Figure S1

Figure S1, Related to Figure 1. Mutational burden and single base substitution signatures in UTUC.

(A) Bar plots showing depth (top) and coverage (bottom) of whole exome sequencing (WES).

(B) Box plots showing mutational burdens of cancers in renal pelvis (pink), ureter (purple), and bladder (red, TCGA cohort). *P* values calculated by two-sided Mann-Whitney *U* test with Bonferroni correction. The median, first and third quartiles, as well as outliners, are indicated with whiskers extending to the furthest value within 1.5 of the interquartile range in box plots. ***P* < 0.01, ****P* < 0.001.

(C) The mutational signature in UTUC98T, which is associated with SBS22.

(D) Bar plots showing the numbers of SNVs affected by Sig. A-D.

(E) Bar plots showing the coefficients of variations in each SBS signature.

(F) Box plots showing cosine similarity of four SBS signatures contributions between 'pmsignature' and 'MutationalPatterns' (orange) or 'deconstractSigs' (green). The median, first and third quartiles, as well as outliners, are indicated with whiskers extending to the furthest value within 1.5 of the interquartile range in box plots.

(G) Four predominant SBS signatures (Sig. A' -D', left) and the strand bias for each signature (right) extracted from all UTUC samples, including hypermutated ones. TCR, transcriptional-coupled repair.

(H) Bar plots showing the frequency of each SBS signature in hypermutated samples (top) and in each mutational subtype (bottom). Hypermutated samples are further divided into two subgroups according to the status of defect in MMR genes in the bottom panel.

SNVs, single nucleotide variants; SBS, single base substitution; MMR, mismatch repair.

			Mismatch repair	gene alterations
Sample ID	SNV	Indel	Germline	Somatic
UTUC185T UTUC221T	9038 3933	183 46	<i>MSH6</i> _p.M1326fs <i>MSH6</i> _p.Y214X	<i>MSH6</i> _p.P831fs <i>MSH6</i> _p.T1085fs
UTUC252T	2194	573	<i>MSH2</i> _p.L173P	<i>MSH2</i> _p.L187P
UTUC62T UTUC204T UTUC229rt	2129 1522 1474	22 34 35	MSH6_p.T1085fs MSH6_p.S602fs	<i>MSH</i> 6_p.E434X <i>MSH</i> 6_p.T336fs
UTUC282T	1073	328	_	<i>MLH1</i> _p.I330fs <i>MLH1</i> _p.S372fs
UTUC89T UTUC166T	1179 1182 1293	147 140 10		MSH2_p.Q76X MSH2_c.645+1G>A MSH6_p_C687fs
UTUC175T	771	35	-	

Table S2, related to Figure 1. Mismatch repair gene alterations in hypermutated samples.

SNV, Single nucleotide variant.

Table S3, related to Figure 2. Driver genes identified by MutSigCV and dNdScv	,
analysis.	

MutSigCV

Gana	Type of mutat	ions (Number)		a valuo
Gene	Nonsilent	Silent	P-value	y value
ARID1A	31	5	2.20E-16	2.20E-16
CDKN1A	14	0	2.20E-16	2.20E-16
ELF3	27	0	2.20E-16	2.20E-16
HRAS	27	0	2.20E-16	2.20E-16
KDM6A	47	0	2.20E-16	2.20E-16
STAG2	24	3	2.20E-16	2.20E-16
TP53	73	1	2.20E-16	2.20E-16
KMT2D	132	5	1.55E-15	3.66E-12
ZFP36L1	11	1	5.65E-13	1.18E-09
CREBBP	21	1	8.85E-13	1.67E-09
TSC1	14	0	2.45E-06	4.19E-03
AMMECR1	6	0	6.36E-06	1.00E-02
FOXQ1	6	0	1.70E-05	2.32E-02
EP300	26	1	1.72E-05	2.32E-02
KMT2C	33	1	2.68E-05	3.31E-02
RHOB	9	0	2.81E-05	3.31E-02
CUL3	10	0	4.11E-05	0.045606
KRAS	7	0	6.95E-05	7.29E-02

