc Šidák	group			
fig. S7A Week12	Wake bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.0223	*	F _(1, 8) =7.986
top panel 2	count/2h	group	Post-hoc Šidák	group			
fig. S7A Week12	Mean wake bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.0538	ns	$F_{(1, 8)} = 5.102$
top panel 3	length	group	Post-hoc Šidák	group			
fig. S7A Week12	Mean wake bout	n=5 each	Holm-Šidák	48 hour	0.08493	ns	t=1.966
top panel 4	length	group	Ī	Light	0.2016	ns	t=1.391
				Dark	0.06666	ns	t=2.122

fig. S7A Week12	NREM	n=5 each	Two-way RM ANOVA,	Main effect of	0.9113	ns	$F_{(1, 8)} =$
middle panel 1	amount/2h	group	Post-hoc Šidák	group			0.01323
fig. S7A Week12	NREM bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.0243	*	$F_{(1, 8)}=7.672$
middle panel 2	count/2h	group	Post-hoc Šidák	group			
fig. S7A Week12	Mean NREM	n=5 each	Two-way RM ANOVA,	Main effect of	0.0126	*	$F_{(1, 8)} = 10.24$
middle panel 3	bout length	group	Post-hoc Šidák	group			
fig. S7A Week12	Mean NREM	n=5 each	Holm-Šidák	48 hour	0.009404	**	t=3.397
middle panel 4	bout length	group		Light	0.005076	**	t=3.822
				Dark	0.035939	*	t=2.518
fig. S7A Week12	REM amount/2h	n=5 each	Two-way RM ANOVA,	Main effect of	0.0121	*	F _(1, 8) =10.43
bottom panel 1		group	Post-hoc Šidák	group			
fig. S7A Week12	REM bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.0241	*	F _(1, 8) =7.709
bottom panel 2	count/2h	group	Post-hoc Šidák	group			
fig. S7A Week12	Mean REM bout	n=5 each	Two-way RM ANOVA,	Main effect of	0.0706	ns	F _(1, 8) =4.345
bottom panel 3	length	group	Post-hoc Šidák	group			
fig. S7A Week12	Mean REM bout	n=5 each	Holm-Šidák	48 hour	0.1164	ns	t=1.760
bottom panel 4	length	group		Light	0.1115	ns	t=1.788
				Dark	0.2575	ns	t=1.219
fig. S7C	RMP	sgControl:	Mann-Whitney U test	sgControl vs.	0.0142	*	N/A
-		33 vs.	-	sgKcnq2/3			
		sgKcnq2/3:					
		22					
fig. S7F top panel	RMP	n=15 each	Mann-Whitney U test	sgControl vs.	0.0367	*	N/A
1		group		sgKcnq2/3			
fig. S7F top panel	Firing threshold	n=15 each	Mann-Whitney U test	sgControl vs.	0.0169	*	N/A
2		group		sgKcnq2/3			
fig. S7F top panel	Difference	n=15 each	Mann-Whitney U test	sgControl vs.	0.9674	ns	N/A
3	between RMP	group		sgKcnq2/3			
	and threshold						
fig. S7F top panel	Amplitude of AP	n=15 each	Mann-Whitney U test	sgControl vs.	0.3892	ns	N/A
4		group		sgKcnq2/3			
fig. S7F bottom	Risetime of AP	n=15 each	Mann-Whitney U test	sgControl vs.	0.1485	ns	N/A
panel 1		group		sgKcnq2/3			
fig. S7F bottom	Half duration of	n=15 each	Mann-Whitney U test	sgControl vs.	0.3669	ns	N/A
panel 2	AP	group		sgKcnq2/3			
fig. S7F bottom	Max. rising slope	n=15 each	Mann-Whitney U test	sgControl vs.	0.0425	*	N/A
panel 3		group	-	sgKcnq2/3			
fig. S7F bottom	Max. decaying	n=15 each	Mann-Whitney U test	sgControl vs.	0.2895	ns	N/A
panel 4	slope	group		sgKcnq2/3			

