Supporting Information: Parallel Optimisation of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Kinase Domain Inhibitor

Duncan C. Miller,^{a‡} Tristan Reuillon,^{a‡} Lauren Molyneux,^a Timothy Blackburn, ^a Simon J. Cook,^c Noel Edwards,^b Jane A. Endicott,^b Bernard T. Golding,^a Roger J. Griffin,^{a‡} Ian Hardcastle,^a Suzannah J. Harnor, ^a Amy Heptinstall,^a Pamela Lochhead,^c Mathew P. Martin,^b Nick C. Martin, ^a Stephanie Myers, ^a David R. Newell,^b Richard A. Noble,^b Nicole Phillips, Laurent Rigoreau,^d Huw Thomas,^b Julie A. Tucker,^b Lan-Zhen Wang,^b Michael J. Waring,^a Ai-Ching Wong,^e Stephen R. Wedge,^b Martin E. M. Noble^b and Celine Cano^a*

a. Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

b. Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.

c. Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK

d. Cancer Research UK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Campus, Babraham, Cambridgeshire CB22 3AT, UK

e. Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, UK.

^{*t*} These authors contributed equally to the work.

+ Corresponding author: C.C. Tel (44) 191 208 7060. E-mail: celine.cano@ncl.ac.uk.

[®]Deceased 24 September 2014

Table of Contents

Figure S1: ¹ H NMR spectrum of compound 32a S	5-4
Figure S2: HPLC purity assessment of compound 32a S	5-5
Figure S3: ¹ H NMR spectrum of compound 32b S	5-6
Figure S4: HPLC purity assessment of compound 32b S	5-7
Figure S5: ¹ H NMR spectrum of compound 32c S	5-8
Figure S6: ¹³ C NMR spectrum of compound 32c S	5-9
Figure S7: ¹ H NMR spectrum of compound 32d S-	10
Figure S8: ¹³ C NMR spectrum of compound 32d S-	11
Figure S9: ¹ H NMR spectrum of compound 32e S-	12
Figure S10: ¹³ C NMR spectrum of compound 32e S-	13
Figure S11: ¹ H NMR spectrum of compound 32f S-	14
Figure S12: ¹³ C NMR spectrum of compound 32f S-	15
Figure S13: ¹ H NMR spectrum of compound 32g S-	16
Figure S14: ¹³ C NMR spectrum of compound 32g S-	17
Figure S15: ¹ H NMR spectrum of compound 32i S-	18
Figure S16: ¹ H NMR spectrum of compound 32k S-	19
Figure S17: HPLC purity assessment of compound 32k S-	20
Figure S18: ¹ H NMR spectrum of compound 32I S-	21
Figure S19: ¹ H NMR spectrum of compound 32m S-	22
Figure S20: ¹ H NMR spectrum of compound 33f S-	23
Figure S21: ¹³ C NMR spectrum of compound 33f S-	24
Figure S22: HPLC purity assessment of compound 33f S-	25
Figure S23: ¹ H NMR spectrum of compound 33g S-	26
Figure S24: ¹ H NMR spectrum of compound 33h S-	27
Figure S25: ¹ H NMR spectrum of compound 33i S-	28
Figure S26: ¹³ C NMR spectrum of compound 33i S-	29
Figure S27: ¹ H NMR spectrum of compound 33j S-	30
Figure S28: ¹³ C NMR spectrum of compound 33j S-	31
Figure S29: HPLC purity assessment of compound 33j S-	32
Figure S30: ¹ H NMR spectrum of compound 33k S-	33
Figure S31: ¹³ C NMR spectrum of compound 33k S-	34
Figure S32: HPLC purity assessment of compound 33k S-	35
Figure S33: ¹ H NMR spectrum of compound 34a S-	36

Figure S34: ¹ H NMR spectrum of compound 34b	S-37
Figure S35: ¹³ C NMR spectrum of compound 34b	S-38
Figure S36: HPLC purity assessment of compound 34b	S-39
Figure S37: ¹ H NMR spectrum of compound 34c	S-40
Figure S38: ¹ H NMR spectrum of compound 34d	S-41
Figure S39: ¹³ C NMR spectrum of compound 34d	S-42
Figure S40: ¹ H NMR spectrum of compound 34e	S-43
Figure S41: ¹³ C NMR spectrum of compound 34e	S-44
Figure S42: ¹ H NMR spectrum of compound 34h	S-45
Figure S43: ¹³ C NMR spectrum of compound 34h	S-46
Figure S44: HPLC purity assessment of compound 34b	S-47
Figure S45: ¹ H NMR spectrum of compound 34i	S-48
Figure S46: ¹³ C NMR spectrum of compound 34i	S-49
Figure S47: ¹ H NMR spectrum of compound 34j	S-50
Figure S48: ¹³ C NMR spectrum of compound 34j	S-51
Figure S49: ¹ H NMR spectrum of compound 34k	S-52
Table S1: Kinome Selectivity Data for Compound 34b	S-53
Table S2: Kinome Selectivity (Kd) Data for Compound 34b	S-62
Figure S50: Cellular dependency on MAPK7 (RNAi gene silencing, DepMap)	S-63
Figure S51: Quantification of p-ERK5 by Western blotting and densitometry	S-64

Figure S2: HPLC purity assessment of compound 32a

32a

iample	Name:	LB/	417	/169/	/84	

# [min] [mAU*s] [mAU]	8
6 6.617 FM 0.0702 3.74173 8.88406e-1	0.2327
7 7.231 FM 0.0667 6.40444 1.60114	0.3983
8 7.848 FM 0.0604 3.09037 8.52760e-1	0.1922
9 7.976 FM 0.0867 3.72125 7.15505e-1	0.2314
Totals : 1607.92562 463.48928	