dNdScv

Gone		P value						
Gene	Synonymous	Missense	Nonsense	Splicing	Indel	- P-value	y value	
TP53	1	55	9	4	4	2.20E-16	2.20E-16	
FGFR3	4	70	0	0	0	2.20E-16	2.20E-16	
HRAS	0	25	0	0	3	2.20E-16	2.20E-16	
KMT2D	5	22	49	5	54	2.20E-16	2.20E-16	
KDM6A	0	3	20	4	19	2.20E-16	2.20E-16	
STAG2	3	2	12	1	9	2.20E-16	2.20E-16	
CDKN1A	0	0	0	0	13	6.66E-16	1.91E-12	
PIK3CA	0	27	0	0	0	8.22E-15	2.06E-11	
ARID1A	5	8	8	2	12	1.32E-14	2.95E-11	
ELF3	1	5	1	1	19	1.75E-14	3.52E-11	
ZFP36L1	1	1	0	0	10	1.56E-10	2.85E-07	
CREBBP	2	7	8	0	7	1.97E-10	3.30E-07	
KMT2C	1	8	7	1	17	7.55E-09	1.17E-05	
RHOB	0	7	0	0	2	1.19E-08	1.71E-05	
EP300	1	12	2	1	11	5.39E-08	7.22E-05	
KMT2A	1	3	6	0	5	3.02E-07	3.79E-04	
TSC1	1	6	4	0	4	6.33E-07	7.48E-04	
RHOA	0	7	0	0	0	2.61E-06	2.91E-03	
FBXW7	0	9	1	0	1	4.15E-06	4.39E-03	
KRAS	0	7	0	0	0	7.94E-06	7.98E-03	
ERCC2	1	11	1	0	0	1.69E-05	1.62E-02	
SPTAN1	0	4	5	0	3	4.12E-05	3.76E-02	
CUL3	0	7	0	2	1	5.37E-05	4.69E-02	
DDX17	2	8	1	0	2	5.65E-05	4.73E-02	