<u>fig. S8</u>

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	t statistic
fig. S8B	Exploration of	n=9	Unpaired <i>t</i> -test with Welch's	IO1 vs. IO2	0.6496	ns	t=0.4630
	identical objects		correction				
fig. S8C	Exploration of	n=9	Unpaired <i>t</i> -test with Welch's	Vehicle vs. flupirtine	0.04402	*	t=2.186
	familiar object		correction				
fig. S8C	Exploration of	n=9	Unpaired <i>t</i> -test with Welch's	Vehicle vs. flupirtine	0.04402	*	t=2.186
	novel object		correction				

<u>fig. S9</u>

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/q statistic
fig. S9C	Wake amount/h	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.5683	ns	$F_{(1, 10)} = 0.3481$
row 1 No.1			Post-hoc Šidák				
fig. S9C	Wake bout	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.3136	ns	$F_{(1, 10)} =$
row 1 No.2	count/h		Post-hoc Šidák				1.126

fig. S9C	Mean wake bout	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.0242	*	$F_{(1, 10)} = 7.304$
row 1 No.3	length		Post-hoc Sidák				
fig. S9C	Total wake bout	n=6 each group	Holm-Sidák	48 hour	0.8892	ns	t=0.1429
row 1 No.4	length			Light	0.4001	ns	t=0.8788
			· · · · · ·	Dark	0.4905	ns	t=0.7158
fig. S9C	Total wake bout	n=6 each group	Holm-Sidák	48 hour	0.1534	ns	t=1.465
row 1 No.5	count			Light	0.2926	ns	t=1.071
				Dark	0.6966	ns	t=0.3936
fig. S9C	Mean wake bout	n=6 each group	Holm-Šidák	48 hour	0.4665	ns	t=0.7570
row 1 No.6	length			Light	0.08281	ns	t=1.927
				Dark	0.9675	ns	t=0.04182
fig. S9C	NREM	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.7640	ns	$F_{(1, 10)}=$
row 2 No.1	amount/h		Post-hoc Sidák				0.09520
fig. S9C	NREM bout	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.2682	ns	$F_{(1, 10)} =$
row 2 No.2	count/h		Post-hoc Sidák				1.375
fig. S9C	Mean NREM	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.0544	ns	$F_{(1, 10)} =$
row 2 No.3	bout length		Post-hoc Sidak	10.4			4.743
fig. S9C	Total NREM	n=6 each group	Holm-Sidák	48 hour	0.7589	ns	t=0.3155
row 2 No.4	bout length			Light	0.3089	ns	t=1.072
a aca		- 1		Dark	0.3439	ns	t=0.9936
fig. S9C	Total NREM	n=6 each group	Holm-Sidák	48 hour	0.2682	ns	t=1.172
row 2 No.5	bout count			Light	0.1250	ns	t=1.674
a aca		- 1		Dark	0.6183	ns	t=0.5141
fig. S9C	Mean NREM	n=6 each group	Holm-Sidák	48 hour	0.2572	ns	t=1.202
row 2 No.6	bout length			Light	0.3534	ns	t=0.9732
			-	Dark	0.1443	ns	t=1.584
fig. S9C	REM amount/h	n=6 each group	Two-way RM ANOVA,	Main effect of group	0.7683	ns	$F_{(1, 10)} =$
row 3 No.1		<i>c</i> 1	Post-hoc Sidak		0.0401		0.09161
fig. S9C	REM bout	n=6 each group	Two-way RM ANOVA, Post-hoc Šidák	Main effect of group	0.2481	ns	$F_{(1, 10)} =$ 1 505
fig S9C	Mean RFM bout	n-6 each group	Two-way RM ANOVA	Main effect of group	0.0170	*	$F_{(1,10)} = 8,170$
row 3 No 3	length	n=o each group	Post-hoc Šidák	ivialli effect of group	0.0170		1 (1, 10) - 0.170
fig S9C	Total REM bout	n=6 each group	Holm-Šidák	48 hour	0 7699	ns	t=0.3005
row 3 No.4	length	n=o each group	Homi Siduk	Light	0.9216	ns	t=0.3009 t=0.1009
	rengui			Dark	0.4326	ns	t=0.1009 t=0.8176
fig S9C	Total REM bout	n=6 each group	Holm-Šidák	48 hour	0.1320	ns	t=0.0170 t=1.227
row 3 No.5	count	n o cuch group	Homi Siduk	Light	0.3382	ns	t=1.006
	• • • • • •			Dark	0.5302	ns	t=0.6648
fig S9C	Mean REM bout	n=6 each group	Holm-Šidák	48 hour	0.01386	*	t=2.978
row 3 No.6	length	n o cuch group	Homi Siduk	Light	0.02968	*	t=2.576
	6			Dark	0.04045	*	t=2.353
fig. S9C	Cataplexy-like	n=6 each group	Two-way RM ANOVA.	Main effect of group	0.1464	ns	$F_{(1,10)} =$
row 4 No.1	amount/h	o caen group	Post-hoc Šidák	sincer of group	0.1101		2.480
fig. S9C	Cataplexy-like	n=6 each group	Two-way RM ANOVA.	Main effect of group	0.1114	ns	$F_{(1,10)} =$
row 4 No.2	bout count/h	<i>8</i> • • •	Post-hoc Šidák				3.049
fig. S9C	Mean cataplexy-	n=6 each group	Two-way RM ANOVA.	Main effect of group	N/A	N/A	N/A
row 4 No.3	like bout length		Not applicable (N/A)				
fig. S9C	Total cataplexy-	n=6 each group	Holm-Šidák	24 hour	0.1464	ns	t=1.575
row 4 No.4	like bout length			Light	N/A	N/A	N/A
			· · · · · ·	Dark	0.1464	ns	t=1.575
fig. S9C	Total cataplexy-	n=6 each group	Holm-Šidák	24 hour	0.1114	ns	t=1.746
row 4 No.5	like bout count			Light	N/A	N/A	N/A
				Dark	0.1114	ns	t=1.746
fig. S9C	Mean cataplexy-	n=6 each group	Holm-Sidák	24 hour	N/A	N/A	N/A
row 4 No.6	like bout length			Light	N/A	N/A	N/A
				Dark	N/A	N/A	N/A

