Discovery of S-217622, a Non-Covalent Oral SARS-CoV-2 3CL Protease Inhibitor Clinical Candidate for Treating COVID-19

Yuto Unoh¹[†], Shota Uehara¹[†], Kenji Nakahara¹[†], Haruaki Nobori¹, Yukiko Yamatsu¹, Shiho Yamamoto¹, Yuki Maruyama^{1,2}, Yoshiyuki Taoda¹, Koji Kasamatsu¹, Takahiro Suto¹, Kensuke Kouki¹, Atsufumi Nakahashi¹, Sho Kawashima¹, Takao Sanaki¹, Shinsuke Toba^{1,2}, Kentaro Uemura^{1,2}, Tohru Mizutare¹, Shigeru Ando¹, Michihito Sasaki², Yasuko Orba², Hirofumi Sawa², Akihiko Sato^{1,2}, Takafumi Sato¹, Teruhisa Kato¹, Yuki Tachibana^{1*}

¹Shionogi Pharmaceutical Research Center, 3-1-1 Futaba-cho, Toyonaka, Osaka, 561-0825, Japan

²International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan

*Corresponding author, E-mail: <u>yuuki.tachibana@shionogi.co.jp</u> (Yuki Tachibana)

[†]These authors contributed equally.

Contents

•	Table S1. SAR studies of P1'/P2/P1 ligands	S2
•	Table S2. The calculated IC ₅₀ values for S-217622 to SARS-CoV-2 3CL protease activity in eac	h
	experiment	S3
•		
•	Table S3. EC ₅₀ values of S-217622 and remdesivir on cytopathic effects in SARS-CoV-2 infector	ed
	VeroE6/TMPRSS2 cells.	S3
•	Table S4. CC ₅₀ values of S-217622 and remdesivir on cytopathic effects in VeroE6/TMPRSS2	
	cells	S4
•	Table S5. EC ₅₀ and EC ₉₀ values of S-217622 and remdesivir in SARS-CoV and MERS-CoV-2-	
	infected VeroE6/TMPRSS2 cells, in HCoV-229E and HCoV-OC43-infected MRC-5 cells	S4
•	Table S6. In vitro safety profiles of S-217622	S4
•	Table S7. Diffraction data and refinement statistics for SARS-CoV-2 3CL ^{pro} complexed with	
	compound 1 and compound 3 (S-217622)	S5
•	Experimental procedures for the synthesis of compounds 13-21	S6
•	¹ H-NMR and ¹³ C-NMR spectra for synthesized compounds	.S13
•	HPLC traces of 1-3 (S-217622).	.S33
•	Experimental Procedures for <i>in vitro</i> safety	S37

Table S1. SAR studies of P1'/P2/P1 ligands

Experiment	IC ₅₀ (μM)
Exp. No.1	0.0122
Exp. No.2	0.0130
Exp. No.3	0.0143
Mean	0.0132
Standard deviation	0.0011

Table S2. The calculated IC₅₀ values for S-217622 to SARS-CoV-2 3CL protease activity in each experiment.

Table S3. EC₅₀ values of S-217622 and remdesivir on cytopathic effects in SARS-CoV-2 infected VeroE6/TMPRSS2 cells. ^astandard deviation. The mean and SD were calculated from three independent experiments.

	Denes	EC ₅₀ (μM)				
Strains	Fango -	S-21762	S-217622		Remdesivir	
	Lineage	Mean	SD ^a	Mean	SD ^a	
hCoV-19/Japan/TY/WK-521/2020	А	0.37	0.06	1.9	0.14	
hCoV-19/Japan/QK002/2020	B.1.1.7	0.33	0.05	0.87	0.03	
hCoV-19/Japan/QHN001/2020	B.1.1.7	0.31	0.07	0.97	0.14	
hCoV-19/Japan/QHN002/2020	B.1.1.7	0.46	0.04	0.99	0.18	
hCoV-19/Japan/TY7-501/2021	P.1	0.50	0.05	2.1	0.4	
hCoV-19/Japan/TY7-503/2021	P.1	0.43	0.00	1.0	0.2	
hCoV-19/Japan/TY8-612/2021	B.1.351	0.40	0.05	1.2	0.3	
hCoV-19/Japan/TY11-927-P1/2021	B.1.617.2	0.41	0.01	1.6	0.2	
hCoV-19/Japan/TY38-873/2021	B.1.1.529	0.29	0.05	1.1	0.3	

Table S4. CC₅₀ values of S-217622 and remdesivir against VeroE6/TMPRSS2 cells. ^astandard deviation. The mean and SD were calculated from three independent experiments.

Substance	CC ₅₀ (µM)	CC ₅₀ (µM)					
Substance	Exp.1	Exp.2	Exp.3	Mean	SD^a		
S-217622	>100	>100	>100	>100	-		
Remdesivir	>100	>100	>100	>100	-		

Table S5. EC₅₀ and EC₉₀ values of S-217622 and remdesivir in SARS-CoV and MERS-CoV-2-infected VeroE6/TMPRSS2 cells, in HCoV-229E and HCoV-OC43-infected MRC-5 cells. ^astandard deviation. The mean and SD were calculated from three independent experiments.