Comple ID Chr		Stort	End	Ref	A 14	Mathad	Variant allele frequency		
Sample ID	Chr	Start	Ena	Rei	All	methoa	Tumour	Normal	
UTUC101T	5	1295228	1295228	G	А	PCR	0.065	0.000	
UTUC112T	5	1295228	1295228	G	А	PCR	0.527	0.011	
UTUC113T	5	1295228	1295228	G	А	PCR	0.344	0.000	
UTUC115T	5	1295228	1295228	G	А	PCR	0.593	0.000	
UTUC122T	5	1295228	1295228	G	А	PCR	0.314	0.000	
UTUC123T	5	1295242	1295243	GG	AA	PCR	0.199	0.000	
UTUC127T	5	1295250	1295250	G	А	PCR	0.588	0.124	
UTUC12T	5	1295228	1295228	G	А	PCR	0.448	0.000	
UTUC132T	5	1295228	1295228	G	А	PCR	0.475	0.000	
UTUC133T	5	1295250	1295250	G	А	PCR	0.455	0.000	
UTUC136T	5	1295228	1295228	G	А	PCR	0.333	0.000	
UTUC13T	5	1295228	1295228	G	А	PCR	0.284	0.000	
UTUC141T	5	1295228	1295228	G	А	PCR	0.170	0.000	
UTUC142T	5	1295228	1295228	G	А	PCR	0.366	0.003	
UTUC146T	5	1295228	1295228	G	А	PCR	0.408	0.000	
UTUC148T	5	1295228	1295228	G	А	PCR	0.663	0.000	
UTUC152T	5	1295228	1295228	G	А	PCR	0.656	0.000	
UTUC153T	5	1295228	1295228	G	Т	PCR	0.351	0.000	
UTUC159T	5	1295228	1295228	G	А	PCR	0.359	0.010	
UTUC160T	5	1295228	1295228	G	А	PCR	0.377	0.000	
UTUC161T	5	1295228	1295228	G	A	PCR	0.422	0.022	
UTUC162T	5	1295228	1295228	Ğ	A	PCR	0.470	0.000	
UTUC163T	5	1295228	1295228	G	А	PCR	0.497	0.000	
UTUC171T	5	1295228	1295228	G	А	PCR	0.593	0.000	
UTUC172T	5	1295228	1295228	G	А	PCR	0.117	0.000	
UTUC173T	5	1295228	1295228	G	А	PCR	0.452	0.000	
UTUC178T	5	1295250	1295250	G	А	PCR	0.086	0.000	
UTUC179T	5	1295228	1295228	G	А	PCR	0.353	0.000	
UTUC182T	5	1295250	1295250	G	А	PCR	0.500	0.011	
UTUC183T	5	1295228	1295228	G	А	PCR	0.217	0.015	
UTUC189T	5	1295228	1295228	Ğ	A	PCR	0.552	0.014	
UTUC18T	5	1295228	1295228	G	A	PCR	0.502	0.009	
UTUC190T	5	1295228	1295228	G	A	PCR	0.211	0.000	
UTUC191T	5	1295228	1295228	Ğ	A	PCR	0.383	0.000	
UTUC192T	5	1295228	1295228	G	А	PCR	0.302	0.000	
UTUC205T	5	1295228	1295228	G	A	PCR	0.231	0.000	
UTUC206T	5	1295228	1295228	Ğ	A	PCR	0.546	0.000	
UTUC207T	5	1295228	1295228	G	A	PCR	0.529	0.000	
UTUC208T	5	1295228	1295228	G	A	PCR	0.357	0.000	
UTUC211T	5	1295228	1295228	G	A	PCR	0 563	0.041	
UTUC212T	5	1295228	1295228	Ğ	A	PCR	0.542	0.000	
UTUC213T	5	1295228	1295228	G	A	PCR	0.524	0.029	
UTUC215T	5	1295228	1295228	G	A	PCR	0.520	0.000	
UTUC217T	5	1295228	1295228	Ğ	A	PCR	0.557	0.000	
UTUC218T	5	1295228	1295228	Ğ	A	PCR	0 729	0 000	
UTUC222T	5	1295228	1295228	Ğ	A	PCR	0 201	0.000	
UTUC224T	5	1295228	1295228	Ğ	A	PCR	0.437	0.000	
UTUC227T	5	1295228	1295228	Ğ	A	PCR	0.559	0.000	

Table S4, related to Figure 2. *TERT* promoter mutation detection.