fig. S9G	RMP	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.0179	*	N/A
panel 1		ataxin3+: n=21		ataxin3 ⁺			
fig. S9G	Firing threshold	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.1673	ns	N/A
panel 2		ataxin3+: n=21		ataxin3+			
fig. S9G	Difference	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.0161	*	N/A
panel 3	between RMP	ataxin3+: n=21		ataxin3+			
	and threshold						
fig. S9G	Amplitude of	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.6217	ns	N/A
panel 4	AP	ataxin3+: n=21		ataxin3+			
fig. S9G	Risetime of AP	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.7717	ns	N/A
panel 5		ataxin3+: n=21		ataxin3+			
fig. S9G	Half duration of	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.3990	ns	N/A
panel 6	AP	ataxin3+: n=21		ataxin3 ⁺			
fig. S9G	Max. rising	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.9307	ns	N/A
panel 7	slope	ataxin3+: n=21		ataxin3+			
fig. S9G	Max. decaying	Control: n=17 vs.	Mann-Whitney U test	Control vs.	0.2943	ns	N/A
panel 8	slope	ataxin3+: n=21		ataxin3+			

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/q statistic
fig. S10A	Wake amount/h	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0875	ns	$F_{(1, 10)} =$
row 1 No.1		group	Post-hoc Šidák	• •			3.587
Fig. S10A	Wake bout	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0006	****	$F_{(1, 10)} =$
row 1 No.2	count/h	group	Post-hoc Šidák				24.30
fig. S10A	Mean wake bout	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0021	***	$F_{(1, 10)} =$
row 1 No.3	length	group	Post-hoc Šidák				16.95
fig. S10A	Total wake bout	n=6 each	Holm-Šidák	24 hour	0.08632	ns	t=1.902
row 1 No.4	length	group		Light	0.1123	ns	t=1.741
				Dark	0.004660	***	t=3.624
fig. S10A	Total wake bout	n=6 each	Holm-Šidák	24 hour	< 0.0001	†	t=6.691
row 1 No.5	count	group		Light	0.1597	ns	t=1.442
				Dark	< 0.0001	†	t=5.249
fig. S10A	Mean wake bout	n=6 each	Holm-Šidák	24 hour	0.005495	**	t=3.525
row 1 No.6	length	group		Light	0.6216	ns	t=0.5092
				Dark	0.008482	**	t=4.695
fig. S10A	NREM	n=6 each	Two-way RM ANOVA,	Main effect of group	0.2200	ns	$F_{(1, 10)} =$
row 2 No.1	amount/h	group	Post-hoc Šidák				1.712
fig. S10A	NREM bout	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0013	***	$F_{(1, 10)} =$
row 2 No.2	count/h	group	Post-hoc Šidák				19.59
fig. S10A	Mean NREM	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0021	***	$F_{(1, 10)} =$
