Supporting Information for

Photophysical and Computational Insights into Ag(I) Complexation of Porphyrinic Covalent Cages Equipped with Triazoles Incorporating Linkers

Daniel Sánchez-Resa,^a Isabella Daidone,^b Ryan Djemili,^c Sonia Adrouche,^c Stéphanie Durot,^c Valérie

Heitz,*,c Laura Zanetti-Polzi,*,d Barbara Ventura*,a

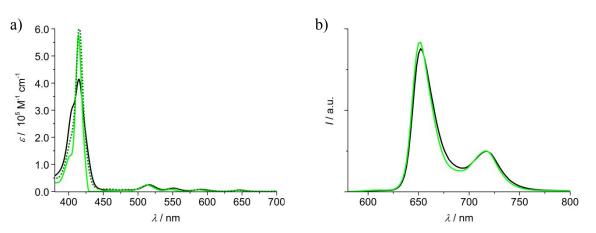
^a Isituto ISOF-CNR, Via P. Gobetti 101, 40129 Bologna, Italy. email: barbara.ventura@isof.cnr.it

^b Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio (Coppito 1),

67010 L'Aquila, Italy.

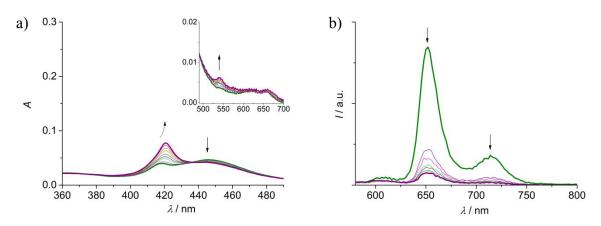
^c Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, Université de Strasbourg, France. email: v.heitz@unistra.fr

^d CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy. email: laura.zanettipolzi@nano.cnr.it


Table of contents:

Additional spectroscopic data	Pag. S2
Figure S1	Pag. S2
Figure S2	Pag. S2
Figure S3	Pag. S3
Chart S1	Pag. S3

Figure S4	Pag. S4
Figure S5	Pag. S5
Figure S6	Pag. S5
Figure S7	Pag. S6
Figure S8	Pag. S6
Additional computational data	Pag. S7
Figure S9	Pag. S7
Figure S10	Pag. S7


Additional spectroscopic data:

- 2H-S-2H

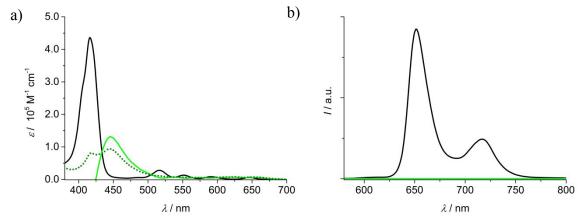


Figure S1. a) Experimental absorption spectrum of **2H-S-2H** (black, imposed in the fitting) and fitted absorption spectrum of the complex $[(2H-S-2H)Ag_4]^{4+}$ (green) in DCM/MeOH (9:1). The experimental absorption spectrum registered at the end of the titration is also reported for comparison purposes (olive dotted). b) Fitted emission spectra of **2H-S-2H** (black) and $[(2H-S-2H)Ag_4]^{4+}$ (green). The fittings were performed with the software Reactlab Equilibria by using a 1:4 (cage:Ag⁺) binding model and Ag⁺ as a non-absorbing and non-emissive species.

- 2H-L-2H

Figure S2. Absorption (a) and uncorrected emission (b) spectra ($\lambda_{exc} = 434$ nm, isosbestic point) of DCM/MeOH (9:1) solutions containing **2H-L-2H** (5.6×10^{-7} M) and increasing amounts of Ag(OTf) (30-400 equivalents). Inset of (a): amplification of the Q-bands region (490-700 nm). In (b) the y-axis scale is amplified by a factor 3 with respect to the scale of Figure 3b.