*** End of Report ***

Area Percent Report

Sort	ted By		r	Sig	nal
Mult	iplier:				1.0000
Dil	stion:				1.0000
Use	Multiplier	ã.	Dilution	Factor	with ISTDs

Signal 1: DAD1 A, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
+	[min]		[min]	[mAU*s]	[mAU]	8
1	5.540	MF	0.0684	5.03878	1,22813	0.3134
2	5.667	MF	0.0583	4.54787	1.30081	0.2828
3	5.746	374	0.0591	19.93161	5.61810	1.2396
4	5.982	FM	0.0763	5.52756	1.20686	0.3438
5	6.184	FM	0.0576	1555.92200	450.07758	96.7658

Figure S3: ¹H NMR spectrum of compound **32b**

Figure S4: HPLC purity assessment of compound 32b

Data File F:\23MAY12_11.D Sample Name: LB/437/55/28

Acg. Operator	: Karen Haggerty Seg. Line : 7
Acq. Instrument	: Instrument 1 Location : Vial 65
Injection Date	: 5/23/2012 11:35:43 AM Inj : 1
	Inj Volume : 5.000 µl
Different Inj Ve	olume from Sequence ! Actual Inj Volume : 10.000 µl
Acq. Method	: C:\CHEM32\1\DATA\MAY2012\23MAY12_SMM_LB 2012-05-23 08-40-14\XSELECT_ACIDIC. M
Last changed	: 5/23/2012 8:40:21 AM by Karen Haggerty
Analysis Method	: F:\23MAY12 11.D\DA.M (XSELECT ACIDIC.M)
Last changed	: 5/23/2012 2:00:11 FM by Karen Haggerty (modified after loading)
Method Info	: Waters XSELECT CSH C18 3.5um 100 x 4.6mm 0.1% Formic Acid (aq)/MeCN, 1.0mL/min

32b

Feak 1	RetTime (min)	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area
1						
4	6.097	FM	0.0699	3236.33252	772.19928	95.4348
5	6.641	FM	0.0832	7.20853	1.44415	0.2126
6	6.805	FM	0.1067	9.30931	1.45399	0.2745
7	6.918	FM	0.1028	9.30425	1.50831	0.2744
8	7.092	FM	0.0889	8.06266	1.51183	0.2378
Total	s :			3391.14472	807.16584	

*** End of Report ***

*********************** Area Percent Report

Sorted By Signal Multiplier: 1.0000 : Dilution: : Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,16 Ref=off

Peak	RetTime	Type	Width	Area	Height	Area
	[min]		[min]	[mAU*s]	[mAU]	
1	4.387	88	0.0566	10.54312	2.88661	0.3109
2	5.009	88	0.0692	7.75120	1.63698	0.2286
3	5.732	FM	0.0697	102.63313	24.52467	3.0265

Figure S5: ¹H NMR spectrum of compound **32c**

Figure S6: ¹³C NMR spectrum of compound **32c**

Figure S8: ¹³C NMR spectrum of compound **32d**

Figure S9: ¹H NMR spectrum of compound **32e**

Figure S10: ¹³C NMR spectrum of compound **32e**

Figure S11: ¹H NMR spectrum of compound **32f**

Figure S12: ¹³C NMR spectrum of compound **32f**

S-15

Figure S13: ¹H NMR spectrum of compound **32g**

Figure S14: ¹³C NMR spectrum of compound **32g**

Figure S15: ¹H NMR spectrum of compound **32i**

Figure S16: ¹H NMR spectrum of compound **32k**

Figure S17: HPLC purity assessment of compound **32k**

32k

operator	· Yaran Usanartu	Can time : 9
Acg. Instrument	: Instrument 1	Location : Vial 65
Injection Date	. 1/31/2013 7.28.11 pm	Thi 1
injucción baco		Ini Volume : 5 000 ul
Different Inj V	olume from Sequence ! A	tual Inj Volume : 2.000 µl
Acq. Method	: C:\CHEM32\1\DATA\JAN2013 XSELECT_ACIDIC.M	31JAN13_AES_RHB_DCM_BJC 2013-01-31 16-16-16\
Last changed	: 1/31/2013 4:16:23 FM by 1	Caren Haggerty
Analysis Method	: F:\31JAN12_12.D\DA.M (XS)	LECT_ACIDIC.M)
Last changed	: 2/1/2013 6:48:49 AM by Ka (modified after loading)	iren Haggerty
Method Info	: Waters XSELECT CSH C18 3	5um 100 x 4.6mm
	0.1% Formic Acid (aq)/Med	N, 1.OmL/min
mAU .	8	
mAU 1200 -	6003	
mAU 1200 - 1000 -	809	
mAU 1200 - 1000 - 800 -	608	
mAU 1200 - 1000 - 800 -	809	
mAU 1200 - 1000 - 800 - 400 -	1909	

Area Percent Report

219

Sorted By	:	Signal	
Multiplier:		:	1.0000
Dilution:		:	1.0000
Use Multiplier &	Dilution	Factor wit	h ISTDs

Signal 1: DAD1 E, Sig=280,16 Ref=off

Peak	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area
						[]
1	2.995	88	0.0614	12.25065	2.89338	0.2575
2	5.083	VB	0.0553	4698.15674	1328.35876	98.7493
3	5 617	81/	0 0641	5 05713	1 17785	0 1063