row 2 No.3	bout length	group	Post-hoc Sidák				16.95
fig. S10A	Total NREM	n=6 each	Holm-Šidák	24 hour	0.2218	ns	t=1.303
row 2 No.4	bout length	group		Light	0.1263	ns	t=1.668
				Dark	0.01681	*	t=2.865
fig. S10A	Total NREM	n=6 each	Holm-Šidák	24 hour	0.001282	***	t=4.426
row 2 No.5	bout count	group		Light	0.08415	ns	t=1.918
				Dark	0.0001270	†	t=6.030
fig. S10A	Mean NREM	n=6 each	Holm-Šidák	24 hour	0.0002890	†	t=5.430
row 2 No.6	bout length	group		Light	0.006460	**	t=3.428
				Dark	< 0.0001	†	t=7.276
fig. S10A	REM amount/h	n=6 each	Two-way RM ANOVA,	Main effect of group	0.2523	ns	$F_{(1, 10)} =$
row 3 No.1		group	Post-hoc Šidák				1.476
fig. S10A	REM bout	n=6 each	Two-way RM ANOVA,	Main effect of group	0.5637	ns	$F_{(1, 10)}=$
row 3 No.2	count/h	group	Post-hoc Šidák				0.3566
fig. S10A	Mean REM bout	n=6 each	Two-way RM ANOVA,	Main effect of group	N/A	N/A	N/A
row 3 No.3	length	group	not applicable (N/A)				
			Holm-Šidák	24 hour	0.2539	ns	t=1.211

fig. S10A	Total REM bout	n=6 each		Light	0.2776	ns	t=1.148
row 3 No.4	length	group		Dark	0.01028	*	t=3.153
fig. S10A	Total REM bout	n=6 each	Holm-Šidák	24 hour	0.5637	ns	t=0.5972
row 3 No.5	count	group		Light	0.3619	ns	t=0.9555
				Dark	0.04419	*	t=2.301
fig. S10A	Mean REM bout	n=6 each	Holm-Šidák	24 hour	0.4048	ns	t=0.8698
row 3 No.6	length	group		Light	0.9974	ns	t=0.003295
				Dark	0.3372	ns	t=0.1673
fig. S10A	Cataplexy-like	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0026	***	$F_{(1, 10)} =$
row 4 No.1	amount/h	group	Post-hoc Šidák				15.85
fig. S10A	Cataplexy-like	n=6 each	Two-way RM ANOVA,	Main effect of group	0.0026	***	$F_{(1, 10)} =$
row 4 No.2	bout count/h	group	Post-hoc Šidák				15.85
fig. S10A	Mean cataplexy-	n=6 each	Two-way RM ANOVA,	Main effect of group	N/A	N/A	N/A
row 4 No.3	like bout length	group	not applicable (N/A)				
fig. S10A	Total cataplexy-	n=6 each	Holm-Šidák	24 hour	0.002598	***	t=3.981
row 4 No.4	like bout length	group		Light	0.017725	*	t=2.834
				Dark	0.002642	***	t=3.970
fig. S10A	Total cataplexy-	n=6 each	Holm-Šidák	24 hour	0.002595	***	t=3.981
row 4 No.5	like bout count	group		Light	0.07792	ns	t=1.964
				Dark	0.001154	***	t=4.494
fig. S10A	Mean cataplexy-	n=6 each	Holm-Šidák,	24 hour	N/A	N/A	N/A
row 4 No.6	like bout length	group	not applicable (N/A)	Light	N/A	N/A	N/A
				Dark	N/A	N/A	N/A

