Appendix 6a. Data extraction of studies with biological state outcomes. | No. | Author
(year,
location) | Study population
(N; age ± SD or
range [yrs]; %
females; ethnicity) | Study
duration | Wearable (placement;
software; epoch-
length; algorithm/cut-
point) | Dimension
(Outcome(s)) | Criterion
measures | Statistical analysis | Study conclusion | Overall
risk of
bias (low,
some,
high) | Funding/
Conflict of
interest | |-----|--|--|---------------------|---|--|------------------------|---|---|--|-------------------------------------| | 7 | Bélanger et
al. (2013,
Canada) | Toddler and preschool
children (N=12;
3.1±1.0 yrs; 67%
females; NR) | 1 day | Actiwatch-L (non-
dominant wrist, ankle;
Actiwatch-L software; 30
sec; AlgoSmooth) | Biological state
(Sleep/awake) | Polysomnogr
aphy | Sensitivity;
Specificity Accuracy;
Negative predictive
value | Despite the weak detection of wakefulness, Actiwatch-L appears to be a useful instrument for assessing sleep in preschoolers when used with an adapted algorithm. | Some | N/N | | 13 | Camerota et
al. (2018,
United
States) | Infants (N=90; 3.61
months; 43% females;
African American
(N=90)) | 1 day (1
night) | Actiwatch-2 (left ankle;
Phillips Actiware software
v6.0; 15 sec; Actogram
algorithm) | Biological state
(Sleep time) | Observation
(Video) | Correlations; Paired t-
tests; Bland-Altman
analysis; Cohen's
kappa; Sensitivity;
Specificity | Actigraphy and sleep diaries were more concordant with one another than with videosomnography. Epoch-by-epoch analyses indicated that actigraphy had low sensitivity to detect wakefulness, compared with videosomnography. | Some | N/N | | 55 | Quante et al.
(2018,
United
States) | Healthy volunteers
(N=13; 13.0±1.4 yrs;
46% females; White
(n=2), Hispanic Black
(n=2), Hispanic White
(n=9)) | 5 days (1
night) | Actigraph GT3X+ (non-
dominant wrist; ActiLife 6;
1 minute; Cole–Kripke
algorithm, Sadeh
algorithm); Actiwatch
Spectrum (non-dominant
wrist; Respironics
Actiware 5; 30 sec;
medium threshold (40
counts per epoch)) | Biological State
(Total sleep time) | Polysomnogr
aphy | Intraclass correlation
coefficients,
Accuracy, Sensitivity,
Specificity | The two actigraphs provided comparable and accurate data compared to PSG, although both poorly identified wake episodes (i.e., had low specificity). | Some | N/N | | 69 | Smith et al.
(2020, New
Zealand) | Children (N= 28;
7.2±1.2 yrs; 39%
females; NZ Māori
(7%), European
(79%), Asian (14%)) | 1 day (1
night) | Actical (right hip, non-dominant wrist; Actical v3.0; NR; count-scaled algorithm); ActiGraph GT3X+ (right hip, non-dominant wrist; Actilife v6.11.9; 15 sec; count-scaled algorithm), Sadeh algorithm) | Biological state
(Total sleep time) | Polysomnogr
aphy | Sensitivity;
Specificity; Accuracy;
Prevalence-adjusted
bias-adjusted kappa;
Bland-Altman
analysis | Overall the count-scaled algorithm produced High sensitivity at the expense of low specificity in comparison with PSG. A best site placement for estimates of all sleep variables could not be determined, but overall the results suggested ActiGraph GT3X+ at the hip may be superior for sleep timing and quantity metrics, whereas the wrist may be superior for sleep quality metrics. | Some | NR/N | | 5 | Barreira et
al. (2015,
United
States) | Fourth-grade school
children (N=34;
10.3±0.4 yrs; 55.8%
females; NR) | 7 days | ActiGraph GT3X+ (waist;
ActiLife software v6.5.2; 1
minute; Sadeh algorithm) | Biological state
(Sleep time) | Sleep diary | Pearson correlation;
Mean absolute
percent differences;
Paired t-tests; Bland-