32I

Figure S19: ¹H NMR spectrum of compound **32m**

32m

S-22

Figure S20: ¹H NMR spectrum of compound **33f**

S-23

Figure S22: HPLC purity assessment of compound 33f

Sample Name: DCM/451/107

log. Operator	-	Karen Haggerty		Seq.	Line	:	5 Vial 3			
injection Date	-	3/4/2013 11:36:45 AM		200	Ini		1			
			I	nj V	olume		5.000 µl			
ifferent Inj V	01:	ume from Sequence !	Actual I	nj v	olume	:	1.000 µl			
.cq. Method	:	C:\CHEM32\1\DATA\MAR2(ACIDIC.M	013\04MAR1	3_DC	M_JEP	21	013-03-04	09-47	-43\XSELEC	T_
ast changed	:	3/4/2013 9:47:51 AM by	y Karen Ha	gger	ty					
nalysis Method	:	F:\04MAR13_07.D\DA.M	(XSELECT_A	CIDI	C.M)					
ast changed	-	3/5/2013 6:56:02 AM by (modified after load)	/ Karen Ha	gger	ty					
lethod Info		Waters XSELECT CSH C1	8 3.5um 10	0 x	4.6mm					
		0.1% Formic Acid (aq)	/MeCN, 1.0	mL/m	in					
DAD1 E, Sig	-28/	0,16 Ref=off (F104MAR13_07.D)				_				
MAU		013								
1200 -		*								
1										
1000 -										
800 7										
1										
600 -										
1										
400 -										
1										
200-										
1		0								
1		8								
1	_					_	~			
•										v

Area Percent Report

Sorted By	:	Signal	
Multiplier:		:	1.0000
Dilution:		=	1.0000
Use Multiplier	& Dilution	Factor wi	th ISTDs

Signal 1: DAD1 E, Sig=280,16 Ref=off

Feak #	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area
1	4.550	BB	0.0572	24.22210	6.54375	0.4918
2	5.013	VB	0.0611	4901.33496	1268.07605	99.5082

Figure S24: ¹H NMR spectrum of compound **33h**

 $^{1}\text{H NMR (500 MHz, DMSO-}d_{6}) \\ \delta \\ 2.33 (s, 4\text{H}), 2.69 (t, J = 4.8 \text{Hz}, 4\text{H}), 3.50 (s, 2\text{H}), 7.40 (d, J = 8.4 \text{Hz}, 1\text{H}), 7.49 (s, 1\text{H}), 7.52 (dd, J = 8.8, 1.4 \text{Hz}, 1\text{H}), 7.62 (s, 1\text{H}), 7.78 (app t, J = 8.4 \text{Hz}, 1\text{H}), 8.10 (dd, J = 8.5, 2.6 \text{Hz}, 1\text{H}), 8.79 (d, J = 2.5 \text{Hz}, 1\text{H}), 10.22 (s, 1\text{H}).$

Figure S25: ¹H NMR spectrum of compound **33**i

33i

¹H NMR (500 MHz, DMSO-*d*₆) δ 2.14 (s, 3H), 2.32 (s, 4H), 2.40 (s, 4H), 3.53 (s, 2H), 3.90 (s, 3H), 7.33 (app t, *J* = 8.9 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 2H), 7.47 (s, 1H), 7.48 (s, 1H), 8.10 (dd, *J* = 8.4, 2.6 Hz, 1H), 8.78 (d, *J* = 2.5 Hz, 1H), 10.22 (s, 1H), 12.69 (s, 1H).

Figure S26: ¹³C NMR spectrum of compound **33**i

33i

¹³C NMR (126 MHz, DMSO-*d*₆) δ 45.7, 52.7, 54.7, 56.5, 63.3, 111.5, 115.1, 120.2 (d, *J* = 4.9 Hz), 122.6, 125.2, 125.6 (d, *J* = 3.8 Hz), 127.6, 128.2, 128.4 (d, *J* = 19.9 Hz), 129.4, 134.0, 140.6, 146.4 (d, *J* = 10.8 Hz), 147.9 (d, *J* = 247.0 Hz), 153.2, 158.6, 183.6.

Figure S27: ¹H NMR spectrum of compound **33**j

 $^{1}\text{H NMR} (500 \text{ MHz}, \text{DMSO-}d_{6}) \\ \delta \ 1.13 (\text{qd}, J = 12.3, 3.8 \text{ Hz}, 2\text{H}), 1.51 (\text{d}, J = 11.1 \text{ Hz}, 2\text{H}), 1.96 (\text{ttt}, J = 11.2, 7.2, 3.9 \text{ Hz}, 1\text{H}), 2.40 - 2.48 (\text{m}, 2\text{H}), 2.73 (\text{d}, J = 7.1 \text{ Hz}, 2\text{H}), 2.93 (\text{d}, J = 12.1 \text{ Hz}, 2\text{H}), 3.90 (\text{s}, 3\text{H}), 7.32 (\text{app t}, J = 9.0 \text{ Hz}, 1\text{H}), 7.35 - 7.42 (\text{m}, 2\text{H}), 7.49 (\text{s}, 1\text{H}), 9.02 (\text{s}, 2\text{H}), 10.32 (\text{s}, 1\text{H}).$