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S11A	Wake (%/h)	n=9	Two-way mixed effects model,	Time	< 0.0001	†	F(23, 368)=15.92
C			Post-hoc Šidák	Treatment	0.0411	*	F _(1, 16) =4.937
				Interaction	0.2936	ns	F _(23, 368) =1.145
fig. S11B	Wake bout	n=9	Two-way mixed effects model,	Time	0.0002	ţ	F(23, 368)=3.916
-	count/h		Post-hoc Šidák	Treatment	0.5886	ns	F _(1, 16) =0.3046
				Interaction	0.5552	ns	F(23, 368)=0.9320
fig. S11C	Mean wake bout	n=9	Two-way mixed effects model,	Time	0.0512	ns	F(23, 368)=2.435
	length		Post-hoc Šidák	Treatment	0.4193	ns	F _(1, 16) =0.6871
				Interaction	0.4699	ns	F(23, 368)=0.9957
fig. S11D	Total wake bout	n=9	Holm-Šidák	ZT 0-6	0.0418	*	t=2.213
	length			ZT 6-12	0.7239	ns	t=0.3595
				ZT 12-18	0.4814	ns	t=0.7209
				ZT 18-24	0.3274	ns	t=1.010
fig. S11E	Total wake bout	n=9	Holm-Šidák	ZT 0-6	0.4040	ns	t=0.8400
	count			ZT 6-12	0.9432	ns	t=0.07149
				ZT 12-18	0.3942	ns	t=0.8579
				ZT 18-24	0.3122	ns	t=1.019
fig. S11F	Mean wake bout	n=9	Holm-Šidák	ZT 0-6	0.04126	*	t=2.219
	length			ZT 6-12	0.9993	ns	t=0.0008554
				ZT 12-18	0.2896	ns	t=1.095
				ZT 18-24	0.2148	ns	t=1.292
fig. S11G	NREM (%/h)	n=9	Two-way mixed effects model,	Time	< 0.0001	†	F(23, 368)=16.68
			Post-hoc Šidák	Treatment	0.0910	ns	F _(1, 16) =3.235
				Interaction	3.3135	ns	F(23, 368)=1.126
fig. S11H	NREM bout	n=9	Two-way mixed effects model,	Time	< 0.0001	†	F(23, 368)=4.706
	count/h		Post-hoc Šidák	Treatment	0.7341	ns	F _(1, 16) =0.1195
				Interaction	0.7071	ns	F(23, 368)=0.8194
fig. S11I	Mean NREM	n=9	Two-way mixed effects model,	Time	< 0.0001	†	F _(23, 363) =16.14
_	bout length		Post-hoc Šidák	Treatment	0.0619	ns	$F_{(1, 16)} = 4.030$
	-			Interaction	0.0003	†	F _(23, 363) =2.431
fig. S11J		n=9	Holm-Šidák	ZT 0-6	0.01823	*	t=2.629