Altman analysis | The RSA is a refinement of our previous algorithm, allowing researchers who use a 24-h waistworn accelerometry protocol to distinguish children's nocturnal | High | NR/NR | (4%), Asian American (4%), and mixed (22%)) Newborns (N=40; 35.3-45 weeks; 50% females: NR) 1 day (1 night) Unno et al. (2021, Japan) 72 Biological state (Sleep-wake states) Polysomnogr aphy Actiwatch 2 (ankle; NR; minute: NR) Mixed-effects logistic regression; Receiver operating characteristic (ROC) High NR/N Study suggests that sleep-wake states of NICU-hospitalised newborns can be precisely | | | | | curve analysis Sensitivity; Specificity; Positive predictive value; Negative predictive value | determined using actigraphy on the ankle. | | |---|---------------|--|--|---|---|--| | ¹ N= No; ² NR=Not rep | orted: 3Y=Yes | | | | | | Appendix 6b. Data extraction of studies with posture/activity type outcomes. | No. | Author
(year,
location) | Study population
(N; age ± SD or
range [yrs]; %
females; ethnicity) | Study
duration | Wearable (placement;
software; epoch-
length; algorithm/cut-
point) | Dimension
(Outcome(s)) | Criterion
measures | Statistical analysis | Study conclusion | Overall
risk of
bias (low,
some,
high) | Funding/
Conflict of
interest | |-----|---|--|---------------------------------|---|---|-----------------------------------|--|--|--|-------------------------------------| | 1 | Alghaeed et
al. (2013,
United
Kingdom) | Preschool children
(N=32; 4.1±0.5 yrs;
67% females, NR) | < 1 day (1
hr) | ActivPAL (right tHigh;
activPAL Professional
Research Edition v5.8.2.3;
15 sec; NR) | Posture/Activity
Type (sitting;
sedentary breaks) | Observation
(Video) | Bland-Altman
analysis; Paired t-test | A default setting of 10 s for the activPALTM appears unsuitable for quantification of breaks in sitting in young children, in whom a minimum sitting/upright period of 2 s will provide much Higher accuracy with minimal bias. | High | N¹/N | | 10 | Busser et al.
(1997,
Germany) | Children (N=10; 4-10 yrs; 20% females; NR) | < 1 day
(mean 55
minutes) | Dynaport ADL Monitor
(backpack; ADL monitor
software; NR; NR) | Posture/Activity
type (standing,
sitting, lying,
locomotion,
swing) | Observation
(Video) | Sensitivity; Predictive value | The overall minimal and maximal validity are 73.15±1.96 x 4.48 and 91.31±1.96 x 1.75 weighed standard deviation. | High | NR³/NR | | 14 | Carlson et al.
(2019,
Australia) | Children (N=195;
10.5±0.7 yrs; 48.7 %
females; NR) | 8 days | ActiGraph GT3X+ (hip;
ActiLife Software 2012; 15
sec and 1 minute; ≤25,
≤75, ≤100, ≤300 cpm) | Posture/Activity
Type (Sedentary
pattern) | Wearable
(ActivPAL
(tHigh)) | Mean differences;
Mean absolute
deviation; Intraclass
correlation
coefficients | Sedentary patterns derived from two
commonly used ActiGraph cut-
points did not appear to reflect
postural changes. | High | N/N | | 20 | Davies et al.
(2012,
United
Kingdom) | Children (N=20; 4.1 yrs; 66% females; NR) | < 1 day (1
hr) | ActivPAL (tHigh;
activPAL Professional
Research Edition software
v 5.8.2.3; NR; NR) | Posture/Activity
type (sitting,
lying, standing,
walking) | Observation
(Video) | General Linear Model
ANOVA; Bland-
Altman analysis | The activPAL had acceptable validity, practical utility, and reliability for the measurement of posture and activity during freeliving activities in pre-school children. | High | N/Y² | | 22 | De Decker et
al. (2013,
Belgium) | Preschool children
(N=44; 5.49±0.59 yrs;
50% females; NR) | < 1 day (1
hr) | ActivPAL (tHigh; ActivPAL software v6.0.8; 15 sec; NR); ActiGraph GT1M (right hip; Actilife software v 5.4.6 Lite Edition; 15 sec; NR) | Posture/Activity
Type (Sedentary
time; non-
sedentary time) | Observation
(Video) | Two-way repeated-
measures ANOVA;
Bland-Altman
analysis | Low classification accuracy was found for the ActivPAL and the GT1M ActiGraph to measure sedentary behavior in preschoolers. No correction factor can be suggested to make the sedentary estimates of the GT1M ActiGraph and the ActivPALi convergent as no systematic bias and wide limits of agreement were found. | High | N/N | | 36 | Hurter et al.