~ .				Efficacy (µM)			
Coronavirus	Cells	Assay	-	S-217622		Remdesivir	
г аншу			-	Mean	SD ^a	Mean	SD ^a
SARS-CoV	VeroE6/TMPRSS2	CPE	$EC_{50}(\mu M)$	0.21	0.10	1.3	0.2
MERS-CoV	VeroE6/TMPRSS2	CPE	$EC_{50}\left(\mu M\right)$	1.4	0.2	1.5	0.2
HCoV-229E	MRC-5	CPE	$EC_{50}\left(\mu M\right)$	5.5	0.8	0.041	0.012
HCoV-OC43	MRC-5	RT-qPCR	$EC_{90}(\mu M)$	0.074	0.008	0.024	0.015

Table S6. In vitro safety profiles of S-217622

In vitro safety assays	Results
hERG inhibition assay	>100 µM
Bacterial reverse mutation test (Ames test)	Negative
Micronucleus test	Negative
3T3 assay	No Phototoxicity

	3CL ^{pro} – Compound 1	3CL ^{pro} – Compound 3 (S-217622)		
PDB code	7VTH	7VU6		
Data collection				
Space group	P21	P21		
Cell dimensions				
<i>a, b, c</i> (Å)	44.41 54.27 114.50	55.47 99.23 58.88		
α, β, γ (°)	90.00 99.42 90.00	90.00 108.05 90.00		
Wavelength (Å)	1.54178	1.54178		
Resolution (Å)	28.24 - 2.00(2.05 - 2.00)	28.68 - 1.80(1.84 -1.80)		
Completeness (%)	99.5 (98.9)	99.8(100.0)		
R_{merge} (%) ^{a,b}	9.0(27.7)	6.0(42.9)		
$I/\sigma(I)^{a}$	8.3(3.3)	20.5(2.6)		
Refinement				
Resolution (Å)	112.952 - 2.001	55.986-1.800		
No. of reflections	34366	52687		
$R_{\rm work}/R_{\rm free}$	0.2050/0.2568	0.2241/0.2790		
B factor (Å2)				
Protein	16.2	17.8		
Ligand	27.4	14.3		
Water	22.2	25.3		
R.m.s deviations				
Bond length (Å)	0.0128	0.0175		
Bond angles (°)	1.576	1.796		
Ramachandran plot (%)				
Favored	97.2	97.5		
Allowed	2.1	2.2		
Outliers	0.7	0.3		

Table S7. Diffraction data and refinement statistics for SARS-CoV-2 3CL^{pro} complexed with compound 1 and compound 3 (S-217622).

a

Values in parentheses are for the highest resolution shell. ^b $R_{merge} = \Sigma | I - \langle I \rangle | \Sigma I$, where *I* is the intensity of observation *I* and $\langle I \rangle$ is the mean intensity of the reflection.

Scheme S1. Synthesis of compound 13

Ethyl (E)-2-{4-[(4-methoxy-2-methylphenyl)imino]-2,6-dioxo-3-(3,4,5-trifluorobenzyl)-1,3,5-triazinan-1-yl}acetate (22)

A mixture of **5** (100 mg, 0.377 mmol), *N*,*N*-diisopropylethylamine (0.079 mL, 0.452 mmol), and 5-(bromomethyl)-1,2,3-trifluorobenzene (0.055 mL, 0.415 mmol) in DMA (1 mL) was stirred at 60 °C for 1.5 h. The reaction mixture was cooled to room temperature and then 4-methoxy-2-methylaniline (0.053 mL, 0.415 mmol) was added. The mixture was stirred at 100 °C for 4 h. The reaction mixture was cooled to room temperature and quenched with saturated aqueous NH₄Cl. The aqueous layer was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (nhexane/EtOAc, gradient, 33-50% EtOAc) to afford **22** (96.3 mg, 53%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 1.30 (3H, t, *J* = 7.2 Hz), 2.00 (3H, s), 3.79 (s, 3H), 4.25 (2H, q, *J* = 7.2 Hz), 4.58 (2H, s), 5.18 (2H, s), 6.65 (1H, d, *J* = 8.5 Hz), 6.75 (1H, dd, *J* = 8.5, 2.8 Hz), 6.80 (1H, d, *J* = 2.8 Hz), 7.20 (2H, dd, *J* = 8.1, 6.7 Hz). MS-ESI (m/z): 479 [M + H]⁺.