	-	400 - 000		~			0 0 - 1	
UTUC2311	5	1295228	1295228	G	A	PCR	0.651	0.000
UTUC233T	5	1295250	1295250	G	A	PCR	0.434	0.000
UTUC234T	5	1295228	1295228	G	А	PCR	0.570	0.000
UTUC236T	5	1295228	1295228	G	А	PCR	0.786	0.000
UTUC239T	5	1295228	1295228	G	Α	PCR	0.530	0.000
UTUC247T	5	1295228	1295228	G	А	PCR/Sanger	0.378	0.000
UTUC248T	5	1295228	1295228	G	А	PCR	0.551	0.000
UTUC24T	5	1295228	1295228	G	А	PCR	0.523	0.000
UTUC251T	5	1295228	1295228	G	А	PCR	0.482	0.000
UTUC254T	5	1295228	1295228	G	А	PCR	0.094	0.000
UTUC255T	5	1295228	1295228	G	А	PCR	0.616	0.000
UTUC262T	5	1295228	1295228	G	А	PCR	0.495	0.000
UTUC265T	5	1295228	1295228	G	A	PCR	0.598	0.000
UTUC266T	5	1295228	1295228	Ğ	A	PCR	0.661	0.000
	5	1295228	1295228	G	Δ	PCR	0.572	0.000
	5	1200220	1200220	G	Δ	PCR	0.547	0.000
	5	1295220	1295220	G	Δ	PCR	0.547	0.000
	5	1295220	1295220	G	~	DCP/Sanger	0.009	0.000
	5	1295220	1295220	G	~		0.094	0.000
	5	1295220	1295220	G			0.514	0.000
	5	1295220	1295220	G	A 	PCR/Sanger	0.599	0.000
	5	1295220	1295220	G	A		0.575	0.000
	о Г	1295220	1295220	G	A	PCR/Sanger	0.365	0.000
	о Г	1295220	1295220	G	A	PCR/Sanger	0.057	0.000
	о Г	1295228	1295228	G	A	Sanger	-	-
	о Г	1295228	1295228	G	A	Sanger	-	-
	о Г	1295228	1295228	G	A	PCR/Sanger	0.594	0.000
	5	1295228	1295228	G	A	PCR/Sanger	0.600	0.000
01002911	5	1295228	1295228	G	A	PCR/Sanger	0.616	0.000
0100291	5	1295228	1295228	G	A	PCR	0.474	0.023
	5	1295228	1295228	G	A	PCR	0.331	0.000
	5	1295228	1295228	G	A	PCR	0.433	0.002
UTUC421	5	1295250	1295250	G	A	PCR	0.411	0.000
UTUC431	5	1295228	1295228	G	A	PCR	0.595	0.010
UTUC48T	5	1295228	1295228	G	A	PCR	0.193	0.000
UTUC4T	5	1295228	1295228	G	A	PCR	0.612	0.367
UTUC51T	5	1295228	1295228	G	A	PCR	0.485	0.027
UTUC55T	5	1295228	1295228	G	A	PCR	0.408	0.000
UTUC56T	5	1295242	1295243	GG	AA	PCR	0.415	0.039
UTUC59T	5	1295250	1295250	G	Α	PCR	0.162	0.000
UTUC5T	5	1295250	1295250	G	Α	PCR	0.535	0.000
UTUC60T	5	1295250	1295250	G	Α	PCR	0.199	0.000
UTUC61T	5	1295228	1295228	G	А	PCR	0.563	0.000
UTUC66T	5	1295228	1295228	G	А	PCR	0.225	0.000
UTUC68T	5	1295228	1295228	G	Α	PCR	0.427	0.000
UTUC71T	5	1295228	1295228	G	А	PCR	0.173	0.000
UTUC73T	5	1295250	1295250	G	А	PCR	0.524	0.000
UTUC78T	5	1295250	1295250	G	А	PCR	0.599	0.000
UTUC7T	5	1295250	1295250	G	А	PCR	0.408	0.000
UTUC80T	5	1295228	1295228	G	А	PCR	0.548	0.000
UTUC83T	5	1295250	1295250	G	А	PCR	0.307	0.000
UTUC8T	5	1295228	1295228	G	А	PCR	0.569	0.000
UTUC90T	5	1295228	1295228	G	А	PCR	0.364	0.012

UTUC93T 3 TZ93ZZO TZ93ZZO G A PCR U.TST U.UUU		5 5	1295228	1295228	G	A		0.208	0.000
	0100901	5	1290220	1293220	G	A	PUR	0.131	0.000

Chr, chromosome; PCR, PCR–based deep sequencing; Sanger, Sanger sequencing.

Figure S2

Figure S2, related to Figure 1. Copy number alterations and fusion genes in UTUC.

(A) Color-gradient maps of copy number alterations determined by SNP array karyotyping for 199 UTUC samples.

(B) Significant chromosomal- (left) and focal-level (right) copy number gain/amplification (red) and loss/deletion (blue) lesions detected by GISTIC 2.0. Putative target genes within the corresponding loci are indicated.

(C) Breakpoints in fusion genes of *FGFR3* and its partner genes and the resulting schematics of proteins. Arrows on the introns and exons of each gene represent breakpoints.