(2018,
United
Kingdom) | Children (N=21;
10.2±0.3 yrs; 61.9%
females; NR) | 2 days | GENEActiv (each wrist;
GENEActiv software v3.1;
NR; ENMO metric);
ActiGraph GT9X (each
wrist; ActiLife v6.13.3;
NR; ENMO metric);
ActiGraph GT3X (right | Posture/Activity
type (Time spent
sedentary or
stationary) | Wearable
(activPAL
(tHigh)) | Paired t-tests;
Cohen's d; Bland-
Altman analysis;
Pearson correlations,
mean percent errors;
Mean absolute | The stationary thresholds underestimated stationary time when applied to free-living data in relation to activPAL. | High | N/N | | | | | | | coefficient;
Regression; Bland-
Altman analysis | activities and did not detect changes
resulting from a classroom standing
desk intervention in adolescents. | | |--------------------|----------------|--------------|--|--|---|---|--| | ¹ N= No | : 2NR=Not repo | rted: 3Y=Yes | | | | | | Appendix 6c. Data extraction of studies with intensity outcomes. | No. | Author
(year,
location) | Study population
(N; age ± SD or
range [yrs]; %
females; ethnicity) | Study
duration | Wearable (placement;
software; epoch-
length; algorithm/cut-
point) | Dimension
(Outcome(s)) | Criterion
measures | Statistical analysis | Study conclusion | Overall risk of bias (low, some, high) | Funding/
Conflict of
interest | |-----|---|---|-------------------|--|---|-------------------------|---|---|--|-------------------------------------| | 12 | Calabro et al.
(2013,
United
States) | Healthy youth (N=28;
12.4±1.6 yrs; 46%
females; 76%
Caucasian (with 14%
Hispanic and 10%
Asian)) | 14 days | SenseWear Pro3 (upper
arm; Research Software
6.1; NR; algorithms 2.2),
SenseWear Mini (left arm;
Research Software 7.0;
NR; algorithms 2.2) | Intensity (Energy expenditure) | Doubly
labeled water | Mixed-model
ANOVA; Pearson
correlation; Bland-
Altman analysis | The newly developed SenseWear
Armband 5.0 algorithms
outperformed the version 2.2
algorithms for group comparisons. | Low | Y²/N¹ | | 31 | Hallal et al.
(2013,
Brazil) | Adolescents (N=25;
13±0.3 yrs; 64%
females; NR) | 4 days | ActiGraph GTIM (waist;
NR; 5 sec; MVPA ≥ 2296
cpm) | Intensity (Total
energy
expenditure;
Physical activity
energy
expenditure) | Doubly
labeled water | Spearman
coefficients; Linear
regression models | Objectively measured physical activity significantly contributes to the explained variance in both TEE and PAEE in Brazilian youth. | Low | N/N | | 38 | Ishikaw-
Takata et al.
(2013, Japan) | Participants from
junior High school
(N=60; 12-15 yrs;
47% females; NR) | 7 days | Actimaker EW4800P
(waist; commercially
available accelerometry
software; NR; Equation
reported) | Intensity (Total
energy
expenditure;
Steps) | Doubly
labeled water | Paired t test; Spearman correlations; Intraclass correlation coefficient; Bland- Altman analysis | While accelerometry estimated TEE accurately, it did not provide the precise measurement of PAEE and PAL. | Low | N/N | | 44 | Krishnaveni
et al. (2009,
India) | Indian children (N=58;
8.7±0.3 yrs; 48%
females; NR) | 14 days | ActiGraph AM7164,
ActiGraph GTIM (right
hip; software programme
MRC Epidemiology Unit;
1 minute; Equation
reported) | Intensity (Total
energy
expenditure) | Doubly
labeled water | Pearson correlation;
Linear regression;
Kappa statistics;
Bland-Altman
analysis | Activity measured using Actigraph accelerometers was not related to TEE and PAL derived using the DLW technique in children in Mysore. Actigraphs may not be useful in predicting EE in this setting, but may be better used for judging activity patterns. | Low | N/N | | 51 | Ojiambo et
al. (2012,
United
Kingdom,
Belgium,
Sweden,
Spain) | Children (N=49;
6.9±1.5 yrs; 51%
females; NR) | 7 days | ActiTrainer (right hip, NR;
15 sec; Evenson cut
points); 3DNX model v3
(right hip; NR; 15 sec;
Evenson cut points) | Intensity (Total
energy
expenditure) | Doubly
labeled water | Hierarchically nested
regression models;
Ordinary least squares
regression; Prediction
errors (leave-one-out
cross validation) | The comparative validity of hip-
mounted uniaxial and triaxial
accelerometers for assessing PA and
EE is similar. | Low | N/N | | 57 | Reilly et al.