(E)-2-{4-[(4-Methoxy-2-methylphenyl)imino]-2,6-dioxo-3-(3,4,5-trifluorobenzyl)-1,3,5-triazinan-1-yl}-N-methylacetamide (13)

To a stirred solution of 22 (91.8 mg, 0.192 mmol) in THF/MeOH (1.8 mL, v/v = 1/1) was added NaOH (1 M aqueous solution, 0.576 mL, 0.576 mmol) at room temperature. After stirring at room temperature overnight, the reaction mixture was quenched with 1 M aqueous HCl solution. The aqueous layer was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over MgSO₄, and concentrated under reduced pressure to afford a crude residue. The residue was dissolved in THF (1.7 mL), and then methylamine (2 M in THF, 0.142 mL, 0.283 mmol), N,N-diisopropylethylamine (0.066 mL, 0.377 mmol), and HATU (108 mg, 0.283 mmol) were added. After stirring at room temperature overnight, the reaction mixture was diluted with H₂O and EtOAc. The aqueous layer was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (CHCl₃/MeOH, gradient, 0-10% MeOH). The collected fraction was recrystallized from *n*-hexane/EtOAc to afford 13 (57.0 mg, 64% in 2 steps) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆, DCl in D₂O) δ 1.91 (3H, s), 2.59 (3H, s), 3.74 (3H, s), 4.29 (2H, s), 5.32 (2H, s), 6.77-6.81 (2H, m), 6.98 (1H, d, J = 8.5 Hz), 7.38-7.42 (2H, m), 8.35 (1H, s). ¹³C NMR (100 MHz, DMSO-*d*₆, DCl in D₂O) δ 17.50, 25.28, 43.91, 44.05, 55.15, 111.50 (dd, J = 16.5, 4.8 Hz), 111.57, 115.36, 128.14, 128.87, 133.12 (dt, J = 7.3, 4.4 Hz), 135.73, 137.80 (dt, J = 248.4, 15.2 Hz), 150.11 (ddd, J = 246.5, 9.9, 3.3 Hz), 150.95-151.15 (m), 151.05, 152.40, 157.79, 166.97. HRMS-ESI (m/z): $[M + H]^+$ calcd for $[C_{21}H_{21}F_3N_5O_4]^+$ 464.1540; found 464.1533; purity: 100% (LCMS).

Scheme S2. Synthesis of compounds 15, 17-19

Ethyl 2-{4-[(2,5-dimethylbenzo[d]thiazol-6-yl)amino]-2,6-dioxo-3-(3,4,5-trifluorobenzyl)-3,6-dihydro-1,3,5-triazin-1(2H)-yl}acetate (23)

A mixture of 5 (1.00 g, 3.77 mmol), N,N-diisopropylethylamine (0.856 mL, 4.90 mmol), and 5-(bromomethyl)-1,2,3-trifluorobenzene (0.933 g, 4.15 mmol) in DMA (10 mL) was stirred at 60 °C for 1 h. 5-Bromomethyl-1,2,3-trifluorobenzene (0.255 g, 1.13 mmol) and N,N-diisopropylethylamine (0.197 mL, 1.13 mmol) were added to the mixture and the resulting mixture was stirred at 60 °C for 3 h. The reaction mixture was cooled to room temperature, and diluted with H₂O and EtOAc. The aqueous layer was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated under reduced pressure to afford a crude residue. The crude residue and 2.5-dimethyl-1.3benzothiazol-6-amine (874 mg, 4.90 mmol) were disolved in DMA (7.7 mL) and stirred at 120 °C for 4 h. Then the reaction mixture was allowed to cool to room temperature. The mixture was diluted with H₂O and EtOAc and then the aqueous layer was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The crude mixture was triturated with CH₂Cl₂/EtOAc and filtered to afford 23 (643 mg, 33% in 2 steps) as a beige solid. The filtrate was purified by silica gel column chromatography (n-hexane/EtOAc, 50% EtOAc) to afford **23** (239 mg, 12% over 2 steps) as a brown solid. ¹H NMR (400 MHz, CDCl₃) δ 1.30 (3H, t, J = 7.2 Hz), 2.13 (3H, s), 2.82 (3H, s), 4.26 (2H, q, J = 7.2 Hz), 4.58 (2H, s), 5.21 (2H, s), 7.16 (1H, s), 7.21 (2H, dd, J = 8.1, 6.6 Hz), 7.45 (1H, s), 7.80 (1H, s). MS-ESI (m/z): 520 [M + H]⁺.

2-{4-[(2,5-Dimethylbenzo[d]thiazol-6-yl)amino]-2,6-dioxo-3-(3,4,5-trifluorobenzyl)-3,6-dihydro-1,3,5-triazin-1(2H)-yl}-N-methylacetamide (15)

15 was prepared from **23** in a manner similar to that for **13** in 45% yield in 2 steps. White solid. ¹H NMR (400 MHz, CDCl₃) δ 2.07 (3H, s), 2.81 (3H, s), 2.88 (3H, d, J = 4.5 Hz), 4.00-4.11 (2H, m), 5.17 (2H, s), 5.99-6.14 (1H, m), 7.11 (1H, m), 7.17-7.20 (2H, m), 7.68-7.71 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 18.30, 20.04, 26.49, 43.28, 44.99, 112.76, 113.20 (dd, J = 16.1, 5.9 Hz), 123.65, 129.50, 132.27-132.53 (m), 137.80, 134.21, 141.53, 148.38, 149.90, 150.49, 151.04 (ddd, J = 264.1, 10.3, 3.7 Hz), 166.36, 166.56. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₂H₂₀F₃N₆O₃S]⁺ 505.1264; found 505.1260; purity: 100% (LCMS).