Figure S28: ¹³C NMR spectrum of compound **33**j

33j

Figure S29: HPLC purity assessment of compound 33j

File D:\DATASHA							
le Name: TDR/463	/192/A						
	*********					=	
Acq. Operator	: Karen Hag	ggerty		Seq. Line	: 8		
Acq. Instrument	: Instrumer	nt 1		Location	: Vial 45		
Injection Date	: 11/6/2013	3 7:05:11 PM		Inj	: 1		
			1	Inj Volume	: 5.000 µ	1	
Different Inj Vo	lume from 1	Sequence !	Actual 1	Inj Volume	: 4.000 µ	1	
Acq. Method	: C:\CHEM32	2\1\DATA\NOV20	013\06NOV	13 TOR SA 2	013-11-06	15-53-38	8\XSELECT_ACID
Last changed	. 11/6/2011	3 3+53+44 84 3	W Faran I	laggertu			
Analysis Method	: D:\DATAS	RARE\OGNOVI3 1	2. D\DA.M	(XSELECT A	CIDIC.M)		
Last changed	: 11/7/2013	3 6:19:39 AM 1	v Karen H	laggerty			
	(modified	d after loadir	ng)				
Method Info	: Waters XS	SELECT CSH C18	3 3.5um 10	00 x 4.6mm			
	0.1% Form	mic Acid (aq)/	MeCN, 1.0	mL/min			
DAD1A Sign	254 16 Refacil (D)	DATASHARE/06NOV	(13 12 D)				
UNDTA, dg-	204,10 MB-01 (D.	IDATAONARE IDDIVUV	13_12.0)				
mau -		Ş					
1000 -		1					
1							
1							
800 -							
800 -							
600 -							
600 -							
800 -							
600 - 400 -							
400 -							
600 - 400 -							
400 -							
400 -							
600 - 400 - 200 -		5.0	800				
400 - 200 -		4.121	8				
400 - 200 -		587	15.688				
800 - 400 - 200 -		5857	15.880				
600 - 400 - 200 -	1	1214	15.880	- 1	10		· · · · · · · · · · · · · · · · · · ·
400-	1	5.89 v	0		10		1 · · · · 1 12 · · · 14
400-	1	585 +	0 - 75.880	- 1 B	10		12 14
600 - 400 - 200 -	1 · · · · · 2		100 T	- 1	10		12 14
400 - 200 - 0 -		Solling 4 rea Percent Re	eeess.	- 1			1
400 - 200 - 0 -	1 2 λ.	100 m	Bage St.		· · · 10		Y 1 · · · · 1 12 · · 14
	1 2 A:	rea Percent Re	e e opport	- 1			1
400- 400- 0- 0- Sorted By	 	rea Percent Re Signal	99999 Te		10	-	1 · · · · · · · · · · · · · · · · · · ·
600 - 400 - 200 - 0 - 50rted By Multiplier:	1 2	rea Percent Re Signal : 1.0	88 2 2		10		
soorted By Multiplier: Dilution:	1	Tea Percent Re Signal : 1.0 : 1.0	88	- <u>1</u>	10		1 · · · 1 12 · · 14
600 - 400 - 200 - 0 - Sorted By Multiplier: Dilution: Use Multiplier 4	2 2 Dílution 1	rea Percent Re Signal : 1.0 : 2.0 Factor with IS	88 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		10	=	y 1,1 12 14
5000 400 200 0 50rted By Multiplier: Dilution: Use Multiplier 4	2 A	rea Percent Re Signal : 1.0 Factor with IS	0000 0000 0000 0000 0000			=	12 14
sorted By Multiplier: Dilution: Use Multiplier 4	A 2 Dilution 1	rea Percent Re Signal : 1.0 : 1.0 Factor with 15	99 19 19 19 19 19 19 19 19 19		10		1 · · · · 1 12 · · · 14
5000 2000 2000 Sorted By Multiplier: Dilution: Use Multiplier 4 Signal 1: DADI A	2 2 2 Dilution 1 , Sig=254,,	rea Percent Re Signal : 1.0 Factor with 15	88 2000 20000 20000 20000 20000 20000		10		
5000 400 200 0 50rted By Multiplier: Dilution: Use Multiplier 4 Signal 1: DADI A	2 A Dilution 1 , Sig=254, 1	rea Percent Re Signal : 1.0 Pactor with IS	20000 0000 0000 0000 0000	- 1	10	=	1
600 - 400 - 200 - 0 - Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: DADI A Peak RetTime Typ	2 2 Dilution 1 , Sig=254,: e Width	rea Percent Re Signal : 1.0 Factor with IS 16 Refmoff Area F	sport 0000 STDs Height	Area	10		y 1 · · · · 1 12 · · · 14
5000 400 200 200 0 200 0 200 0 200 0 0 200 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0	Dílution l , Sig=254, [min]	rea Percent Re Signal : 1.0 Factor with IS 16 Ref=off Area P [mAU*s] [eight man)	Area A	10	-	12 14
Sorted By Multiplier: Dilution: Use Multiplier 4 Signal 1: DADI A Peak RetTime Typ # [min]	2 2 2 2 2 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3	rea Percent Re Signal : 1.0 Factor with IS 16 Ref=off Area B [mAU*s] [sport oport oport oport staight (mAU)	Area	10		1 · · · 1 12 · · 14
5000- 400- 200- 200- 0- Sorted By Multiplier: Dilution: Use Multiplier 4 Signal 1: DADI A Peak RetTime Typ # [min] 	2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3	Signal : 1.0 : 1.0 Factor with 19 16 Ref=off Area B [mAU*s] [1420.13989 103	88 90000 000000	Area 8	10	-	
Sorted By Multiplier: Dilution: Use Multiplier & Signal 1: DADI A Feak RetTime Typ # [min] 	2 2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 3 2 3 2	Signal : 1.0 Factor with IS I6 Refmoff Area P (mAU*s) (3420.13989 103 94.03802 2	20000 20000 20000 2000 2000 2000 2000	Area % 94.8151 2.6070	10	=	12 14

Figure S30: ¹H NMR spectrum of compound **33k**

33k

¹H NMR (500 MHz, DMSO-*d*₆) δ 1.24 (app qd, *J* = 12.3, 3.6 Hz, 2H), 1.52 (d, *J* = 12.2 Hz, 2H), 1.80 (t, *J* = 11.0 Hz, 4H), 2.11 (s, 3H), 2.70 (d, *J* = 11.4 Hz, 2H), 2.75 (d, *J* = 7.1 Hz, 2H), 7.48 (s, 1H), 7.52 (dd, *J* = 8.7, 1.3 Hz, 1H), 7.65 (s, 1H), 7.78 (app t, *J* = 8.4 Hz, 1H), 9.02 (s, 2H), 10.35 (s, 1H), 12.79 (s, 1H).32