(2006,
United
Kingdom) | Healthy young
children (N=85;
4.6±1.1 yrs; 40%
females; NR) | 7-10 days | ActiGraph CSA/MT1 (right
hip; NR; 1 minute;
Ekelund equation, Puyau
equation) | Intensity (Total
energy
expenditure) | Doubly
labeled water | Bland-Altman
analysis | Simple approaches using the
Actigraph appear to be inadequate
for the estimation of free-living TEE
in young children at present. | Low | N/NR ³ | | 64 | Sijtsma et al.
(2013,
Netherlands) | Preschool children
(N=30; 3.5±0.3 yrs;
60% females) | 5 days | Tracmor _D (lower back;
NR; NR; equation
reported) | Intensity (Total
energy
expenditure) | Doubly labeled water | Pearson correlations;
Linear regression | ${ m Tracmor_D}$ provides moderate-to-
strong validity evidence that | Low | Y/N | | 21 | De Craemer
et al. (2015,
Belgium) | Preschoolers (N=41;
5.43±0.63 yrs; 48.8%
females; NR) | 4 days | Omron Walking StylePro
HJ-720IT-E2 (hip; Omron
Health Management
Software version E1.012;
NR; NR) | Intensity (Steps) | Wearable
(ActiGraph
GT1M (hip)) | Pearson correlations;
Intraclass correlation
coefficients;
Independent sample t-
test; Paired sample t-
test; Bland-Altman
analysis | Both the accelerometer-based as pedometer-based step counts are valid estimates of preschoolers' physical activity levels during free-living activities based on group estimates. High agreement between both step counts justifies combining and comparing pedometer- and accelerometer-based step counts. | High | N/NR | |----|--|---|--------------------------------|---|---|--|---|---|------|-------| | 23 | Djafarian et
al. (2013,
United
Kingdom) | Children (N=42;
4.06±0.73 yrs; 47.62%
females; Caucasian
(N=42)) | < 1 day (2
hrs) | Actiwatch-L (non-
dominant wrist; Actiwatch
analysis software; 1
minute; NR) | Intensity (Counts) | Observation
(Direct) | Correlation
coefficient; Linear
regression | These data suggest that the Acti-
watch (a wrist worn accelerometer)
is a valid tool for assessing levels of
physical activity in young chil- dren. | High | N/N | | 24 | Duncan et al.
(2011, New
Zealand) | Children (N=114;
8.4±1.8 yrs; 55%
females; NR) | < 1 day (5
hrs) | New Lifestyle 1000 (hip;
NR; 4 sec; NR) | Intensity (Steps;
Time spent in
MVPA) | Wearable
(Actical
(hip)) | T-test; Bland-Altman
analysis | Compared with a validated omnidirectional accelerometer, however, the NL-1000 significantly underestimates the total minutes of MVPA accumulated by 5–11-yearold children during a normal school day. | High | NR/NR | | 25 | Etienne et al.
(2016,
United
States) | Multiethnic
preschoolers (N=30;
3.5±0.6 yrs; 43%
females; 46% native
Hawaiian, 14% other
Pacific Islander, rest
not reported) | < 1 day
(Approx.
12 hrs) | Actical accelerometer (non-dominat wrist; NR; 15 sec; Sedentay (≤40 cpm), light (≥41 or ≤2295 cpm; moderate ≥2296 or ≤6815 cpm; vigorous ≥6816 cpm) | Intensity (Counts;
Time spent in
different
intensities
(sedentary, LPA,
MVPA)) | Observation
(Direct) | Intraclass correlation
coefficients; Kappa
statistics | Accelerometers can be objective, valid, and accurate physical activity assessment tools compared to conventional PA logs and subjective reports of activity for preschool children of mixed ethnicity. | High | N/N | | 26 | Finn &
Specker
(2000,
United
States) | Children (N=40; 3-4
yrs; 60% females;
Caucasian (N=38)) | < 1 day (5-
6 hrs) | Actiwatch activity monitor
(waist; NR; NR; NR) | Intensity (Time
spent in different
intensities
(sedentary, LPA,
MVPA)) | Observation
(Direct) | Correlation; Mixed
model repeated
measures analysis | 3-min CARS score correlates with 3-min activity counts, favoring the use of the activity monitors in assessing physical activity in preschool-aged children. | High | N/NR | | 27 | Gao et al.