Figure S3. a) Experimental absorption spectrum of **2H-L-2H** (black, imposed in the fitting) and fitted absorption spectrum of the complex $[(2H-L-2H)Ag_2]^{4+}$ (green) in DCM/MeOH (9:1). The experimental absorption spectrum registered at the end of the first step (30 equiv.) of the titration is also reported for comparison purposes (olive dotted). b) Fitted emission spectra of **2H-L-2H** (black) and $[(2H-L-2H)Ag_2]^{4+}$ (green). The fitting was performed with the software Reactlab Equilibria by using a 1:2 (cage:Ag⁺) binding model and Ag⁺ as a non-absorbing and non-emissive species.

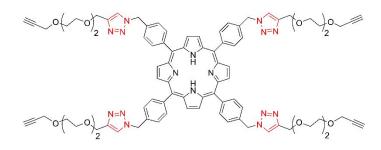
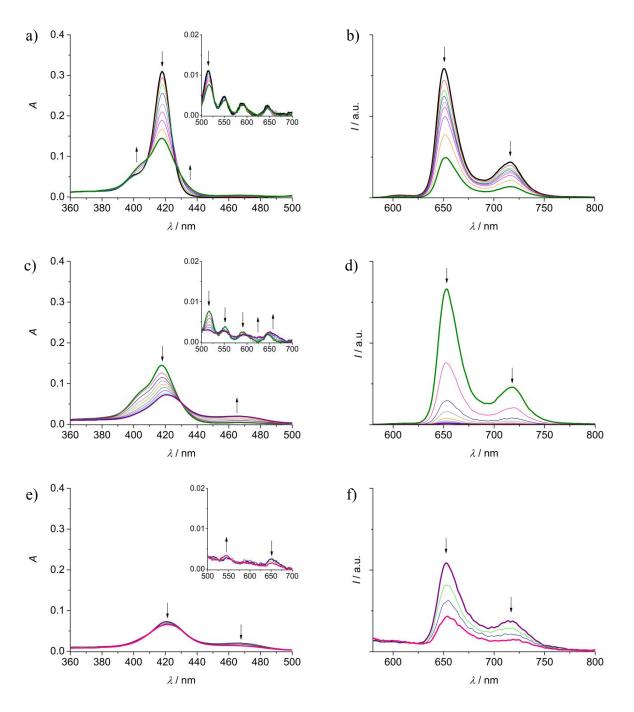
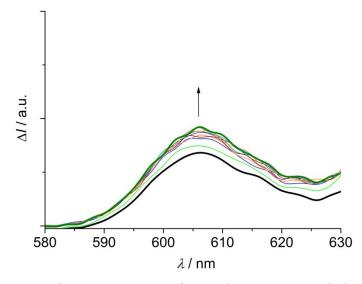




Chart S1. Structure of model 2H-alkyne.

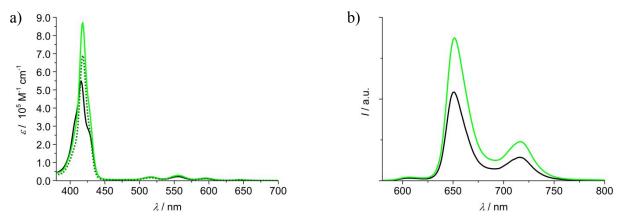


Figure S4. Absorption and uncorrected emission spectra of DCM/MeOH (9:1) solutions containing **2H-alkyne** (1.2×10^{-6} M) and increasing amounts of Ag(OTf): (a-b) 0-9 equivalents, $\lambda_{exc} = 428$ nm, isosbestic point; (c-d) 9-30 equivalents, $\lambda_{exc} = 430$ nm, isosbestic point; (e-f) 30-250 equivalents, $\lambda_{exc} = 430$ nm, isoabsorbing point. In (f) the y-axis scale is amplified by a factor 15 with respect to the scale of (d). Insets of (a,c,e): amplification of the Q-bands region (500-700 nm).

- Zn-S-2H

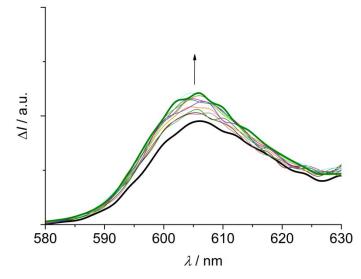


Figure S5. Emission spectra ($\lambda_{exc} = 415.5 \text{ nm}$) of DCM/MeOH (9:1) solutions containing **Zn-S-2H** ($5.5 \times 10^{-7} \text{ M}$) and increasing amounts of AgOTf (0-40 equivalents). The spectra are expressed as differential intensity, calculated by subtracting, from the spectrum of the cage at each point of the titration, an emission spectrum of **2H-S-2H** normalized at 712 nm.