Ethyl 2-{4-[(2,5-dimethylbenzo[d]thiazol-6-yl)amino]-3-(2-fluorobenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl}acetate (24)

24 was prepared from **5** in a manner similar to that for **22** as a crude product. MS-ESI (m/z): 484 $[M + H]^+$.

2-{4-[(2,5-Dimethylbenzo[d]thiazol-6-yl)amino]-3-(2-fluorobenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl}-N-methylacetamide (17)

17 was prepared from **24** in a manner similar to that for **13** in 26% yield in 4 steps. White solid. ¹H NMR (400 MHz, DMSO- d_6 , DCl in D₂O) δ 2.01 (3H, s), 2.59 (3H, s), 2.81 (3H, s), 4.29 (2H, s), 5.32 (2H, s), 7.20-7.26 (2H, m), 7.34-7.41 (2H, m), 7.59 (1H, s), 7.74 (1H, s). ¹³C NMR (100 MHz, DMSO- d_6 , DCl in D₂O) δ 18.19, 19.78, 25.81, 44.18, 115.71 (d, J = 20.5 Hz), 117.63-117.98 (m), 122.49, 123.62 (d, J = 13.9 Hz), 124.92 (d, J = 2.9 Hz), 128.02 (d, J = 4.4 Hz), 129.60 (d, J = 8.1 Hz), 132.46, 132.66, 149.71, 150.90, 151.11, 159.11, 161.53, 167.26, 167.34, 167.82. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₂H₂₂FN₆O₃S]⁺ 469.1453; found 469.1446; purity: 100% (LCMS).

Ethyl 2-{4-[(2,5-dimethylbenzo[d]thiazol-6-yl)amino]-3-(3-fluorobenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl}acetate (25)

25 was prepared from **5** in a manner similar to that for **22** as a crude product. MS-ESI (m/z): 484 $[M + H]^+$.

2{4-[(2,5-Dimethylbenzo[d]thiazol-6-yl)amino]-3-(3-fluorobenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl}-N-methylacetamide (18)

18 was prepared from **25** in a manner similar to that for **13** in 28% yield in 4 steps. White solid. ¹H NMR (400 MHz, DMSO-*d*₆, DCl in D₂O) δ 1.97 (3H, s), 2.59 (3H, s), 2.81 (3H, s), 4.30 (2H, s), 5.32 (2H, s), 7.11-7.16 (1H, m), 7.24-7.28 (2H, m), 7.40-7.46 (1H, m), 7.60 (1H, s), 7.73 (1H, s). ¹³C NMR (100 MHz, DMSO-*d*₆, DCl in D₂O) δ 18.13, 19.95, 25.81, 44.19, 44.27, 114.17 (d, *J* = 22.0 Hz), 114.50 (d, *J* = 20.5 Hz), 118.07, 122.60, 123.27 (d, *J* = 2.9 Hz), 130.84 (d, *J* = 8.1 Hz), 132.49, 132.94, 139.59 (d, *J* = 7.3 Hz), 150.07, 151.14, 151.28, 161.51, 163.93, 167.33, 167.41, 167.71. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₂H₂₂FN₆O₃S]⁺ 469.1453; found 469.1446; purity: 100% (LCMS).

Ethyl 2-{4-[(2,5-dimethylbenzo[d]thiazol-6-yl)amino)]-3-(4-fluorobenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl}acetate (26)

26 was prepared from **5** in a manner similar to that for **23** as a crude product. MS-ESI (m/z): 484 $[M + H]^+$.

2-{4-[(2,5-Dimethylbenzo[d]thiazol-6-yl)amino]-3-(4-fluorobenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl}-N-methylacetamide (19)

19 was prepared from **26** in a manner similar to that for **13** in 32% yield in 4 steps. White solid. ¹H NMR (400 MHz, DMSO- d_6 , DCl in D₂O) ¹H NMR (400 MHz, DMSO- d_6 , DCl in D₂O) δ 1.98 (3H, s), 2.59 (3H, s), 2.81 (3H, s), 4.30 (2H, s), 5.29 (2H, s), 7.18-7.24 (2H, m), 7.45-7.49 (2H, m), 7.62 (1H, s), 7.74 (1H, s). ¹³C NMR (100 MHz, DMSO- d_6 , DCl in D₂O) δ 18.16, 19.81, 25.81, 44.22, 44.92, 115.62 (d, *J* = 21.3 Hz), 118.30, 122.53, 129.59 (d, *J* = 8.1 Hz), 132.74 (d, *J* = 2.9 Hz), 132.86, 149.94, 151.17, 151.38, 160.71, 163.12, 167.32, 167.40, 167.94. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₂H₂₂FN₆O₃S]⁺ 469.1453; found 469.1446; purity: 100% (LCMS).