(2010,
United
States) | School children
(N=225; 12.48 ±1.01
yrs; 50% females, NR) | < 1 day (1
½ hrs) | Yamax Digi-Walker SW-
701 (left hip; NR; NR; NR) | Intensity (Time spent in MVPA) | Wearable
(Actical
(hip)) | Pearsons correlation;
Kappa agreement | Pedometer-based steps per minute is a valid tool to survey physical activity time against accelerometers. | High | NR/NR | | 28 | Garcia-Prieto
et al. (2017,
Spain) | Children (N=32;
9.9±0.6 yrs; 62.5%
females; Caucasian
(N=32)) | < 1 day (1
½ hrs) | ActiGraph GTIM (right
hip; Actilife v6.01; 5 sec;
NR) | Intensity (Energy
expenditure;
Counts) | Indirect calorimetry | Correlation
coefficients; Student's
t-test; chi-square test | Accelerometer and HR monitors are useful devices for estimating EE during endurance games, but only HR monitors estimates are accurate for endurance games. | High | N/N | | 30 | Grydeland et
al. (2014,
Norway) | Children (N=18;
9.9±0.3 yrs; 66.6%
females; NR) | 3 days | ActiGraph GT3X+ (waist;
ActiLife software v5.5.5;
10 sec; sedentary <100
cpm, LPA 100 < 2000
cpm, moderate 2000 <
6000, vigorous ≥6000
cpm); ActiGraph AM7164 | Intensity (Time
spent in different
intensities
(sedentary, LPA,
MVPA)) | Wearable
(ActiGraph
GT1M
(waist)) | Two-way mixed-
model ANOVA;
Intraclass correlation
coefficient; Bland-
Altman analysis | The ActiGraph model AM7164 yields Higher outputs of mean physical activity intensity (mcpm) than the models GT1M and GT3X+ in children in free-living conditions. The generations GT1M and GT3X+ provided comparable outputs. | High | NR/N | | | | | | (waist; DOS-based
program (RUI24, v2.13B);
10 sec; sedentary <100
cpm, LPA 100 < 2000
cpm, moderate 2000 <
6000, vigorous ≥6000
cpm) | | | | | | | |----|--|--|-------------------------------|--|--|--|---|---|------|-------| | 32 | Hands et al.
(2006,
Australia) | Healthy children
(N=24; 66.6±3.5
months; 50% females;
NR) | 5 days (per
day 30
min) | ActiGraph AM7164 (waist;
NR; 10 sec; NR); Yamax
Digi-Walker SW-200
(waist; NR; NR; NR) | Intensity (Energy
expenditure; Time
spent physically
active) | Observation
(Direct) | Pearson correlations;
T-tests; One-way
ANOVA | When the children were grouped into low, moderate, and High activity levels using observation, the pedometer data were better able to separate the groups than the accelerometer data. These findings indicate that the pedometer is a better measure of free play physical activity in 5- and 6-year-old children compared to the accelerometer. | High | NR/NR | | 33 | Hart et al.
(2011,
United
States) | Children (N=36;
10.2±3.1 yrs; 58.3%
females; Caucasian
(70%), Ethnic
minority (including
African American,
Hispanic, Native
American (30%)) | < 1 day
(Approx. 8
hrs) | New Lifestyle NL-1000
(waist; NR; 4 sec; Default
setting (MVPA 4-9);
Omron HJ-151 (waist; NR;
NR; roprietary algorithm);
Walk4Life MVP (waist;
NR; NR; 100
steps/minute); Yamax Digi-
Walker SW-200 (waist;
NR; NR; NR) | Intensity (Time
spent in MVPA;
Steps) | Wearable
(AcgtiGraph
GT1M
(waist)) | Mean absolute
percent error;
Repeated-measure
ANOVA; Bland-
Altman analysis;
Spearman correlations | Low-cost instruments may be useful
for measurement of both MVPA and
Steps in children's physical activity
interventions and program
evaluation. | High | NR/NR | | 34 | Hislop et al.
