

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202105787

Uncovering a Vital Band Gap Mechanism of Pnictides

Jindong Chen, Qingchen Wu, Haotian Tian, Xiaotian Jiang, Feng Xu, Xin Zhao, Zheshuai Lin, Min Luo* and Ning Ye*

Supporting Information © 2022 Wiley-VCH GmbH 69451 Weinheim, Germany

Uncovering a Vital Band Gap Mechanism of Pnictides

Jindong Chen,^{[a], [e]} Qingchen Wu,^[c] Haotian Tian,^[a] Xiaotian Jiang,^[d] Feng Xu,^[a] Xin Zhao,^[a] Zheshuai Lin,^[c] Min Luo^[a]* and Ning Ye^{[a], [b]}*

Abstract: Pnictides are superior IR NLO material candidates, but the exploration of NLO pnictides is still tardy due to lack of rational material design strategies. An in-depth understanding structure-performance relationship is urgent for designing novel and eminent pnictide NLO materials. Herein, we unraveled a vital band gap mechanism of pnictides, namely P atom with low coordination numbers (2 CN) will cause the decrease of band gap due to the delocalization of non-bonding electron pairs. Accordingly, a general design paradigm for NLO pnictides, ionicity–covalency–metallicity regulation was proposed for designing wide-band gap NLO pnictides with maintained SHG effect. Driven by this idea, millimeter-level crystals of MgSiP2 were synthesized with a wide band gap (2.34 eV), a strong NLO performance (3.5 x AgGaS₂) and a wide IR transparency range (0.53-10.3 µm). This work provides an essential guidance for the future design and synthesis of NLO pnictides, and also opens a new perspective at Zintl chemistry important for other material fields.

Table of Contents

Table S1. Crystallographic Data and Refinement Details for MgSiP₂.

Formula	MgSiP ₂
Formula weight	114.34
Temperature/K	293
Radiation	Ga K _α (λ = 1.34139)
Crystal system	tetragonal
Space group	I-42d
a/Å	5.7156(5)
c/Å	10.074(2)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	329.11(10)
Z	4
ρcalc (g/cm ³)	2.308
μ (mm-1)	9.737
F (000)	224
Index ranges	-5 ≤ h ≤ 3, -7 ≤ k ≤ 6, -11 ≤ l ≤ 12
Reflections collected	395
Independent reflections	175 [R _{int} = 0.0141
Data/restraints/parameters	175/0/11
Goodness-of-fit on F ²	1.212
Final R indexes [I>=2σ (I)]	$R_1 = 0.0328$, $wR_2 = 0.0862$
Final R indexes [all data]	R ₁ = 0.0330, wR ₂ = 0.0866
Largest diff. peak/hole / e Å ⁻³	0.596/-0.659
Flack parameter	0.1(5)

Table S2. Th relationship between the coordination number of P atom and the band gap of phosphides.

Compounds	Coordination number of atom (CN)	Ρ	Band (eV)	gap	Reference
Zn ₃ Pl ₃	4		2.85		1
Cd_2PCl_2	4		>2.5		2
Cd_3PI_3	4		2.44		1
GaP	4		2.4		3
MgSiP ₂	4		2.33		4
$Cd_4P_2Cl_3$	4		2.36		5
CdSiP ₂	4		2.2		6
α -ZnP ₂	4		2.25		7
α -CdP $_2$	4		2.0		8
$IrSi_3P_3$	4		1.93		9
$RuSi_4P_4$	4		1.83		9
NaGe ₃ P ₃	3		2.06		10
SiP (monolayer)	3		2.59		11
$Ba_2Si_3P_6$	2 and 3		1.88		12
KSi ₂ P ₃	2 and 3		1.72		13
BaSi ₇ P ₁₀	2 and 3		1.1		14
SrSi ₇ P ₁₀	2 and 3		1.1		14
Ba_2SiP_4	2		1.45		15

Sr_2SiP_4	2	1.41	15
BaGe ₂ P ₂	2	1.36	16
LaSiP ₃	1, 2 and 3	1.3	17
β-Ca ₂ CdP ₂	1, 2 and 3	1.55	18

Table S3. Calculated values of g_{ijk} and C.