Scheme S3. Synthesis of compound 14

3-(tert-Butyl)-6-(ethylthio)-1-(3,4,5-trifluorobenzyl)-1,3,5-triazine-2,4(1H,3H)-dione (27)

27 was prepared from **9** in a manner similar to that for **10** in 93% yield. White solid. ¹H NMR (400 MHz, DMSO- d_6) δ 1.26 (3H, t, J = 7.2 Hz), 1.58 (9H, s), 3.07 (2H, q, J = 7.2 Hz), 4.97 (2H, s), 7.33 (2H, dd, J = 8.7, 6.9 Hz). MS-ESI (m/z): 374 [M + H]⁺.

6-(*Ethylthio*)-1-(3,4,5-trifluorobenzyl)-1,3,5-triazine-2,4(1H,3H)-dione (28)

28 was prepared from **27** in a manner similar to that for **11** in 95% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ 1.39 (3H, t, *J* = 7.3 Hz), 3.26 (2H, q, *J* = 7.3 Hz), 5.05 (2H, s), 7.03 (2H, dd, *J* = 7.8, 6.4 Hz), 8.43 (1H, s). MS-ESI (m/z): 318 [M + H]⁺.

2-[4-(Ethylthio)-2,6-dioxo-3-(3,4,5-trifluorobenzyl)-3,6-dihydro-1,3,5-triazin-1(2H)-yl]-N-methylacetamide (29)

A mixture of **28** (1.00 g, 3.15 mmol), 2-chloro-*N*-methylacetamide (441 mg, 4.10 mmol), and potassium carbonate (871 mg, 6.30 mmol) in DMF (10 mL) was stirred at 50 °C for 4 h. The reaction mixture was allowed to cool to room temperature and diluted with aqueous citric acid solution. The aqueous layer was extracted with EtOAc. The organic layer was washed with H₂O and brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was triturated with n-hexane/diisopropyl ether/ethyl acetate to afford **29** (757 mg, 62%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 1.39 (3H, t, *J* = 7.4 Hz), 2.87 (3H, d, *J* = 4.9 Hz) 3.25 (2H, q, *J* = 7.4 Hz), 4.56 (2H, s), 5.06 (2H, s), 5.68 (1H, s) 7.03 (2H, dd, *J* = 7.7, 6.5 Hz). MS-ESI (m/z): 389 [M + H]⁺.

(E)-2-{4-[(4-Methoxyphenyl)imino]-2,6-dioxo-3-(3,4,5-trifluorobenzyl)-1,3,5-triazinan-1-yl}-N-methylacetamide (14)

A mixture of **29** (40 mg, 0.103 mmol), 4-methoxyaniline (17.0 mg, 0.134 mmol) and AcOH (118 μ L, 2.06 mmol) in *tert*-butanol (0.80 mL) was stirred at 100 °C for 4 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/MeOH, gradient, 0-20% MeOH) to afford **14** (29.7 mg, 64%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆, DCl in D₂O) δ 2.58 (3H, s), 3.75 (3H, s), 4.28 (2H, s), 5.33 (2H, s), 6.93 (2H, d, *J* = 8.8 Hz), 7.20 (2H, d, *J* = 8.8 Hz), 7.39 (2H, dd, *J* = 8.5, 7.0 Hz). ¹³C-NMR (DMSO-*d*₆, DCl in D₂O) δ 25.79, 44.52, 44.59, 55.74, 111.94 (dd, *J* = 16.1, 5.1 Hz), 114.25, 126.98, 130.68, 133.58-133.77 (m), 135.73, 138.31 (dt, *J* = 248.7, 15.4 Hz), 150.62 (ddd, *J* = 247.2, 9.5, 3.7 Hz), 151.62,

152.05-152.16 (m), 153.13, 157.54, 167.54. HRMS-ESI (m/z): $[M + H]^+$ calcd for $[C_{20}H_{19}F_3N_5O_4]^+$ 450.1384; found 450.1375; purity: 98% (LCMS).

Scheme S4. Synthesis of compound 16

1-Benzyl-3-(tert-butyl)-6-(ethylthio)-1,3,5-triazine-2,4(1H,3H)-dione (30)

30 was prepared from 9 in a manner similar to that for 10, and the crude mixture was used for the next reaction without further purification.

1-Benzyl-6-(ethylthio)-1,3,5-triazine-2,4(1H,3H)-dione (31)

31 was prepared from a crude mixture of **30** in a manner similar to that for **11** in 88% yield in 2 steps. White solid. ¹H NMR (300 MHz, DMSO-*d*₆) δ 1.25 (3H, t, *J* = 7.2 Hz), 3.08 (2H, q, *J* = 7.2 Hz), 5.40 (2H, s), 7.25-7.39 (5H, m), 11.60 (1H, s). MS-ESI (m/z): 264 [M + H]⁺.

2-[3-Benzyl-4-(ethylthio)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl]-N-methylacetamide (32) 32 was prepared from 31 in a manner similar to that for 29 in 71% yield. White solid. ¹H NMR (400 MHz, CDCl₃) δ 1.36 (3H, t, *J* = 7.4 Hz), 2.86 (3H, d, *J* = 4.9 Hz), 3.22 (2H, q, *J* = 7.4 Hz), 4.57 (2H, s), 5.16 (2H, s), 5.69 (1H, br s), 7.31-7.39 (5H, m). MS-ESI (m/z): 335 [M + H]⁺.