(2012,
United
Kingdom) | Preschool children
(N=31; 4.4±0.8 yrs;
51.6% females; NR) | < 1 day (1
hour) | ActiGraph GT1M (waist;
NR; 15 sec; >615 (3 yrs),
>812 (4 yrs) cpm); RT3
(waist; NR; 15 sec;
walking relaxed > 413
cpm; light jog > 780 cpm) | Intensity (Time spent in MVPA) | Observation
(Direct) | Pearson correlations; Spearman correlations; Freidman's repeated Measures ANOVA; Wilcoxon paired t- test; Bland-Altman analysis | There was no advantage of a triaxial accelerometer over a uniaxial model. Shorter epochs result in significantly Higher number of minutes of MVPA with smaller bias relative to direct observation. | High | N/NR | | 39 | Janz (1994,
United
States) | Children (N=31;
11.2±2 yrs; 48%
females; NR) | 3 days | CSA accelerometer (waist;
NR; 1 minute; NR) | Intensity (Counts) | Heart
telemetry | Pearson correlations | Between-day stability of individual physical activity measures was low to moderate (r=-0.23 to 0.53), indicating that when using accelerometry or heart rate telemetry more than 3d of monitoring is needed to assess usual activity. | High | N/NR | | 40 | Kim &
Lochbaum
(2018,
United
States) | Children (N=51;
10.3±0.91 yrs; 65%
females; Non-
Hispanic Black
(n=31), Hispanic
(n=12), Others (n=8)) | 3 days | Polar Active Watch (non-
dominant wrist; Polar
Websync Software; 30 sec;
Threshold #1: sedentary <2
MET, LPA 2-3.49, MVPA
≥3.5; #2: sedentary: <1.5, | Intensity (Time
spent in different
intensities
(sedentary, LPA,
MVPA)) | Wearable
(ActiGraph
GT3X+
(waist),
ActiGraph | Bland-Altman
analysis; Mean
absolute percentage
error | The PAW showed moderate convergent validity for sedentary and MVPA minutes against the GT3X+/GT9X accelerometers. | High | N/N | | | | | | LPA, 1.5-2.99, MVPA ≥3;
#3: sedentary <2, LPA
2.01-3.99, MVPA ≥ 4) | | GT9X
(wrist)) | | | | | |----|---|--|----------------------|--|---|---|---|--|------|-------| | 42 | Klesges &
Klesges
(1987,
United
States) | Toddlers (N=28; 2-4 yrs; 46% females; NR) | < 1 day (9
hours) | Caltrac Personal Act.
Computer (left hip; NR;
NR; NR) | Intensity (Physical activity levels) | Observation
(Direct) | Spearman correlation;
Step-wise multiple
regression | Range of correlations .62 to .95; all-day accelerometry correlated with observational instrument (rho=.54, p<.01). | High | N/NR | | 43 | Krishnaveni
et al. (2009,
India) | Indian children
(N=103; 6.6±0.4 yrs;
65% females; NR) | 7 days | ActiGraph AM7164 (right hip; NR; 1 minute; NR) | Intensity (Energy expenditure) | Diary
(Reported by
parents and
teachers) | Bland-Altman
analysis; Kappa
statistics | Though accelerometer counts correlate with time spent in activity of varying intensity and energy expenditure derived from parentmaintained diaries, wide limits of agreement show that the limitations of accelerometers need to be recognized in interpreting the data that they generate. | High | N/N | | 48 | Mooses et al.
(2013,
Estonia) | Third grade students
(N=174; 9-10 yrs;
50% females; NR) | 5 days | Fitbit Zip (hip; NR; 1 minute; NR) | Intensity (Time
spent in different
intensities
(sedentary, LPA,
MVPA); Steps) | Wearable
(ActiGraph
GT3x-BT
(hip)) | Wilcoxon Signed
Rank test; Spearman
correlations; Bland-
Altman analysis | In general, the Fitbit Zip can be considered a relatively accurate device for measuring the number of steps, MVPA and sedentary time in students in a school-setting. However, in segments where sedentary time dominates (e.g. academic classes), a research-grade accelerometer should be preferred. | High | N/N | | 52 | Oliver et al.
(2006, New
Zealand) | Preeschool children
(N=13; 4.1±0.6 yrs;
46% females; NR) | < 1 day (35
min) | Yamax Digi-Walker SW-
200 (hip; NR; NR; NR) | Intensity (Steps) | Observation
(Direct) | Regression analyses;
Spearman correlations | Limits of agreement and prediction
intervals for directly observed step
counts were also wide for
pedometers, calling into question
their acceptability for use with
preschoolers. | High | N/NR | | 54 | Pulakka et al.