Compouds	Groups	g_{ijk}	С
	[ZnP ₄]	$g_{123} = 0.99950$	0.99949
ZnGeP ₂	[GeP ₄]	$g_{123} = 0.99947$	
	[AgS ₄]	$g_{123} = 0.98764$	0.98513
AgGaS ₂	[GaS₄]	$g_{123} = 0.98263$	
	[MgP ₄]	$g_{123} = 0.98653$	0.98521
MgSiP ₂	[SiP ₄]	$g_{123} = 0.98389$	

Table S4. Comparison of ${\rm MgSiP}_2$ with famous and recently reported NLO chalcogenides.

Compounds	E _g (eV)	<i>d_{ij}</i> (pm/V)	Reference
MgSiP ₂	2.34	31.2	this work
AgGaS ₂	2.75	14	19
AgGaSe ₂	1.83	30	19
BaGa ₄ Se ₇	2.64	20.6	20
LiInSe ₂	2.83	12.5	21
BaGa ₂ GeSe ₆	2.31	23.6	19
AgGaGeS₄	2.78	15	22
AgGaGe ₅ Se ₁₂	2.2	29	23
CdSe	1.65	36	24
$m-Ga_2Se_3$	1.86	23.2	25
$Sr_6Cd_2Sb_6O_7S_{10}$	1.89	27.8	26
Snl ₄ .(S ₈) ₂	2.17	6.3	27
Na ₂ CdSn ₂ Se ₆	2.15	20.3	28
$Ba_6In_6Zn_4Se_{19}$	2.2	16.3	29
Hg ₂ GeSe ₄	1.17	24.56	30

Figure S1. Coordination environment of P atoms.

Figure S2. Coordination environment of A site atoms.

Figure S3. 3D ELF isosurfaces at $\eta = 0.5$ (a), EDD isosurfaces at $\eta = 1/2 \times \text{maximum}$ (b) and EDD distributions (c) of Li₂SiP₂. White dashed boxes represent two nearest Si and Li atoms of P atom.

Figure S4. 3D ELF isosurfaces at η = 0.5 (a), EDD isosurfaces at η = 1/2 × maximum (b) and EDD distributions (c) of CaSiP₂.

Figure S5. 3D ELF isosurfaces at η = 0.5 (a), EDD isosurfaces at η = 1/2 × maximum (b) and EDD distributions (c) of Cs₂SiP₂.

Figure S6. 3D ELF isosurfaces at $\eta = 0.5$ (left column), EDD isosurfaces at $\eta = 1/2 \times maximum$ (middle column) and EDD distributions (right column) of MgSiAs₂ (a, d and g), RbSiAs₂ (b, e and h), SrSiAs₂ (c, f and i)

WILEY-VCH

Figure S7. CBM structure comparison of $MgSiP_2$ (a, b) and $CaSiP_2$ (c, d), Li_2SiP_2 (e, f) and K_2SiP_2 (g, h).

Figure S8. Band structure of MgSiP₂ (a), Li₂SiP₂ (b), CdSiP₂ (c), CaSiP₂ (d), Na₂SiP₂ (e), K₂SiP₂ (f) and Cs₂SiP₂ (g).

Figure S9. Powder XRD patterns of the experimental and simulated for MgSiP₂.

Figure S10. Energy-dispersive X-ray Spectroscopy analysis of MgSiP₂.

Figure S11. TG-DTA curves of MgSiP₂.

Figure S12. IR transmittance spectrum of MgSiP₂.