Figure S31: ¹³C NMR spectrum of compound **33k**

 ${}^{13}C \text{ NMR} (126 \text{ MHz}, \text{DMSO-}d_6) \delta 31.7, 34.9, 44.9, 46.2, 55.3, 111.8, 119.4 (d, J = 18.1 \text{ Hz}), 124.8, 126.9 (d, J = 3.9 \text{ Hz}), 128.1, 129.2 (d, J = 23.3 \text{ Hz}), 129.2 (d, J = 5.0 \text{ Hz}), 130.5, 131.7, 131.9, 148.1, 153.9 (d, J = 248.7 \text{ Hz}), 158.7, 163.9, 182.6.$

Figure S32: HPLC purity assessment of compound **33k**

Area Percent Report

	Signal	
	:	1.0000
	1	1.0000
& Dilution	Factor wit	th ISTDs
	: 6 Dilution	: Signal : : & Dilution Factor wit

Signal 1: DAD1 A, Sig=254,16 Ref=off

Peak #	RetTime (min)	туре	Width	Area [mAU*s]	Height [mAU]	Area
1	5.003	MF	0.0567	4798.38086	1409.70972	99.5686
2	5.215	374	0.0568	14.24326	4.18153	0,2956
3	5.313	FN	0.0844	6.54838	1.29375	0,1359

Figure S33: ¹H NMR spectrum of compound **34a**

Figure S34: ¹H NMR spectrum of compound **34b**

Figure S35: ¹³C NMR spectrum of compound **34b**

Figure S36: HPLC purity assessment of compound 34b

Sample Name: DCM/451/169

Acq. Operator : Kare	n Haggerty	Seq. Lin	e: 11	
Acq. instrument : inst	/2013 9:01:10 EM	Locatio	n : viai 40	
11/0001011 0000 . 3/24	72013 9101110 PM	Toj Volum	5 000 11	
Different Ini Volume f	ron Semience I	Actual Ind Volum	e + 3.000 H1	
Acg. Method : C:\C	HEM32\1\DATA\MAY2	013\24MAY13 BZ TDR	SJH HL DCM BJC NC	M SCOUT 2013-05-24
16-0	8-36\XSELECT_ACID	с.м — —		-
Last changed : 5/24	/2013 4:08:45 PM 1	by Karen Haggerty		
Analysis Method : F:\2	4MAY13_18.D\DA.M	(XSELECT_ACIDIC.M)		
Last changed : 5/28	/2013 7:14:44 AN 1	by Karen Haggerty		
(mod	ified after loading	ng)		
Method Info : Wate	rs XSELECT CSH C1	8 3.5um 100 x 4.6m	m	
0.14	Formic Acid (aq)	/MeCN, 1.UmL/min		
DAD1 & Sker264 16 Ref				
mAU 1		8		
1 1		¥		
1000 -				
-				
1				
800-				
1				
1				
600-				
1				
400-				
_				
200-				
				Y
		6 8	10	12 14 mit
-				
*******************	***************		*******	
	Area Percent Re	sport		

Partad Bu	e eines)			
Multiplier	1.1	0000		
Dilution:	1 1.1	0000		
Use Multiplier & Dilut	ion Factor with I	STDS		
Signal 1: DAD1 A, Sig=	254,16 Ref≃off			
Peak RetTime Type Wid	th Area I	Height Area		
# [min] [mi	n] [mAU*5]	[mAU] %		
a a a a a a a a	614 4472 47000 114	01 00159 100 0000		
1 0.000 VA 0.0	014 4472.47558 11	1.00135 100.0000		
Totals :	4472.47998 110	01.00159		

34b

Figure S37: ¹H NMR spectrum of compound **34c**

Figure S38: ¹H NMR spectrum of compound **34d**

Figure S39: ¹³C NMR spectrum of compound **34d**

Figure S40: ¹H NMR spectrum of compound **34e**

Figure S41: ¹³C NMR spectrum of compound **34e**

S-44

Figure S42: ¹H NMR spectrum of compound **34h**

S-45

Figure S43: ¹³C NMR spectrum of compound **34h**

Figure S44: HPLC purity assessment of compound 34b

Acq. Operator	: Karen Haggerty	Seq. Line : 7
Acq. Instrument	: Instrument 1	Location : Vial 3
Injection Date	: 4/10/2013 6:15:20 PM	Inj: 1
	lune form formers 1	Inj Volume : 5.000 µl
Different inj vo	a colours 2011 care 1	Actual inj volume : 4.000 pl
key. Method	XSELECT ACIDIC.M	13(10#FR15_BE_BC_DCM_BE_3# 2013-04-10 13-33-10)
Last changed	: 4/10/2013 3:53:18 PM b	v Karen Haggerty
Analysis Method	: F:\09AFR13 09.D\DA.M (XSELECT ACIDIC.N)
Last changed	: 4/11/2013 8:00:45 AM b	y Karen Haggerty
	(modified after loadin	g)
Method Info	: Waters XSELECT CSH C18	3.5um 100 x 4.6mm
	0.1% Formic Acid (aq)/	MeCN, 1.0mL/min
1000-		
800 - 800 - 400 -		

Area Percent Report ------

S	orted By			Sig	nal	
M	iltiplier:			1	1	.0000
D	lution:				1	.0000
U	se Multiplier	6	Dilution	Factor	with	ISTDS

Signal 1: DAD1 A, Sig=254,16 Ref=off

Pea	sk	RetTime	Type	Width	Area	Height	Area
		[min]		[min]	[mAU*s]	[mAU]	
	1	5.029	FM	0.0618	5047.23096	1361.69678	99.7055
	2	5.218	FM	0.0564	14.90839	4.40299	0.2945

Figure S45: ¹H NMR spectrum of compound **34i**

Figure S46: ¹³C NMR spectrum of compound **34i**

S-49

Figure S47: ¹H NMR spectrum of compound **34j**

Figure S48: ¹³C NMR spectrum of compound **34**j

Figure S49: ¹H NMR spectrum of compound **34k**

Kinome panel selectivity screening was performed at DiscoverX using their kinomescan screen.