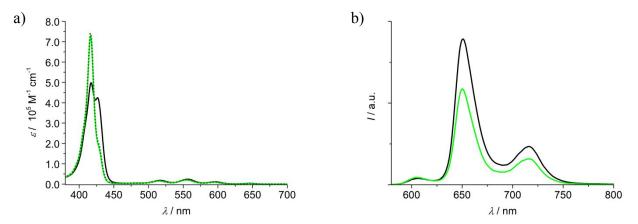


Figure S6. a) Experimental absorption spectrum of **Zn-S-2H** (black, imposed in the fitting) and fitted absorption spectrum of the complex [(**Zn-S-2H** $)Ag_4]^{4+}$ (green) in DCM/MeOH (9:1). The experimental absorption spectrum registered at the end of the titration is also reported for comparison purposes (olive dotted). b) Fitted emission spectra of **Zn-S-2H** (black) and [(**Zn-S-2H** $)Ag_4]^{4+}$ (green). The fittings were performed with the software Reactlab Equilibria by using a 1:4 (cage:Ag⁺) binding model and Ag⁺ as a non-absorbing and non-emissive species.

- Zn-L-2H

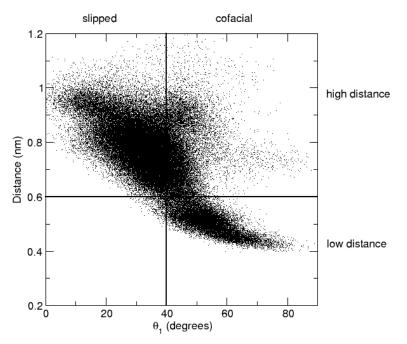


Figure S7. Emission spectra ($\lambda_{exc} = 421$ nm) of DCM/MeOH (9:1) solutions containing **Zn-L-2H** (6.5 × 10⁻⁷ M) and increasing amounts of AgOTf (0-40 equivalents). The spectra are expressed as differential intensity, calculated by subtracting, from the spectrum of the cage at each point of the titration, an emission spectrum of **2H-L-2H** normalized at 712 nm.

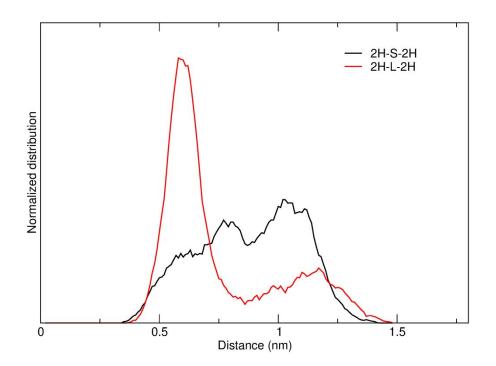


Figure S8. a) Experimental absorption spectrum of **Zn-L-2H** (black, imposed in the fitting) and fitted absorption spectrum of the complex $[(Zn-L-2H)Ag_4]^{4+}$ (green) in DCM/MeOH (9:1). The experimental absorption spectrum registered at the end of the titration is also reported for comparison purposes (olive dotted). b) Fitted emission spectra of **Zn-L-2H** (black) and $[(Zn-L-2H)Ag_4]^{4+}$ (green). The fittings were performed with the software Reactlab Equilibria by using a 1:4 (cage:Ag⁺) binding model and Ag⁺ as a non-absorbing and non-emissive species.

Additional computational data:

Figure S9. Bidimensional distribution of the distance between the centers of mass of the two porphyrin rings and θ 1 in the MD simulation of **2H-S-2H**.

Figure S10. Normalized distribution of the distance between the two carbons connecting the phenyl and triazole rings of each linker in the MD simulations of **2H-S-2H** (black) and **2H-L-2H** (red). The curves are obtained by averaging the distributions of the distance obtained for each of the four linkers of the two cages.