Reference

- 1. J. Chen, C. Lin, D. Zhao, M. Luo, G. Peng, B. Li, S. Yang, Y. Sun, N. Ye, Angew. Chem., Int. Ed. 2020, 59, 23549-23553.
- 2. A. V. Olenev, O. S. Oleneva, A. V. Shevelkov, B. A. Popovkin, Russian Chemical Bulletin 2003, 52, 570-575.
- 3. P. G. Schunemann, K. T. Zawilski, L. A. Pomeranz, D. J. Creeden, P. A. Budni, J. Opt. Soc. Am. B 2016, 33, D36-43
- 4. G. AmbrazeviD ius, G. Babonas, Y. V. Rud, A. E ileika, Phys. Stat. Sol. 1981, 106, 85-89
- 5. A. Roy, U. S. Shenoy, K. Manjunath, P. Vishnoi, U. V. Waghmare, C. N. R. Rao, J. Phys. Chem. C 2016, 120, 15063-15069.
- 6. G. Zhang, L. Wei, L. Zhang, X. Wang, B. Liu, X. Zhao, X. Tao, J. Cryst. Growth 2017, 473, 28-33.
- 7. I. E. Zanin, K. B. Aleinikova, M. Y. Antipin, Crystallography Reports 2003, 48, 199-204.
- 8. J. Chen, C. Lin, F. Xu, S. Yang, Y. Sun, X. Zhao, X. Jiang, B. Li, T. Yan, N. Ye, Chem. Mater. 2020, 32, 10246-10253.
- 9. S. Lee, S. L. Carnahan, G. Akopov, P. Yox, L. L. Wang, A. J. Rossini, K. Wu, K. Kovnir, Adv. Funct. Mater. 2021, 31 (16), 2010293.
- 10. K. Feng, W. Yin, R. He, Z. Lin, S. Jin, J. Yao, P. Fu, Y. Wu, *Dalton Trans* **2012**, *41*, 484-489.
- 11. S. Zhao, P. Luo, S. Yang, X. Zhou, Z. Wang, C. Li, S. Wang, T. Zhai, X. Tao, Adv. Opt. Mater. 2021, 9, 2100198.
- 12. J. Mark, J. Wang, K. Wu, J. G. Lo, S. Lee, K. Kovnir, J. Am. Chem. Soc. 2019, 141, 11976-11983.
- 13. K. Feng, L. Kang, W. Yin, W. Hao, Z. Lin, J. Yao, Y. Wu, J. Solid State Chem. 2013, 205, 129-133.
- 14. A. Haffner, V. Weippert, D. Johrendt, Z. Anorg. Allg. Chem. 2020, 647, 326-330.
- 15. J. Mark, J.-A. Dolyniuk, N. Tran, K. Kovnir, Z. Anorg. Allg. Chem. 2019, 645, 242-247.
- 16. J. Chen, C. Lin, G. Peng, F. Xu, M. Luo, S. Yang, S. Shi, Y. Sun, T. Yan, B. Li, N. Ye, 2019, 31, 10170-10177.
- 17. Y. Sun, J. Chen, S. Yang, B. Li, G. Chai, C. Lin, M. Luo, N. Ye, Adv. Opt. Mater. 2021, 9, 2002176.
- 18. Y. Sun, C. Lin, J. Chen, F. Xu, S. Yang, B. Li, G. Yang, M. Luo, N. Ye, *Inorg. Chem.* **2021**, *60*, 7553-7560.
- 19. G. C. Catella, D. Burlage, MRS Bulletin. 2013, 23, 28-36.
- 20. X. Zhang, J. Yao, W. Yin, Y. Zhu, Y. Wu, C. Chen, Opt. Express 2015, 23, 552-558.
- 21. L. I. Isaenko, I. G. Vasilyeva, J. Cryst. Growth 2008, 310, 1954-1960.
- 22. K. Kato, V. V. Badikov, L. Wang, V. L. Panyutin, K. V. Mitin, K. Miyata, V. Petrov, Opt. Lett. 2020, 45, 2136-2139.
- 23. W. Huang, Z. He, S. Zhu, B. Zhao, B. Chen, S. Zhu, Inorg. Chem. 2019, 58, 5865-5874.
- 24. G. D. Boyd, E. Buehler, F. G. Storz, Appl. Phys. Lett. 1971, 18, 301-304.

25. Q.-T. Xu, Z.-D. Sun, Y. Chi, H.-G. Xue, S.-P. Guo, J. Mater. Chem. C 2019, 7, 11752-11756.

- 26. R. Wang, F. Liang, F. Wang, Y. Guo, X. Zhang, Y. Xiao, K. Bu, Z. Lin, J. Yao, T. Zhai, F. Huang, Angew. Chem., Int. Ed. 2019, 58, 8078-8081.
- 27. S. P. Guo, Y. Chi, H. G. Xue, Angew. Chem., Int. Ed. 2018, 57, 11540-11543.
- 28. R. Ye, X. Cheng, B.-W. Liu, X.-M. Jiang, L.-Q. Yang, S. Deng, G.-C. Guo, J. Mater. Chem. C 2020, 8, 1244-1247.
- 29. A. Zhou, C. Lin, B. Li, W. Cheng, Z. Guo, Z. Hou, F. Yuan, G.-L. Chai, J. Mater. Chem. C 2020, 8, 7947-7955.
- 30. Y. Guo, F. Liang, J. Yao, Z. Lin, W. Yin, Y. Wu, C. Chen, Inorg. Chem. 2018, 57, 6795-6798.