(D) Gene expression levels (RNA sequencing) of *FGFR3* in tumor samples with various status of alterations and in normal urothelial epithelia samples. *P* values calculated by two-sided Mann Whitney *U* test and Bonferroni corrected. The median, first and third quartiles, as well as outliers, are indicated with whiskers extending to the furthest value within 1.5 of the interquartile range. SNV, single nucleotide variant. ***P* < 0.01, ****P* < 0.001.

Figure S3

С

Figure S3, related to Figure 1. Frequently altered driver genes in UTUC.

(A) Bar plots showing frequently altered genes (in > 10% of the entire cohort) in this study. Non-pathogenic mutations are also included.

(B) Mutation distributions for TP53 (top), HRAS/KRAS/NRAS (middle), and FGFR3 (bottom).

(C) Forest plots showing hazard ratios and corresponding q values (Exact Log-rank Test with Benjamini-Hochberg adjustment) by univariate analysis of driver gene alterations on disease–specific survival. Positively and negatively significant genes (q < 0.1) are shown in purple and green, respectively.

(**D** and **E**) Comparisons of frequency of common genetic lesions (left) between non-invasive (n = 98) vs. invasive UTUC (n = 101) (**D**) and non-invasive UBC (n = 93) vs. UTUC (n = 84) (**E**). Log₂-transformed odds ratios are also shown with 95% confidence intervals (right). Significant enrichment is shown by asterisks (q < 0.1, two-sided Fisher' s exact test with Benjamini-Hochberg adjustment for multiple testing) in (**D**) and (**E**).

TERT p., *TERT* promoter.

Figure S4, related to Figures 2 and 3. Clinical effects of combinations of subtype-defining genetic alterations.

(A) Genetic status of subtype-defining genes; *TP53*, *MDM2*, RAS, and *FGFR3*. Numbers of samples with alterations in these genes are shown in cross section.

(B-D) Disease-specific survival for samples harboring at least one mutation in *TP53* and *FGFR3* (B), *TP53* and RAS (C), and RAS and *FGFR3* (D).

(E) Disease-specific survival for samples harboring *MDM2* amplification with and without *FGFR3*/RAS mutation.

(F) Significant arm- and focal-level CNAs in the *TP53/MDM2-*, RAS-, *FGFR3*-mutated, and triple negative subtypes.

(G) Bar plots showing the frequency of each single base substitution (SBS) signature in each mutational subtype. SNV, single nucleotide variant.

(H) Log-scaled mutational burden of each mutational subtype of UTUC. *P* values calculated by two-sided Mann-Whitney *U* test with Bonferroni correction. * P < 0.05, ** P < 0.01, *** P < 0.001.

Hazard ratios (HRs) and 95% confidence intervals (CIs) calculated by Cox proportional-hazards model in **(B)–(E)**.

Figure S5

Figure S5, related to Figure 3. Validation study in the MSKCC UTUC and TCGA UBC cohort.

(A) Comparisons of frequency of common genetic lesions in invasive (left) and non-invasive (right) UTUC between our (blue) and MSKCC (green) cohort. Significant enrichment is shown by asterisks (q < 0.1, two-sided Fisher' s exact test with Benjamini-Hochberg adjustment for multiple testing). *TERT* p., *TERT* promoter.

(B) Statistically significant (q < 0.1, pairwise Fisher' s exact test with Benjamini-Hochberg adjustment) positive (red) and negative (blue) correlations of major genetic events in the combined data of our and MSKCC UTUC cohort.

(C) Landscape of somatic alterations in MSKCC UTUC cohort, which are grouped into five discrete subtypes when they are analyzed with the Japanese cohort. Significantly altered and/or positively selected driver genes in the Japanese cohort are indicated by asterisks.

(D) Clustering analysis of the non-hypermutated MSKCC UTUC cases alone.