	Total NREM			ZT 6-12	0.7822	ns	t=0.2811
	bout length			ZT 12-18	0.4673	ns	t=0.7445
	_			ZT 18-24	0.3453	ns	t=0.9724
fig. S11K	Total NREM	n=9	Holm-Šidák	ZT 0-6	0.2736	ns	t=1.134
	bout count			ZT 6-12	0.9222	ns	t=0.09915
				ZT 12-18	0.2514	ns	t=1.190
				ZT 18-24	0.3508	ns	t=0.9611
fig. S11L	Mean NREM	n=9	Holm-Šidák	ZT 0-6	0.01018	*	t=2.912
	bout length			ZT 6-12	0.6639	ns	t=0.4427
				ZT 12-18	0.6235	ns	t=0.5005
				ZT 18-24	0.7968	ns	t=0.2618
fig. S11M	REM (%/h)	n=9	Two-way mixed effects model,	Time	< 0.0001	†	F _(23, 368) =9.096
			Post-hoc Šidák	Treatment	0.9503	ns	$F_{(1, 16)} = 0.004001$
				Interaction	0.4001	ns	F _(23, 368) =1.051
fig. S11N	REM bout	n=9	Two-way mixed effects model,	Time	< 0.0001	†	F _(23, 368) =10.62
	count/h		Post-hoc Šidák	Treatment	0.9723	ns	$F_{(1, 16)} = 0.001241$
				Interaction	0.0601	ns	F(23, 368)=1.521
fig. S11O	Mean REM bout	n=9	Two-way mixed effects model,	Time	0.0550	ns	F(23, 297)=2.238
	length		Post-hoc Šidák	Treatment	0.4222	ns	F _(1, 16) =0.6785
				Interaction	0.8513	ns	F _(23, 297) =0.6941
fig. S11P	Total REM bout	n=9	Holm-Šidák	ZT 0-6	0.9005	ns	t=0.1270
	length			ZT 6-12	0.8062	ns	t=0.2494
				ZT 12-18	0.6815	ns	t=0.4181
				ZT 18-24	0.3431	ns	t=0.9769
fig. S11Q	Total REM bout	n=9	Holm-Šidák	ZT 0-6	0.9231	ns	t=0.09806
	count			ZT 6-12	>0.9999	ns	t=0
				ZT 12-18	0.3876	ns	t=0.8883
				ZT 18-24	0.3433	ns	t=0.9766
fig. S11R	Mean REM bout	n=9	Holm-Šidák	ZT 0-6	0.3786	ns	t=0.9055
	length			ZT 6-12	0.1846	ns	t=1.386
				ZT 12-18	0.09061	ns	t=1.801
				ZT 18-24	0 9345	ns	t=0.08353

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S12E	LC NA	Young: n=6	Two-way	Anterior-posterior location (APL)	< 0.0001	†	F(31, 320)=521.3
	neuron	vs.	ANOVA	Age	< 0.0001	†	F _(1, 320) =162.2
	count	Aged: n =6		Interaction	< 0.0001	†	$F_{(31, 320)}=10.62$
			Šidák's multiple	APL -4.945	0.9451	ns	t=0.07068
			comparisons	APL -4.980	0.5883	ns	t=0.5592
				APL -5.015	0.02556	*	t=2.621
				APL -5.050	0.4425	ns	t=0.7996
				APL -5.085	0.4754	ns	t=0.7415
				APL -5.120	0.5415	ns	t=0.4800
				APL -5.155	0.8287	ns	t=0.2221
				APL -5.190	0.8366	ns	t=0.2118
				APL -5.225	0.000394	†	t=5.213
				APL -5.260	0.000287	†	t=5.435
				APL -5.295	0.000129	†	t=6.018
				APL -5.330	< 0.0001	†	t=11.09
				APL -5.365	< 0.0001	†	t=8.287
				APL -5.400	< 0.0001	†	t=9.613
				APL -5.435	< 0.0001	†	t=6.933
				APL -5.470	0.1133	ns	t=1.736
				APL -5.505	0.1539	ns	t=1.543
				APL -5.540	0.9929	ns	t=0.009130

				APL -5.575	0.7936	ns	t=0.2687
				APL -5.610	0.000790	****	t=4.741
				APL -5.645	0.04279	*	t=2.320
				APL -5.680	0.06848	ns	t=2.041
				APL -5.715	0.8040	ns	t=0.2549
				APL -5.750	0.9570	ns	t=0.05530
				APL -5.785	0.5344	ns	t=0.6434
				APL -5.820	0.01831	*	t=2.815
				APL -5.855	0.04419	*	t=2.301
				APL -5.890	0.4078	ns	t=0.8642
				APL -5.925	0.6317	ns	t=0.4944
				APL -5.960	0.0064	**	t=3.432
				APL -5.995	0.6867	ns	t=0.4152
				APL -6.030	0.9106	ns	t=0.1152
fig. S12E.	LC NA	Young: n=6 vs.	Unpaired <i>t</i> -test	Young vs. Aged	< 0.0001	Ť	t=6.654
Inset	neuron count	Aged: n=6					