	Percent	Compound Concentration
DiscoveRx Gene Symbol	Control	(nM)
AAK1	56	10000
ABL1(E255K)-phosphorylated	17	10000
ABL1(F317I)-nonphosphorylated	100	10000
ABL1(F317I)-phosphorylated	95	10000
ABL1(F317L)-nonphosphorylated	100	10000
ABL1(F317L)-phosphorylated	78	10000
ABL1(H396P)-nonphosphorylated	49	10000
ABL1(H396P)-phosphorylated	32	10000
ABL1(M351T)-phosphorylated	30	10000
ABL1(Q252H)-nonphosphorylated	25	10000
ABL1(Q252H)-phosphorylated	29	10000
ABL1(T315I)-nonphosphorylated	16	10000
ABL1(T315I)-phosphorylated	3.4	10000
ABL1(Y253F)-phosphorylated	29	10000
ABL1-nonphosphorylated	24	10000
ABL1-phosphorylated	34	10000
ABL2	70	10000
ACVR1	100	10000
ACVR1B	94	10000
ACVR2A	88	10000
ACVR2B	78	10000
ACVRL1	100	10000
ADCK3	100	10000
ADCK4	92	10000
AKT1	100	10000
AKT2	100	10000
AKT3	100	10000
ALK	13	10000
AMPK-alpha1	13	10000
AMPK-alpha2	11	10000
ANKK1	63	10000
ARK5	64	10000
ASK1	94	10000
ASK2	100	10000
AURKA	1	10000
AURKB	15	10000
AURKC	9	10000
AXL	6.8	10000
BIKE	88	10000
BLK	9	10000
BMPR1A	99	10000

BMPR1B	67	10000
BMPR2	82	10000
BMX	100	10000
BRAF	85	10000
BRAF(V600E)	86	10000
BRK	100	10000
BRSK1	13	10000
BRSK2	6.2	10000
ВТК	100	10000
BUB1	22	10000
CAMK1	100	10000
CAMK1D	100	10000
CAMK1G	66	10000
CAMK2A	14	10000
CAMK2B	14	10000
CAMK2D	13	10000
CAMK2G	24	10000
CAMK4	100	10000
CAMKK1	57	10000
САМКК2	50	10000
CASK	23	10000
CDC2L1	86	10000
CDC2L2	94	10000
CDC2L5	96	10000
CDK11	100	10000
CDK2	69	10000
CDK3	93	10000
CDK4-cyclinD1	89	10000
CDK4-cyclinD3	100	10000
CDK5	100	10000
CDK7	16	10000
CDK8	98	10000
CDK9	83	10000
CDKL1	79	10000
CDKL2	100	10000
CDKL3	100	10000
CDKL5	100	10000
CHEK1	8	10000
CHEK2	45	10000
CIT	100	10000
CLK1	100	10000
CLK2	22	10000
CLK3	57	10000
CLK4	100	10000
CSF1R	0.3	10000
CSF1R-autoinhibited	12	10000
CSK	83	10000
CSNK1A1	100	10000

CSNK1A1L	100	10000
CSNK1D	84	10000
CSNK1E	59	10000
CSNK1G1	78	10000
CSNK1G2	100	10000
CSNK1G3	100	10000
CSNK2A1	74	10000
CSNK2A2	100	10000
СТК	100	10000
DAPK1	79	10000
DAPK2	47	10000
DAPK3	56	10000
DCAMKL1	2.4	10000
DCAMKL2	3.6	10000
DCAMKL3	0.35	10000
DDR1	0.45	10000
DDR2	31	10000
DLK	100	10000
DMPK	60	10000
DMPK2	100	10000
DRAK1	49	10000
DRAK2	72	10000
DYRK1A	91	10000
DYRK1B	66	10000
DYRK2	91	10000
EGFR	66	10000
EGFR(E746-A750del)	97	10000
EGFR(G719C)	100	10000
EGFR(G719S)	100	10000
EGFR(L747-E749del, A750P)	78	10000
EGFR(L747-S752del, P753S)	88	10000
EGFR(L747-T751del,Sins)	97	10000
EGFR(L858R)	84	10000
EGFR(L858R,T790M)	96	10000
EGFR(L861Q)	100	10000
EGFR(S752-I759del)	100	10000
EGFR(T790M)	100	10000
EIF2AK1	91	10000
EPHA1	100	10000
EPHA2	100	10000
EPHA3	42	10000
EPHA4	100	10000
EPHA5	100	10000
EPHA6	100	10000
EPHA7	100	10000
EPHA8	94	10000
EPHB1	99	10000
EPHB2	71	10000