(E)-2-(3-Benzyl-4-((2,5-dimethylbenzo[d]thiazol-6-yl)imino)-2,6-dioxo-1,3,5-triazinan-1-yl)-N-methylacetamide (16)

16 was prepared from **32** in a manner similar to that for **14** in 21% yield. White solid. ¹H NMR (400 MHz, DMSO-*d*₆, DCl in D₂O) δ 1.96 (3H, s), 2.59 (3H, s), 2.81 (3H, s), 4.31 (2H, s), 5.32 (2H, s), 7.29-7.32 (1H, m), 7.36-7.42 (4H, m), 7.64 (1H, s), 7.74 (1H, s). ¹³C NMR (100 MHz, DMSO-*d*₆, DCl in D₂O) ¹³C NMR (100 MHz, DMSO-*d*₆, DCl in D₂O) δ 17.63, 19.30, 25.30, 43.69, 45.03, 118.10, 122.00, 126.74, 127.26, 128.37, 132.31, 132.39, 135.96, 149.52, 150.70, 151.08, 166.81, 166.89, 167.55. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₂H₂₃N₆O₃S]⁺ 451.1547; found 451.1537; purity: 98% (LCMS).

6-(*Ethylthio*)-3-[(1-methyl-1H-1,2,4-triazol-3-yl)methyl]-1-(3,4,5-trifluorobenzyl)-1,3,5-triazine-2,4(1H,3H)-dione (33)

A mixture of **28** (100 mg, 0.315 mmol), 3-(chloromethyl)-1-methyl-1*H*-1,2,4-triazole (45.6 mg, 0.347 mmol), and potassium carbonate (56.6 mg, 0.410 mmol) in DMF (1.0 mL) was stirred at 60 °C for 2 h. The reaction mixture was allowed to cool to room temperature and diluted with aqueous NH₄Cl solution. The aqueous layer was extracted with EtOAc, and the organic layer was washed with H₂O, dried over Na₂SO₄, and concentrated under reduced pressure to afford a crude product of **33** (109 mg) as a white solid. ¹H-NMR (CDCl₃) δ : 1.38 (3H, t, *J* = 7.4 Hz), 3.25 (2H, q, *J* = 7.4 Hz), 3.87 (3H, s), 5.09 (2H, s), 5.24 (2H, s), 7.02-7.06 (2H, m), 7.94 (1H, s). MS-ESI (m/z): 413 [M + H]⁺.

(E)-6-((4-Methoxyphenyl)imino)-3-((1-methyl-1H-1,2,4-triazol-3-yl)methyl)-1-(3,4,5-trifluorobenzyl)-1,3,5-triazinane-2,4-dione (20)

After a mixture of **33** (50 mg, 0.121 mmol) and 4-methoxyaniline (22.4 mg, 0.182 mmol) in *tert*-butanol (0.50 mL) was stirred at 100 °C for 4 h, the reaction mixture was allowed to cool to room temperature. The mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/MeOH, gradient, 0-10% MeOH) to afford **20** (26.5 mg, 39% in 2 steps) as a white solid. ¹H-NMR (DMSO-*d*₆, DCl in D₂O) δ : 3.75 (3H, s), 3.94 (3H, s), 5.10 (2H, s), 5.44 (2H, s), 6.93 (2H, d, *J* = 8.5 Hz), 7.25 (2H, d, *J* = 8.5 Hz), 7.42-7.44 (2H, m), 9.36 (1H, s). ¹³C-NMR (DMSO-*d*₆, DCl in D₂O) δ : 37.1, 37.8, 44.0, 55.2, 111.5 (dd, *J* = 16.1, 5.1 Hz), 113.7, 126.6, 129.7, 132.9 (dt, *J* = 4.4, 8.1 Hz), 137.8 (dt, *J* = 248.7, 15.4 Hz), 143.4, 150.1 (ddd, *J* = 247.2, 8.8, 3.7 Hz), 151.0, 152.2, 152.5, 155.2, 157.1. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₁H₁₉F₃N₇O₃]⁺474.1496 ; found 474.1489; purity: 100% (LCMS).

Scheme S6. Synthesis of compound 21

3-[(1H-1,2,4-Triazol-3-yl)methyl]-6-(ethylthio)-1-(3,4,5-trifluorobenzyl)-1,3,5-triazine-2,4(1H,3H)dione (34)

To a solution of **28** (2.5 g, 7.88 mmol) in 1,4-dioxane (25 mL) was added (1-trityl-1*H*-1,2,4-triazol-3yl)methanol (3.23 g, 9.46 mmol), triphenylphosphine (2.48 g, 9.46 mmol) and diisopropyl azodicarboxylate (1.84 mL, 9.46 mmol) at 0 °C. After stirring for 2 h at the same temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (28.5 mL) and treated with TFA (6.85 ml, 89 mmol) at 0 °C, and the reaction mixture was allowed to warm to room temperature. After stirring for 4 h, aqueous NaHCO₃ solution was added, and the aqueous layer was extracted with CHCl₃. The organic layer was washed with brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/MeOH, gradient, 0-10% MeOH) to afford **34** (1.55 g, 44%) as a white solid. ¹H-NMR (CDCl₃) δ : 1.40 (3H, t, *J* = 7.4 Hz), 3.26 (2H, q, *J* = 7.4 Hz), 5.07 (2H, s), 5.30 (2H, s), 7.04 (2H, t, *J* = 7.0 Hz), 8.09 (1H, s). MS-ESI (m/z): 399 [M + H]⁺.