(2013,
Malawi) | Toddlers (N=56; 16-
18 months; 57%
females; NR) | < 1 day (2
hrs) | ActiGraph GT3X (right
hip; NR; 15 sec; NR) | Intensity (Counts) | Observation
(Video) | Receiver operating
characteristic (ROC)
curve analysis | The accelerometer proved a feasible
and valid method of assessing
physical activity among Malawian
toddlers. | High | N/N | | 56 | Ramirez-
Marrero et
al. (2004,
United
States) | African-American
children (N=12;
8.1±0.9 yrs; 58%
females; African-
Amercian (N=12)) | 7 days | Tritrac-R3D (waist; NR;
NR; NR); Yamax SW-200
Digi-Walker (hip; NR; NR;
NR) | Intensity (Physical
activity energy
expenditure;
Steps; Counts) | Doubly
labeled water | One-way ANOVA;
Simple linear
regression; Pearson
correlations; Pairwise
comparison of the
means and the
differences | With some limitations the Tritrac
and Digiwalker can provide useful
and accurate information about PA
and EE in 7- to 10-year old children. | High | N/NR | | 59 | Rowlands &
Eston (2005,
United
Kingdom) | Children (N=34;
9.5±0.7 yrs; 50%
females; NR) | 7 days | Yamax Digi-Walker DW-
200 (waist; NR; NR; NR) | Intensity (Steps) | Wearable
(Tritrac-R3D
(waist)) | Correlations;
Sensitivity;
Specificity | These pedometer thresholds provide
a reasonable estimation when
assessment of physical activity
intensity is not possible. | High | NR/NR | | 60 | Rowlands et
al. (2014,
Australia) | Healthy children
(N=58; 10.7+0.8 yrs;
47% females; NR) | 7 days | GENEActiv (wrist, hip;
GENEActiv PC software
v.2.2; 1 sec; GEN _{HIP} : SED,
<3g*s; LIGHT, ≥3g*s to
≤16g*s; MOD, >16g*s to
≤51g*s; VPA, >51g*s;
GEN _{WRIST} : SED, <7g*s;
LIGHT, ≥7g*s to ≤19g*s;
MOD, >19g*s to ≤60g*s;
VPA, >51g*s) | Intensity (Time
spent in different
intensities
(sedentary, LPA,
MVPA)) | Wearable
(ActiGraph
GT3X+ (hip)) | Correlations;
Repeated-measures
ANOVA; Pairwise
comparisons; Linear
regression analyses | The assessment of children's activity level, time spent sedentary, and time in MVPA estimated from GENEActiv seems to be comparable with that of the uniaxial ActiGraph. | High | N/N | |----|---|--|--------|---|--|--|---|--|------|-----| | 63 | Schneider &
Chau (2016,
United
States) | Students: Cohort 1 (N=25; 12.76±0.72; yrs; 52% females; 32% Hispanic, 24% Non-Hispanic White, 32 % African- American, 12 % Other); Cohort 2 (N=35; 11.15±0.43 yrs; 53% females; 44% Hispanic, 27% Non-Hispanic White, 15% African- American, 12% Other); Cohort 3 (N=27; 12.74±0.52 yrs; 60% females; 41% Hispanic, 30% Non-Hispanic White, 0% African-American, 22 % Other) | 7 days | Fitbit Zip (waist; Fitabase
Software; NR; NR) | Intensity (Steps;
Time spent in
MVPA) | Wearable
(ActiGraph
GT3X
(waist)) | Pearson correlation;
Bland-Altman
analysis | Fitbit Zip is a reasonable alternative to the ActiGraph for estimating activity among free-living adolescents. However, data from the Fitbit should not be used interchangeably with data from the ActiGraph, as there is a consistent tendency for the Fitbit to overestimate steps in comparison to the ActiGraph. | High | N/N | | 66 | Simunek et
al. (2019,
Czech
Republic) | Middle and High
school students
(N=185; 15.9±0.9 yrs;
52% females; NR) | 7 days | Garmin Vivofit 1 (non-
dominant upper limb;
Garmin connect
application; NR; NR);
Polar Loop (wrist; NR;
NR; NR) | Intensity (Steps) | Wearable (Yamax Digiwalker SW-701 (hip); ActiGraph GT3X (hip)) | Pearson correlation;
Mean absolute
percentage error;
Bland-Altman
analysis | Vívofit showed Higher validity than Loop in measuring daily step counts in free-living conditions. Loop appears to overestimate the daily number of steps in individuals who take more steps during a day. | High | N/N | | 67 | Sirard et al.