EPHB3	100	10000
EPHB4	100	10000
EPHB6	67	10000
ERBB2	86	10000
ERBB3	100	10000
ERBB4	100	10000
ERK1	100	10000
ERK2	100	10000
ERK3	100	10000
ERK4	73	10000
ERK5	0.3	10000
ERK8	100	10000
ERN1	43	10000
FAK	76	10000
FER	100	10000
FES	100	10000
FGFR1	4.6	10000
FGFR2	7.2	10000
FGFR3	8.5	10000
FGFR3(G697C)	9.2	10000
FGFR4	51	10000
FGR	55	10000
FLT1	19	10000
FLT3	90	10000
FLT3(D835H)	77	10000
FLT3(D835Y)	77	10000
FLT3(ITD)	91	10000
FLT3(K663Q)	93	10000
FLT3(N841I)	50	10000
FLT3(R834Q)	88	10000
FLT3-autoinhibited	100	10000
FLT4	65	10000
FRK	100	10000
FYN	100	10000
GAK	59	10000
GCN2(Kin.Dom.2,S808G)	37	10000
GRK1	100	10000
GRK4	78	10000
GRK7	66	10000
GSK3A	100	10000
GSK3B	100	10000
HASPIN	81	10000
НСК	39	10000
HIPK1	77	10000
НІРК2	99	10000
НІРКЗ	95	10000
HIPK4	76	10000
HPK1	15	10000

HUNK	100	10000
ICK	91	10000
IGF1R	100	10000
IKK-alpha	99	10000
IKK-beta	95	10000
IKK-epsilon	70	10000
INSR	83	10000
INSRR	95	10000
IRAK1	3.2	10000
IRAK3	66	10000
IRAK4	58	10000
ІТК	90	10000
JAK1(JH1domain-catalytic)	6.8	10000
JAK1(JH2domain-pseudokinase)	19	10000
JAK2(JH1domain-catalytic)	0.05	10000
JAK3(JH1domain-catalytic)	0	10000
JNK1	86	10000
JNK2	93	10000
JNK3	88	10000
КІТ	0.3	10000
KIT-autoinhibited	76	10000
LATS1	97	10000
LATS2	100	10000
LCK	29	10000
LIMK1	95	10000
LIMK2	100	10000
LKB1	74	10000
LOK	0.55	10000
LRRK2	3.2	10000
LTK	49	10000
LYN	53	10000
LZK	81	10000
МАК	94	10000
MAP3K1	66	10000
MAP3K15	61	10000
МАРЗК2	0.3	10000
МАРЗКЗ	0.8	10000
МАРЗК4	100	10000
MAP4K2	5.8	10000
МАР4КЗ	32	10000
MAP4K4	78	10000
MAP4K5	41	10000
МАРКАРК2	99	10000
МАРКАРК5	92	10000
MARK1	54	10000
MARK2	32	10000
MARK3	13	10000
MARK4	62	10000

MAST1	49	10000
MEK1	85	10000
MEK2	72	10000
MEK3	80	10000
MEK4	100	10000
MEK5	18	10000
MEK6	100	10000
MELK	43	10000
MERTK	3.6	10000
MET	18	10000
MET(M1250T)	10	10000
MET(Y1235D)	51	10000
MINK	35	10000
MKK7	84	10000
MKNK1	98	10000
MKNK2	93	10000
MLCK	100	10000
MLK1	91	10000
MLK2	83	10000
MLK3	100	10000
MRCKA	100	10000
MRCKB	100	10000
MST1	53	10000
MST1R	53	10000
MST2	2.8	10000
MST3	27	10000
MST4	38	10000
MTOR	97	10000
MUSK	95	10000
MYLK	29	10000
MYLK2	93	10000
MYLK4	91	10000
MYO3A	97	10000
МҮОЗВ	93	10000
NDR1	85	10000
NDR2	99	10000
NEK1	79	10000
NEK10	86	10000
NEK11	94	10000
NEK2	9	10000
NEK3	93	10000
NEK4	76	10000
NEK5	90	10000
NEK6	100	10000
NEK7	100	10000
NEK9	100	10000
NIK	100	10000
NIM1	100	10000
·····•	100	10000

NLK	100	10000
OSR1	100	10000
p38-alpha	100	10000
p38-beta	100	10000
p38-delta	97	10000
p38-gamma	100	10000
PAK1	100	10000
PAK2	55	10000
РАКЗ	12	10000
PAK4	63	10000
РАКб	68	10000
PAK7	45	10000
PCTK1	92	10000
РСТК2	97	10000
РСТКЗ	94	10000
PDGFRA	18	10000
PDGFRB	3	10000
PDPK1	30	10000
PFCDPK1(P.falciparum)	67	10000
PFPK5(P.falciparum)	94	10000
PFTAIRE2	100	10000
PFTK1	81	10000
PHKG1	92	10000
PHKG2	46	10000
РІКЗС2В	100	10000
PIK3C2G	99	10000
РІКЗСА	100	10000
PIK3CA(C420R)	86	10000
PIK3CA(E542K)	93	10000
PIK3CA(E545A)	55	10000
PIK3CA(E545K)	80	10000
PIK3CA(H1047L)	86	10000
PIK3CA(H1047Y)	46	10000
PIK3CA(I800L)	100	10000
PIK3CA(M1043I)	100	10000
PIK3CA(Q546K)	86	10000
РІКЗСВ	92	10000
PIK3CD	100	10000
PIK3CG	100	10000
РІК4СВ	100	10000
PIM1	94	10000
PIM2	100	10000
PIM3	92	10000
PIP5K1A	78	10000
PIP5K1C	49	10000
PIP5K2B	92	10000
РІР5К2С	100	10000
PKAC-alpha	100	10000