(*E*)-3-((1*H*-1,2,4-triazol-3-yl)methyl)-6-((4-methoxyphenyl)imino)-1-(3,4,5-trifluorobenzyl)-1,3,5-triazinane-2,4-dione (21)

To a mixture of **34** (200 mg, 0.502 mmol) and 4-methoxyaniline (93 mg, 0.753 mmol) in acetic acid (0.431 mL, 7.53 mmol) was added *tert*-butanol (2 mL), and stirred at 100 °C for 5 h. Then the reaction mixture was allowed to cool to room temperature and diluted with aqueous NaHCO₃ solution. The aqueous layer was extracted with EtOAc. The organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/MeOH, gradient, 0-5% MeOH) to afford **21** (188 mg, 82%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆, DCl in D₂O) δ 3.75 (3H, s), 5.18 (2H, s), 5.38 (2H, s), 6.93 (2H, d, *J* = 8.9 Hz), 7.24 (2H, d, *J* = 8.5 Hz), 7.41-7.47 (2H, m), 9.19 (1H, s). ¹³C-NMR (DMSO-*d*₆, DCl in D₂O) δ : 36.7, 43.6, 54.7, 110.9 (dd, *J* = 16.5, 5.5 Hz), 113.2, 126.1, 129.4, 132.4 (dt, *J* = 7.5, 4.6 Hz), 137.3 (dt, *J* = 248.0, 15.4 Hz), 143.2, 149.6 (ddd, *J* = 243.6, 9.5, 3.7 Hz), 150.6, 151.6, 152.0, 152.5, 156.6. HRMS-ESI (m/z): [M + H]⁺ calcd for [C₂₀H₁₇F₃N₇O₃]⁺ 460.1339; found 460.1333; purity: 100% (LCMS).

¹H NMR spectra of **5** in DMSO- d_6

¹H NMR spectra of 9 in CDCl₃

¹³C NMR spectra of **9** in CDCl₃

S25

¹³C NMR spectra of **17** in DMSO- d_6 with DCl in D₂O

S29

S32

HPLC traces of compound 1-3

Procedure

Analytical liquid chromatography/mass spectroscopy (LC/MS) was performed on a Shimadzu Shimpack XR-ODS (C18, 2.2 μ m, 3.0 × 50 mm, linear gradient from 10% to 100% B over 3 min, then 100% B for 1 min [A = water + 0.1% formic acid, B = MeCN + 0.1% formic acid], flow rate: 1.6 mL/min) using a Shimadzu UFLC system equipped with a LCMS-2020 mass spectrometer, LC-20AD binary gradient module, SPD-M20A photodiode array detector (detection at 254 nm), and SIL-20AC sample manager.

Compound 1

Compound 2

Compound **3** (free form)

HPLC chromatogram of S-217622 fumaric acid

Analytical liquid chromatography of S-217622 fumaric acid was performed on a ACQUITY UPLC BEH C18 Column (1.7 μ m, 2.1 mm I.D.x100 mm, gradient from 10% to 100% B [A = 10 mmol/L HCOONH₄ /H₂O, B = MeCN], flow rate: 0.3 mL/min) using a Shimadzu Nexera system equipped with LC-20AD binary gradient module and SPD-20AV detector (detection at 255 nm).

Time-program for gradient elution

Time	Mobile
(min)	Phase B (%)
0	10
3	30
20	30
26	90
32	90
32.01	10
42	Stop

Experimental Procedures for in vitro safety.

Human ether-a-go-go-related gene inhibition assay

To evaluate an electrocardiogram QT interval prolongation of S-217622, effects on delayed rectifier K+ current (IKr) were evaluated using Chinese hamster ovary (CHO) cells expressing the human ether-a-go-go-related gene channel. The study was conducted in compliance with good laboratory practice regulations.

CHO cells were retained at a membrane potential of -80 mV with a whole-cell patch-clamp system (EPC-10 amplifier/PatchMaster v2.8 software, HEKA Co., Ltd.), and IKr was elicited via repolarization pulse at -40 mV for 2 sec after a depolarization pulse at +20 mV for 1 sec. S-217622 fumaric acid was dissolved in DMSO and diluted 200-fold with external solution to prepare an objective concentration. The S-217622 concentration levels were 10, 30 and 100 μ M. E-4031 at 0.1 μ M and the vehicle (0.5% DMSO) were applied as positive and negative controls, respectively.