(E) Frequencies of common genetic lesions and clinical/histological features across four non-hypermutated subtypes in our and MSKCC UTUC cohort. Significant enrichment is shown by asterisks (P < 0.05, two-sided Fisher's exact test).

(F) Disease-specific survival of four subtypes in MSKCC UTUC cohort.

(G) Landscape of somatic alterations (top), frequencies of common genetic lesions and clinical/histological features across four non-hypermutated subtypes (bottom left), and overall survival of five subtypes (bottom right) in the TCGA UBC cohort.

Hazard ratios (HRs) and 95% confidence intervals (CIs) calculated by Cox proportional-hazards model in **(F)** and **(G)**.

MSKCC, Memorial Sloan Kettering Cancer Center.

Figure S6, related to Figures 4 and 5. Expression subtypes in UTUC.

(A) Consensus clustering of gene expression data of in 158 UTUC samples using 2,000 most variably expressed genes. Delta area plot and consensus matrix of K = 5 (left) and integrated view of expression clustering combined with mutational subtypes, *TP53*, *MDM2*, RAS, and *FGFR3* mutations (right) are shown.

(B) Correlations between mutational and expression subtypes (left) and heatmap of Phi coefficients (right) in the TCGA UBC cohort.

(C) Disease-specific survival for different expression subtypes. Hazard ratios (HRs) and 95% confidence intervals (CIs) calculated by Cox proportional-hazards model.

(D) Heatmap showing expression level of biologically important signatures in UTUC expression subgroup, UBC subgroup (TCGA), and normal urothelial epithelia samples (left) and box plots of the normalized expression scores for each signature (right). Genes in each signature are in the same order as **Figure 4C**. The median, first and third quartiles, as well as outliers, are indicated with whiskers extending to the furthest value within 1.5 of the interquartile range in box plots. EMT, epithelial mesenchymal transition; ECM, extracellular matrix; APM, antigen presentation machinery.

(E) Bar plots showing the frequency of female in basal-like and other subtypes in the previous UBC and UTUC studies. MDA, MD Anderson Cancer Center; WCM, Weill Cornell Medicine. P values calculated by two-sided Fisher' s exact test. *P < 0.05; NS, not significant.

(F) Gene expression levels (RNA sequencing) of *PVRL4* and *ERBB2* in each expression subtype. *P* values calculated by two-sided Mann Whitney *U* test and Bonferroni corrected. The median, first and third quartiles, as well as outliers, are indicated with whiskers extending to the furthest value within 1.5 of the interquartile range. **P* < 0.05,***P* < 0.01, ****P* < 0.001.

Lp, luminal-papillary; Li, luminal-infiltrated; Lu, luminal; Bs, basal-squamous; Ne, neuronal.

Table S5, related to Figure 4. Genes involved in each expression signature.

Luminal	Basal	FGFR3	Squamous	Wild-type p53	EMT	ECM & smooth muscle	CD 8 T cell	lmmune checkpoint	APM	F-TBRS
FGFR3	KRT1	FGFR3	DSC3	ACTG2	ZEB1	PGM5	CD8A	CD274	HLA-A	ACTA2
FOXA1	CD44	TP63	GSDMC	CNN1	ZEB2	DES	GZMA	PDCD1LG2	B2M	COL4A1
GPX2	CDH3	IRS1	TGM1	MYH11	SNAI1	C7	GZMB	CTLA4	HLA-C	TAGLN
CYP2J2	KRT14	SEMA4B	PI3	MFAP4	TWIST1	SFRP4	GZMH	PDCD1	HLA-B	SH3PXD2A
PPARG	KRT16	PTPN13	TP63	PGM5	CDH2	COMP	GZMK	LAG3	TAP1	
KRT7	KRT5	TMPRSS4	DSC1	FLNC	VIM	SGCD	GZMM	HAVCR2	TAP2	
FABP4	KRT6A		DSC2	ACTC1	FOXC2	CNN1	PRF1	TIGIT		
KRT18	KRT6B		DSG1	DES	SNAI2	SYNM	CXCL9			
KRT19	KRT6C		DSG2	PCP4		ACTG2	CXCL10			
KRT20			DSG3			ACTC1	TBX21			
KRT8			S100A7			ACTA2	IFNG			
XBP1			S100A8			MYL9				
UPK1A						MYLH11				
UPK2						TAGLN				
ERBB2										
ERBB3										
GATA3										