Panel	Data	Group size	Statistic method	Comparison condition	P value	Notation	F/t statistic
fig.	Latency for NREM-to-	n=8 mice	Mann-Whitney U test	1 mW, 1 Hz	0.04988	*	N/A
S13B	wake transition across	each group		1 mW, 5 Hz	0.00078	****	N/A
	stimulation parameters:			1 mW, 10 Hz	0.00777	**	N/A
	Young vs. Aged			1 mW, 15 Hz	0.00218	***	N/A
				1 mW, 20 Hz	0.18197	ns	N/A
				5 mW, 1 Hz	0.04988	*	N/A
				5 mW, 5 Hz	0.00078	****	N/A
				5 mW, 10 Hz	0.00124	***	N/A
				5 mW, 15 Hz	0.01585	*	N/A
				5 mW, 20 Hz	0.04600	*	N/A
				10 mW, 1 Hz	0.02580	*	N/A
				10 mW, 5 Hz	0.13629	ns	N/A
				10 mW, 10 Hz	0.07677	ns	N/A
				10 mW, 15 Hz	0.00124	***	N/A
				10 mW, 20 Hz	0.39782	ns	N/A
				15 mW, 1 Hz	0.00295	***	N/A
				15 mW, 5 Hz	0.03481	*	N/A
				15 mW, 10 Hz	0.00528	**	N/A
				15 mW, 15 Hz	0.39565	ns	N/A
				15 mW, 20 Hz	0.08516	ns	N/A
				20 mW, 1 Hz	0.16659	ns	N/A
				20 mW, 5 Hz	0.00047	†	N/A
				20 mW, 10 Hz	0.39689	ns	N/A
				20 mW, 15 Hz	0.08702	ns	N/A
				20 mW, 20 Hz	0.40124	ns	N/A
fig.	Data in panel B	n=8 mice	Mann-Whitney U test	Young vs. Aged	0.0002	†	N/A
S13C	aggregated for	each group					
	individual animal						
fig.	Wake duration	n=8 mice	Mann-Whitney U test	1 mW, 1 Hz	>0.99999	ns	N/A
S13E	following optogenetic	each group		1 mW, 5 Hz	0.01383	*	N/A
	stimulation during			1 mW, 10 Hz	0.00031	Ť	N/A
	NREM sleep across			1 mW, 15 Hz	0.00093	****	N/A
	stimulation parameters:			1 mW, 20 Hz	0.34079	ns	N/A
	Young vs. Aged			5 mW, 1 Hz	>0.99999	ns	N/A
				5 mW, 5 Hz	0.01632	*	N/A
				5 mW, 10 Hz	0.00078	****	N/A
				5 mW, 15 Hz	0.09883	ns	N/A
				5 mW, 20 Hz	0.02067	*	N/A