PKAC-beta	100	10000
PKMYT1	94	10000
PKN1	43	10000
PKN2	46	10000
PKNB(M.tuberculosis)	72	10000
PLK1	65	10000
PLK2	1.8	10000
PLK3	66	10000
PLK4	29	10000
PRKCD	99	10000
PRKCE	100	10000
PRKCH	100	10000
PRKCI	90	10000
PRKCQ	99	10000
PRKD1	32	10000
PRKD2	38	10000
PRKD3	58	10000
PRKG1	61	10000
PRKG2	85	10000
PRKR	80	10000
PRKX	86	10000
PRP4	100	10000
РҮК2	62	10000
QSK	36	10000
RAF1	100	10000
RET	33	10000
RET(M918T)	18	10000
RET(V804L)	70	10000
RET(V804M)	91	10000
RIOK1	88	10000
RIOK2	81	10000
RIOK3	99	10000
RIPK1	100	10000
RIPK2	100	10000
RIPK4	94	10000
RIPK5	72	10000
ROCK1	67	10000
ROCK2	72	10000
ROS1	100	10000
RPS6KA4(Kin.Dom.1-N-terminal)	95	10000
RPS6KA4(Kin.Dom.2-C-terminal)	81	10000
RPS6KA5(Kin.Dom.1-N-terminal)	100	10000
RPS6KA5(Kin.Dom.2-C-terminal)	100	10000
RSK1(Kin.Dom.1-N-terminal)	50	10000
RSK1(Kin.Dom.2-C-terminal)	26	10000
RSK2(Kin.Dom.1-N-terminal)	<u></u> 91	10000
RSK2(Kin.Dom.2-C-terminal)	30	10000
RSK3(Kin Dom 1-N-terminal)	43	10000
	1.5	10000

RSK3(Kin.Dom.2-C-terminal)	2.9	10000
RSK4(Kin.Dom.1-N-terminal)	92	10000
RSK4(Kin.Dom.2-C-terminal)	9.6	10000
S6K1	39	10000
SBK1	34	10000
SGK	92	10000
SgK110	53	10000
SGK2	100	10000
SGK3	95	10000
SIK	76	10000
SIK2	52	10000
SLK	0.8	10000
SNARK	33	10000
SNRK	94	10000
SRC	100	10000
SRMS	92	10000
SRPK1	73	10000
SRPK2	89	10000
SRPK3	88	10000
STK16	77	10000
STK33	69	10000
STK35	100	10000
STK36	100	10000
STK30	100	10000
SAK 22	100	10000
	99	10000
	55 64	10000
	5 7	10000
	5.7	10000
	54 70	10000
	100	10000
TEC TESP1	100	10000
	21	10000
	100	10000
	100	10000
TIEL	20	10000
	33	10000
	11	10000
	96	10000
	33	10000
	70	10000
INK2	96	10000
TNNI3K	92	10000
TRKA	30	10000
ТККВ	18	10000
TRKC	35	10000
TRPM6	79	10000
TSSK1B	77	10000
ттк	76	10000

тхк	100	10000
TYK2(JH1domain-catalytic)	0.05	10000
TYK2(JH2domain-pseudokinase)	12	10000
TYRO3	100	10000
ULK1	0.15	10000
ULK2	0.05	10000
ULK3	1.5	10000
VEGFR2	57	10000
VRK2	89	10000
WEE1	79	10000
WEE2	100	10000
WNK1	100	10000
WNK3	85	10000
YANK1	94	10000
YANK2	100	10000
YANK3	100	10000
YES	98	10000
YSK1	63	10000
YSK4	79	10000
ZAK	100	10000
ZAP70	100	10000

Table S2: Kinome Selectivity (Kd) Data for Compound 34b

DiscoveRx Gene Symbol Entrez Gene Symbol Kd (nM)

ABL1-nonphosphorylated	ABL1	1200
AURKA	AURKA	290
CSF1R	CSF1R	46
DCAMKL1	DCLK1	61
ERK5	MAPK7	180
FGFR1	FGFR1	380
JAK3(JH1domain-catalytic)	JAK3	1300
КІТ	KIT	420
LRRK2	LRRK2	220
MEK5	MAP2K5	2800

Figure S50: Cellular dependency on MAPK7 (RNAi gene silencing, DepMap) a)

a) Distribution of DEMETER gene dependency scores (DepMap RNAi) for *MAPK7* across all cell lines. b) Scatterplot of DEMETER gene dependency score (DepMap RNAi) and RNA expression values (log2(TPM +1) for *MAPK7*.

Genetic dependency was assessed using combined RNA interference (RNAi) data from 660 unique tumour cell lines treated with shRNA to *MAPK7* (the gene encoding ERK5) where the effect on growth had been determined. A dependency score of zero or greater (observed with MDA-MB-231, A498, and MDA-MB-231 in response to *MAPK7* silencing) indicates that silencing of a given gene has not had an inhibitory effect on cell growth. A dependency score of – 1 is comparable to the median of all pan-essential genes (red dashed line). Data was downloaded from the DepMap Portal and processed through the DEMETER2 pipeline.¹ The mRNA expression values were taken from the DepMap 21Q4 release. All data are available at depmap.org/portal/.

A. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. *Nat. Commun.* **2018**, *9*, 4610.

Figure S51: Quantification of p-ERK5 by Western blotting and densitometry a)

HeLa cells were serum starved overnight, treated with various concentrations of compound **34b** for 1h and then stimulated with EGF (100ng/ml) for 10 minutes. a) Western blot showing upper phospho-ERK5 band with EGF stimulation and inhibition by compound 34b, b) densitometry to quantitate upper band, c) densitometry values plotted as % p-ERK5 remaining (IC₅₀ = 42nM).

Reference

¹ McFarland, J. M.; Ho, Z. V.; Kugener, G; Dempster, J. M.; Montgomery, P. G.; Bryan, J. G.; Krill-Burger, J. M., Green, T. M.; Vazquez, F; Boehm, J. S.; Golub, T. R.; Hahn, W. C.; Root, D. E.; Tsherniak,