From the recorded IKr, an absolute value of the tail peak current was measured based on the current value at the resting membrane potential using the whole-cell patch-clamp method. The percentages of the preapplication values in the test substance and control groups were compensated by the mean value of the percentage of the preapplication value in the negative-control group, and the compensated suppression rates were calculated.

Patch-clamp solutions were as follows. Internal solution: KCL: 130mmol/L, MgCl₂: 1 mmol/L, MgATP: 5 mmol/L, EGTA: 5 mmol/L, HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid): 10 mmol/L, pH=7.2. External solution: NaCl: 137 mmol/L, KCl: 4 mmol/L, CaCl₂: 1.8 mmol/L, MgCl₂: 1 mmol/L, glucose: 10 mmol/L, HEPES: 10 mmol/L, pH=7.4.

In vitro micronucleus test. To evaluate the clastogenic potential of S-217622, an *in vitro* micronucleus test was conducted using TK6 cells (human lymphoblast-derived) in a short-term treatment with and without a metabolic activation system (S9 mix) and continuous treatment without S9 mix. S9 mix containing 9,000 g of liver supernatant fraction was prepared from Sprague-Dawley rats treated with phenobarbital and 5,6-benzofravone. The study was conducted in compliance with good laboratory practice regulations.

A TK6 cell suspension was used in the absence of metabolic activation in the 3-h and 24-h treatment groups or in the presence of metabolic activation in the 3-h treatment group. Suspensions were mixed with S-217622 fumaric acid in DMSO solution with S9 mix in the presence of metabolic activation in the 4-h

treatment group, then incubated at 37°C. The negative-control (DMSO) and positive-control (mitomycin C, cyclophosphamide monohydrate, or colchicine) substances were prepared concurrently. After the end of the short-term treatment, cells were washed and then incubated in fresh culture medium for 21 h. After incubation, the cells were counted to evaluate cytotoxicity, and the *in vitro* micronucleus test was conducted with S-217622 fumaric acid at doses of 150–250 μ g/mL for short-term treatment and 75–125 μ g/mL for continuous treatment based on cytotoxicity. The nucleic acid was stained with acridine orange, and the micronuclear frequency of the specimens was observed under a fluorescence microscope. The test was considered positive when a significant and dose-dependent increase was noted in the number of cells with micronuclei in the test-substance groups compared with the negative-control group under any treatment condition.

Ames test. To evaluate the mutagenic potential of S-217622, a bacterial reverse-mutation test was conducted via the preincubation method using five bacterial strains, including *Salmonella typhimurium* (TA98, TA100, TA1535, and TA1537) and *Escherichia coli* (WP2*uvrA*) in the presence or absence of a metabolic activation system (S9 mix). S9 mix containing 9,000 g of liver supernatant fraction was prepared from Sprague-Dawley rats treated with phenobarbital and 5,6-benzofravone. The study was conducted in compliance with good laboratory practice regulations.

S-217622 fumaric acid (DMSO solution) was mixed with S9 mix in the presence of metabolic activation or phosphate buffer in the absence of metabolic activation and 0.1 mL of test strain suspension (1×10^9 cells/mL or greater) and incubated at 37°C for 20 min. Then, the mixture with a layer of soft agar containing histidine and biotin or tryptophan was overlaid on minimal glucose agar plates. The negativecontrol (DMSO) and positive-control (4-nitroquinoline 1-oxide, sodium azide, 9-aminoacridine hydrochloride monohydrate, or 2-aminoanthracene) substances were prepared concurrently. The mutation test was conducted with S-217622 fumaric acid at 156–5000 µg/plate in TA98, TA100, TA1535, and WP2*uvrA* and at 39.1–5000 µg/plate in TA1537. After incubation at 37°C for 48 h, the revertant colonies were counted and evaluated by comparing them with the negative-control group. The test was considered positive when the number of revertant colonies was concentration-dependently increased and twofold or greater increased over the number of colonies of the negative-control group.

In vitro **3T3.** To evaluate the phototoxicity potential of S-217622, an *in vitro* phototoxicity study was conducted with cultured mammalian cells. The study was conducted in compliance with good laboratory

practice regulations. A fibroblastic cell line derived from BALB/c mice (BALB/3T3 cells) was cultured in 96-well plates and treated with S-217622 fumaric acid for 1 h followed by UV-A (5 J/cm²) and UV-B (68.7 mJ/cm²) irradiation. For the comparator, no irradiation was conducted. The phototoxicity test was performed at 0.781–100 μ g/mL. A vehicle (DMSO)-treated group and a chlorpromazine hydrochloridetreated group were set as the negative and positive controls, respectively. Cell viability was determined by neutral-red extraction from cells (measurement of absorbance at 540 nm). When the IC₅₀ could be determined for both the irradiated and nonirradiated plates, the result was determined from the PIF. When the IC₅₀ could not be determined for either the irradiated or nonirradiated plates, the result was determined from the MPE. The judgment criteria are shown below.

No phototoxicity: PIF < 5 or MPE < 0.15Phototoxicity: $5 \le PIF$ or $0.15 \le MPE$