(2017,
United
States) | Children (N=16;
8.6±1.6 yrs; 50%
females; NR) | 4 days | MovBand Model 2 (dominant wrist; device website; NR; proprietary algorithms); Sqord (dominant wrist; device website; NR; proprietary algorithms); Zamzee (right hip; device website; 10 sec; proprietary algorithms) | Intensity (Steps;
Time spent in
activities
(metrics)) | Wearable
(ActiGraph
GT3X+ (hip)) | Pearson correlation;
Repeated measures
linear models | Across study phases, the SQ demonstrated stronger validity than the MB and ZZ. The validity of youth-oriented activity trackers may directly impact their effectiveness as behavior modification tools, demonstrating a need for more research on such devices. | High | N/N | | 70 | Tanaka et al.
(2019, Japan) | Primary school
children (Study 1:
N=30; Study 2:
N=108, 9.3±1.7 yrs;
62% females; NR) | 6 days | Study 1: Kenz Lifecorder
(hip; NR; NR; NR);
Study2: Yamasa EX-200
(hip/pocket pants; NR; NR;
NR); Omron Active style
Pro HJA-350IT (hip; NR;
NR; NR) | Intensity (Steps) | Wearable
(Study 1:
Yamax SW-
200 (hip);
Study 2: Kenz
Lifecorder
(hip) | Percentage difference;
Mean absolute
percent error; Pearson
correlation; Bland-
Altman analysis | The choice of pedometer had a substantial impact on step counts. | High | N/Y | |-----------|--|---|--------------------------|--|---|--|--|---|------|------| | 71 | Treuth et al.
(2003,
United
States) | Girls (N=68, 9±0.6
yrs; 100% females,
NR) | 4 days | Yamax Digi-Walker SW-
200 (left hip; NR; NR) | Intensity (Steps) | Wearable
(MTI/CSA
accelerometer
(hip)) | Pearson Correlations;
Paired t-test | Validity correlations were significant when more than one day was used. | High | N/NR | | 73 | Van Hoye et
al. (2014,
France) | Children (N=18;
11.9±1.97 yrs; 59%
females; NR) | 7 days | SenseWear Pro 3 Armband
(upper arm; SensewearPro
6.1 software; 1 minute;
light 1.50-2.99, moderate
3.00-5.99, vigorous > 6) | Intensity (Steps;
Time spent in
different
intensities (LPA,
MVPA)) | Wearable
(ActiGraph
wGT3X
(waist)) | Pearson correlation;
Paired t-tests | Large significant correlations between both accelerometers for number of steps and physically active days, and for time spent in light and MVPA intensity (rs > 0.59, Ps < 0.01). | High | N/N | | 74 | Voss et al.
(2017,
Canada) | Children with
congenital heart
disease (N=30; 13±2.2
yrs; 53% females; NR) | 7 days | Fitbit Charge HR (wrist; online dashboard/Fitabase; 1 minute; proprietary algorithm (≥ 3 MET's) | Intensity (Steps;
Time spent in
different
intensities
(sedentary;
MVPA)) | Wearable
(Actigraph
GT3X+/GT9
X (hip/wrist)) | Intraclass correlation
coefficient; Bland-
Altman analysis;
mean absolute percent
error; Sensitivity,
Specificity | Commercial activity trackers provide opportunities to remotely monitor physical activity in children with CHD, but absolute values might differ from accelerometers. | High | N/N | | 75 | Welk et al.
(1998,
United
States) | Children (N=32; 10-12
yrs; NR, NR) | < 1 day (1
hr 10 min) | Tritrac accelerometer
(NR; NR; NR; NR) | Intensity (Counts) | Observation
(Direct) | Pearson correlation;
Regression analysis | Collectively, the combination of Tritrac and HR provided little advantage over the assessment provided by either measure alone. | High | N/NR | | 76 | Xi et al.
(2019,
China) | Children (N=99;
13.0±2.5 yrs; 52%
females; Majority
(n=91), Minority
(n=8)) | 7 days | Wristband (non-dominant
wrist; NR; NR; NR) | Intensity (Steps;
Physical activity
energy
expenditure) | Wearable
(ActiGraph
wGT3X-BT
(hip)) | Spearmans
correlation; Median
of absolute
percentage error;
Bland-Altman
analysis | The wristband activity monitor seems to be reliable and valid for measurement of overall children's physical activity, providing a feasible objective method of physical activity surveillance in children. | High | N/N | | $^{1}N=N$ | o; ² NR=Not repo | orted; ³ Y=Yes | | | | | | | | |