EMT, epithelial-mesenchymal transition; ECM, extracellular matrix; APM, antigen presentation machinery; F-TBRS, pan-fibroblast TGFβ response signature.

Figure S7

Figure S7, related to Figures 4 and 5. Tumor microenvironment and methylation profile in UTUC.

(A) Heatmap showing immune and stromal expression profiles in five UTUC expression subgroups. Samples with C3 and C5 are further clustered into four and three small subclusters (C3a-d and C5a-c), respectively.

(B-D) Box plots showing the cytotoxic activity (B), mutational burden (C), and F-TBRS score (D) for each UTUC subgroup, UBC subgroup, and normal urothelial epithelia samples. The median, first and third quartiles, as well as outliers, are indicated with whiskers extending to the furthest value within 1.5 of the interquartile range. Lp, luminal-papillary; Li, luminal-infiltrated; Lu, luminal; Bs, basal-squamous; Ne, neuronal; UBC, urothelial bladder carcinoma; F-TBRS, pan fibroblast TGF β response signature.

(E) Disease-specific survival for patients in each consensus subtype.

(F) Mutational subtypes and alteration of subtype-defying genes in each consensus subtype. LumP, Luminal Papillary; LumNS, Luminal Non-specified; LumU, Luminal Unstable; Ba/Sq, basal/Squamous; NE-like, neuroendocrine-like in (E) and (F).

(G) Bar plots showing the frequencies of mutations in *TP53*, RAS, *FGFR3*, and chromatin modification genes as well as histopathological features in each methylation subtype. The frequencies were compared between CIMP and non-CIMP subtypes by two-sided Fisher's exact test. *P < 0.05, **P < 0.01.

(H) Disease-specific survival for patients in each methylation subtype. Hazard ratios (HRs) and 95% confidence intervals (CIs) calculated by Cox proportional-hazards model.

(I) Four clusters identified by cluster of cluster assignments analysis (top) and heatmap of adjusted Rand index between COCA, mutational, expression, and methylation subtypes (bottom). Mut., mutational subtypes; Expr., expression subtypes; Methyl., methylation subtypes.

(J) Disease-specific survival for patients in each COCA cluster.

(K) Bar plots showing the log likelihood values of two survival models (top) and ROC analysis for the prediction of disease-specific survival in the MSKCC UTUC cohort (bottom). *P < 0.01. Mut. subtype, mutational subtype.

(L) HRs with 95% CIs for covariates significantly included in Cox proportional-hazards modeling of disease-specific survival. Factors that were significantly associated with disease-specific survival are

Figure S8

primary tumors

Figure S8, related to Figure 6. Urinary sediment-derived DNA sequencing.

(A) Bar plots showing depth (top) and coverage (bottom) of targeted-capture sequencing.

(B) A table showing correspondence of urinary cytology criteria in our institution classification and the Paris System. HGUC, high grade urothelial carcinoma; LGUN, low grade urothelial neoplasia.

(C) VAFs of mutations in urinary samples (top) and numbers of mutations (bottom) in primary tumors and/or urinary samples. Mutations shared by primary tumors and urinary samples, detected only in primary tumors, and only in urinary samples are shown in different colors.

(D) Bar plots with 95% confidence interval error bars indicating sensitivity of sequencing by the severity of hematuria (top) and pyuria (bottom).

(E) Diagonal plots of variant allele frequencies between mutations detected in the primary tumor and corresponding preoperative urinary sediment samples obtained from voided urine (left) or pre-obstructive pelvic urine (middle) in a case with severe hydronephrosis (UTUC203), as shown in the right schema.