Li et al.	
-----------	--

				10 mW, 1 Hz	0.44615	ns	N/A
				10 mW, 5 Hz	0.03465	*	N/A
				10 mW, 10 Hz	0.00699	**	N/A
				10 mW, 15 Hz	0.48967	ns	N/A
				10 mW, 20 Hz	0.00280	***	N/A
				15 mW, 1 Hz	0.08221	ns	N/A
				15 mW, 5 Hz	0.00047	†	N/A
				15 mW, 10 Hz	0.01150	*	N/A
				15 mW, 15 Hz	0.02331	*	N/A
				15 mW, 20 Hz	0.00016	†	N/A
				20 mW, 1 Hz	0.19612	ns	N/A
				20 mW, 5 Hz	0.02409	*	N/A
				20 mW, 10 Hz	0.18617	ns	N/A
				20 mW, 15 Hz	0.02238	*	N/A
				20 mW, 20 Hz	0.02564	*	N/A
fig.	Data in panel E	n=8 mice	Mann-Whitney U test	Young vs. Aged	0.0002	†	N/A
S13F	aggregated for	each group		8 8 8		I	
c	individual animal				0.10715		
tig.	Latency for REM-to-	n=8 mice	Mann-Whitney U test	1 mW, 1 Hz	0.48718	ns	N/A
S13H	wake transition across	each group		1 mW, 5 Hz	0.00295	***	N/A
	stimulation parameters:			1 mW, 10 Hz	0.87848	ns	N/A
	Young vs. Aged			1 mW, 15 Hz	0.04584	*	N/A
				1 mW, 20 Hz	0.01166	*	N/A
				5 mW, 1 Hz	0.32820	ns	N/A
				5 mW, 5 Hz	0.00295	***	N/A
				5 mW, 10 Hz	0.00016	†	N/A
				5 mW, 15 Hz	0.00979	**	N/A
				5 mW, 20 Hz	0.22144	ns	N/A
				10 mW, 1 Hz	0.07786	ns	N/A
				10 mW, 5 Hz	0.00295	***	N/A
				10 mW, 10 Hz	0.00016	†	N/A
				10 mW, 15 Hz	0.26014	ns	N/A
				10 mW, 20 Hz	0.36504	ns	N/A
				15 mW, 1 Hz	0.16908	ns	N/A
				15 mW, 5 Hz	0.00435	***	N/A
				15 mW, 10 Hz	0.00016	†	N/A
				15 mW, 15 Hz	0.81834	ns	N/A
				15 mW, 20 Hz	0.01911	*	N/A
				20 mW, 1 Hz	0.31438	ns	N/A
				20 mW, 5 Hz	0.00016	†	N/A
				20 mW, 10 Hz	0.66356	ns	N/A
				20 mW, 15 Hz	0.19223	ns	N/A
				20 mW, 20 Hz	0.19643	ns	N/A
fig.	Data in panel H	n=8 mice	Mann-Whitney U test	Young vs. Aged	0.0002	†	N/A
S13I	aggregated for	each group					
fig.	Wake duration	n=8 mice	Mann-Whitney U test	1 mW, 1 Hz	>0.99999	ns	N/A
SI3K	following optogenetic	each group	5	1 mW, 5 Hz	0.07692	ns	N/A
	stimulation during	0 1		1 mW. 10 Hz	0.92820	ns	N/A
	REM sleep across			1 mW, 15 Hz	0.57576	ns	N/A
	stimulation parameters:			1 mW. 20 Hz	0.02160	*	N/A
	Young vs. Aged			5 mW. 1 Hz	0.46667	ns	N/A
				5 mW. 5 Hz	0.00140	***	N/A
				5 mW. 10 Hz	0.01181	*	N/A
				5 mW. 15 Hz	0.00155	***	N/A
				5 mW. 20 Hz	0.22378	ns	N/A
				10 mW 1 Hz	>0.99999	ns	N/A

				10 mW, 5 Hz	0.01321	*	N/A
				10 mW, 10 Hz	0.04087	*	N/A
				10 mW, 15 Hz	0.07817	ns	N/A
				10 mW, 20 Hz	0.00186	***	N/A
				15 mW, 1 Hz	0.07692	ns	N/A
				15 mW, 5 Hz	0.66402	ns	N/A
				15 mW, 10 Hz	0.03512	*	N/A
				15 mW, 15 Hz	0.15229	ns	N/A
				15 mW, 20 Hz	0.77576	ns	N/A
				20 mW, 1 Hz	0.23077	ns	N/A
				20 mW, 5 Hz	0.73908	ns	N/A
				20 mW, 10 Hz	0.77669	ns	N/A
				20 mW, 15 Hz	0.16892	ns	N/A
				20 mW, 20 Hz	0.00295	***	N/A
fig.	Data in panel K	n=8 mice	Mann-Whitney U test	Young vs. Aged	0.0003	†	N/A
S13L	aggregated for	each group					
	individual animal						

Panel	Data	Group size	Statistic method	Comparison	P value	Notation	F/t statistic
fig. S14D	LC NA resting	Young: n=10	Mann-Whitney U test	Young vs. Aged	0.0666	ns	N/A
	membrane potential	vs. Aged: n=13					