Cell Reports, Volume 39

Supplemental information

YTHDF2 suppresses the plasmablast genetic

program and promotes germinal center formation

Amalie Grenov, Hadas Hezroni, Lior Lasman, Jacob H. Hanna, and Ziv Shulman

Figure S1

Figure S1. Single cell RNA-seq analysis of antigen specific B cells during the early stages of the adaptive immune response, Related to Figure 1. (**A**) Expression heatmap showing the top 50 upregulated genes for each cluster. (**B**) UMAP projections of scRNA-seq profiles of 1645, 2511, and 2260 transferred B1-8^{hi} B cells isolated from 3 mice, 5 days after immunization. Clusters in the UMAP plots are color-coded according to different cell populations. Annotation of cell populations was done based on the same markers as in Figure 1. (**C**, **D**) UMAP projections of signature scores. Each signature consists of genes that are upregulated (FC > 2, padj < 0.05) in the indicated cell populations. RNA-seq samples were downloaded from Gene Expression Omnibus accession no. GSE174394 (follicular B cells, activated B cells, MBCs, GC B cells) and GSE60927 (splenic PBs, follicular B cells). (**E**) Expression of *Bcl6, Aicda, S1pr2, Sell* and *Basp1*, along the B cell differentiation trajectories defined in Figure 11. (**F**) Normalized enrichment scores of hallmark gene sets enrichment analysis of genes whose expression is significantly upregulated in the Pre-GC cluster compared to the Naive and eMBC cell clusters. (**G**) UMAP projections of RBPs gene signature scores.

Figure S2

Figure S2. YTHDF2 and YTHDF1 functions in the B cell immune response, Related to Figure 2, 3 and 6. (A) Gating strategy for plasma cells and B cells (left), GC B cells, Naive B cells (middle), and FAS⁺ GL-7⁺ B cells (right). (**B-C)** Two-photon imaging of TdTomato⁺ DF2^{fl/+} B cells (transferred prior to immunization) and polyclonal CFP⁺ naive B cells (transferred after immunization) three days after NP-KLH immunization. (**C**) Quantification of CFP and GFP mean fluorescence intensity measured in Z-stacks with 10µm increments from the LN cortex. (**D**) CD23-DF2^{+/+}, CD23-DF2^{fl/+}, CD23-DF2^{fl/fl} mice were immunized with NP-KLH and analyzed for GC formation after 7 days by flow cytometry. Data were pooled from 5-14 independent mice. (**E**) GSEA analysis of Ythdf2-deficient GC LZ B cells from GSE180359, using gene signatures obtained from MYC-positive GC B cells: GSE39443, ASC: GSE60927. (**F**, **G**) Splenic cells from Ythdf1-deficient and WT mice were stained with CellTrace Violet and stimulated with increasing concentrations of anti-IgM for three days in vitro. CD86 expression, CellTrace Violet dilution and CD62L expression were assessed by flow cytometry. Plots are representative of three independent experiments. Dots represent mean±SD. Data were pooled from two independent experiments each with three samples per group. Statistical significance was tested using one-way ANOVA followed by Holm-Sidak's multiple comparisons test (A), two-way ANOVA followed by Sidak's multiple comparisons test (B, C), or using two-tailed unpaired Student's t-test. (D). **P* < 0.05; ***P* < 0.01; ****P* < 0.001. NS, not significant.

Table S1. List of primers for RT-qPCR, Related to Star Methods

Primer Name	Organism	Primer sequence (5'-3')	
Ubc_fwd	Mouse	GCCCAGTGTTACCACCAAGA	
Ubc_rev	Mouse	CCCATCACACCCAAGAACA	
Ythdf1_1_fwd	Mouse	ACAGTTACCCCTCGATGAGTG	
Ythdf1_1_rev	Mouse	GGTAGTGAGATACGGGATGGGA	
Ythdf1_2_fwd	Mouse	GAGCAGTTACACTTACCCACC	
Ythdf1_2_rev	Mouse	TGTTGAGGGAGTCACTGTGAAA	
Ythdf1_3_fwd	Mouse	CACAGTGACTCCCTCAACAAG	
Ythdf1_3_rev	Mouse	AGGTGGTAACATCCCCAATCTT	
Ythdf2_1_fwd	Mouse	GAGCAGAGACCAAAAGGTCAAG	
Ythdf2_1_rev	Mouse	CTGTGGGGCTCAAGTAAGGTTC	
Ythdf2_2_fwd	Mouse	TATGGACAACTGAGCAACGGA	
Ythdf2_2_rev	Mouse	GAGCTGGGTGCATAAGCGTA	
Ythdf3_1_fwd	Mouse	CGATTCATCAAAAAGATGCTG	
Ythdf3_1_rev	Mouse	TCTGACATTGGTGGATAGCTG	
Ythdf3_2_fwd	Mouse	CATAGGGCAACAGAGGAAACAG	
Ythdf3_2_rev	Mouse	ATCTCCAGCCGTGGACCAT	
Sell_PP2_F	Mouse	CCCCTTGGGAAACTTCAGCTT	
Sell_PP2_R	Mouse	ACCATGACGGCTACAGGAATG	
Ccr7_1_F	Mouse	CAGGTGTGCTTCTGCCAAGAT	
Ccr7_1_R	Mouse	GGTAGGTATCCGTCATGGTCT	
CXCR5_F	Mouse	ATGAACTACCCACTAACCCTGG	

Primer Name	Organism	Primer sequence (5'-3')
CXCR5_R	Mouse	TGTAGGGGAATCTCCGTGCT
Itgal_PP1_F	Mouse	CCAGACTTTTGCTACTGGGAC
Itgal_PP1_R	Mouse	GCTTGTTCGGCAGTGATAGAG
membrane IgM left	Mouse	CCTCTTCTACAGCACCACCG
membrane IgM right	Mouse	TGGTCTCTGCTGTCCTTCCA
secretory IgM left	Mouse	CACACTGTACAATGTCTCCCTGA
secretory IgM right	Mouse	GGTTAGTTTGCATACACAGAGCA