(F) Comparisons of VAFs between primary tumors and preoperative urinary sediment in a case with bilateral tumor-induced hydronephrosis with different severities as shown in the schema (UTUC260). Note that left and right tumor shared no mutation except for *FGFR3* c.C742T.

(G) A histogram of numbers of mutations in the 30 panel genes detected by whole exome sequencing in non-hypermutated (pink) and hypermutated (blue) samples.

(H) Numbers of mutations detected in urinary sediment samples in non-hypermutated (pink) and hypermutated (blue) samples. A threshold of hyper- and non-hypermutated (green) and the median, first and third quartile (black) are indicated. *P* value calculated by two-sided Mann-Whitney *U* test. ***P* < 0.01.

VAF, variant allele frequency.

Table S6, related to Figure	e 6. Patients' back	grounds of urinary	sediment-derived D	NA sequencing.
-----------------------------	---------------------	--------------------	--------------------	----------------

		P	reoperative	urine samp	es	Postoperative urine samples			
Characteristics	Entire cohort (<i>n</i> = 199)	Primary cohort (n = 41)	P -value (vs. entire cohort)	Validation cohort (n = 32)	<i>P</i> -value (vs. entire cohort)	Primary cohort (n = 25)	P -value (vs. entire cohort)	Validation cohort (n = 12)	<i>P</i> -value (vs. entire cohort)
Sex									
Male	139	31		22		16		8	
Female	60	10	0.57	10	1.00	9	0.65	4	0.76
T-category									
Та	50	9		8		4		3	
T1	49	11		8		8		1	
T2	13	3		2		1		1	
Т3	80	17		12		11		7	
Τ4	7	1	0.98	2	0.93	1	0.93	0	0.63
Grade									
Low	90	13		9		10		5	
High	109	28	0.12	23	0.08	15	0.67	7	1.00
Location									
Pelvis	123	24		19		15		5	
Ureter	65	16		13		9		7	
Unknown	11	1	0.67	0	0.40	1	0.93	0	0.22
Squamous									
positive	23	3		1		1		1	
negative	176	38	0.58	31	0.21	24	0.49	11	1.00
Mutational subtype									
Hypermutated	11	2		5		1		1	
TP53/MDM2-mutated	75	17		13		11		5	
RAS-mutated	30	3		3		0		3	
FGFR3-mutated	70	14		11		10		2	
Triple-negative	13	5	0.53	0	0.18	3	0.16	1	0.50

P values calculated by two-sided Fisher's exact test.

Table S8, related to Figure 6. Summary of urinary sediment-derived DNA sequencing and urinary cytology.

		Cancer d	letection		Mutation	dotoction	Eocal CNA detection		
	Sequ	encing	Cyt	ology	witation	detection	FOCAI CINA	detection	
Cohort	Number of positive samples	Sensitivity (95% CI)	Number of positive samples	Sensitivity (95% CI)	mutations (Urine/Tumor	Sensitivity (95% Cl)	Multipler of mutations (Urine/Tumor	Sensitivity (95% CI)	
Primary cohort	32/41	78.0% (62.4-89.4%)	12/41	29.3% (16.1-45.5%)	136/203	67.0% (60.1-73.4%)	26/27	96.3% (81.0-99.9%)	
Validation cohor	28/32	87.5% (71.0-96.5%)	12/32	37.5% (21.1-56.3%)	147/177	83.1% (76.7-88.3%)	23/31	74.2% (55.4-88.1%)	
All	60/73	82.2% (71.5-90.2%)	24/73	32.9% (22.3-44.9%)	283/380	74.5% (69.8-78.8%)	49/58	84.5% (72.6-92.7%)	
Non-urothelial cancer patients	0/18	0% (0-18.5%)	2/18	11.1% (1.4%-34.7%)	_	_	_	_	

CNA, copy number alteration; CI, confidence interval.