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Supplementary Figure 1: Additional analysis of fCpG identification process 
A: Venn diagram showing the overlap of CpG loci identified as fCpGs in the colon and the 
small intestine. B: Scatter density plot (with the density plotted on the log-scale) of the 
heterogeneity metric (mean intra-patient standard deviation) of CpGs in the colon and 
small intestine, with the cutoff of the top 5% most heterogenous loci indicated in red. C: 
Comparison of the heterogeneity metric of the colon exclusive fCpG loci (i.e. those 
identified in the colon but not the small intestine) to all type II CpGs, within the small 
intestine samples (center line, median; box limits, upper and lower quartiles; whiskers, 1.5 
IQR).  The colon exclusive CpG loci are significantly more variable (𝑝𝑝 < 2 × 10−16, two-
sided Mann Whitney U test). D: An extension of the fCpG identification process to CpG 
loci located on the X chromosome. (left) We present example methylation distributions for 
these X-chromosome fCpG loci for a male and a female crypt, confirming the predictions 
from theory that the male crypts lack the peak at 50% as they contain only a single copy. 
(right) To test whether this relationship holds in general, we compare the proportion of 
fCpG’s on the X chromosome with an intermediate beta value (0.4 ≤ 𝛽𝛽 ≤ 0.6) between all 
colon crypts from males and females (center line, median; box limits, upper and lower 
quartiles; whiskers, 1.5 IQR), confirming that males have a significantly lower probability 
mass near 50% (𝑝𝑝 = 3.9 × 10−6, two-sided Mann Whitney U test). 



 4 
Evidence for fluctuating human CpG sites 5 
 6 
Oscillatory DNA methylation has been previously documented in cell lines systems where 7 
changes in DNA methylation have been directly observed and correlated with changes in 8 
gene expression and developmental cell fates1–4. These active changes in DNA methylation 9 
are modulated by Tet and Dnmt family enzymes, and occur over hours or a few days. By 10 
contrast, the erratic fluctuations at fCpG loci outlined in this paper occur over years and in 11 
adult human tissues. For these fCpG loci, the proposed mechanism is more likely stochastic 12 
replication errors, where DNA methylation and demethylation are equally likely. 13 
 14 
Such stochastic, neutral changes in DNA methylation are more likely to occur in non-genic 15 
or non-regulatory CpG sites rather than in expressed genes that could alter cell phenotypes. 16 
The identified fCpG loci were relatively enriched for non-genic CpG sites (Fig. 2B) and were 17 
about three times less likely to be in promoter regions that largely control gene expression. 18 
Moreover, genes with promoter fCpG sites had significantly lower expression than genes 19 
without promoter fCpG loci (𝑝𝑝 < 0.001 Welch's t-test performed upon the log-transformed 20 
data, Fig. S2A). We note that none of the genes with promoter fCpG sites had an expression 21 
greater than 10 TPM, a typical cutoff for “intermediate” expression. Hence, fCpG methylation 22 
variation is unlikely to be associated with cell differentiation or actively confer significant 23 
changes in phenotype. 24 
 25 
Although direct serial observations of the methylation and demethylation of fCpG loci in the 26 
same human colon crypt are impractical, the proposed stochastic mechanism has testable 27 
predictions. We illustrate some of these predictions by comparing methylation extremes, 28 
defined as “0” if the methylation is less than 0.2 and “1” if the methylation is greater than 0.8 29 
(Fig. S2B). The clonal crypts have hundreds of fCpG sites with values of either “0” or “1”, 30 
which should effectively serve as lineage barcodes over short time intervals. (CpG sites with 31 
methylation between 0.2 and 0.8 are not compared.) For example, two identical samples 32 
should have the same barcode. With increasing time, the fluctuations should randomize the 33 
fCpG methylation, and the probability of matching should be about 0.5, or the same as 34 
flipping a coin. 35 
 36 
We compared FMCs between the top and bottoms of colon crypts (Fig. S2C). Crypt stem 37 
cells are located in the bottoms of crypts and cell differentiation occurs at crypt bottoms. 38 
Differentiated cells migrate upwards and the tops of crypts are differentiated cells that are 39 
lost within a week. As expected for a relatively short interval of a week, there was minimal 40 
switching between 0 to 1 or 1 to 0 between the top and bottom of the same crypt (Fig. S2D). 41 
This data also indicates the fluctuations in methylation pattern are not associated with cell 42 
differentiation. 43 
 44 
By contrast, essentially a random distribution was found when FMCs were compared 45 
between adult crypts from different individuals or within an individual, with an average 46 
identity of barcodes of about 0.5 (Fig. S2E). The youngest individual was 17 years old, 47 
providing many years for methylation fluctuations to randomize between crypts that last 48 
share a common ancestor before birth. Consistent with a requirement for time for 49 
randomization, there was a trend for increasingly more random barcodes with age, with 50 
younger individuals tending to have more similar fCpG barcodes (Fig. S2F).  51 
 52 



In summary, although we are unable to directly observe changes in the fCpG loci 53 
methylation, these observations are consistent with fluctuations in methylation at CpG sites 54 
with change occurring over many years. The fCpG sites do not switch during cell 55 
differentiation occurring over a week, and are rarely found in promoter regions or in highly 56 
expressed genes. Consistent with stochastic fluctuations that occur independently in 57 
different cells, FMC barcodes are essentially randomized between adult crypts from different 58 
individuals, and become increasingly different with aging within an individual. These findings 59 
are more consistent with dynamic methylation fluctuations that randomly change between 0, 60 
0.5 and 1.0, rather than active regulatory oscillations or static random states. The FMCs 61 
distribution reflect the population structure of their cells. In stable polyclonal populations, the 62 
fCpG sites are asynchronous between cells and average methylation will be around 0.5, with 63 
narrow distributions as seen in normal whole blood. However, fCpG sites become 64 
synchronized in clonal populations and exhibit “W” shaped distributions, as seen in normal 65 
human crypts, endometrial glands and clonal hematopoiesis.  66 
 67 



 
Supplementary Figure 2: Additional evidence supporting the existence of 
fluctuating CpG loci 
A: RNA expression is on average 3 times lower (𝑝𝑝 = 3.0 × 10−28 two-sided Welch's t-test 
performed upon the log-transformed data) for genes with fCpG sites in their promoter 
regions compared to genes without promotor fCpG loci in the colon (RNAseq single cell 
data from GSE132257 - center line, median; box limits, upper and lower quartiles; 
whiskers, 1.5 IQR). B: FMC methylation reversibly fluctuates between 0, 50 and 100% 
methylated. Two samples can be compared by counting the number of fCpG loci that 
switch from 0 to 1 or vice versa. C: Colon crypts have small numbers of undifferentiated 
stem cells at their bases/bottoms. Cell differentiation occurs near crypt bottoms and fully 
differentiated cells migrate upwards and are lost within a week or two. D: Comparisons 



between four top and bottom halves of the same crypts reveals FMC barcode methylation 
(0 or 1) is nearly always identical (986/988 barcode comparisons). E: Comparisons of 
colon and SI crypt FMC barcode methylation between and within individuals. The 
probability of another crypt having the same 0 or 1 barcode is approximately 0.5, or 
essentially random. F: Performing pairwise comparisons of the proportion of fCpG loci with 
the same 0 or 1 barcode, there was a slight trend towards increasingly random barcodes 
with age. Confidence band was calculated via bootstrapping and represents 95% 
confidence intervals. 

 68 

Derivation of model describing methylation within the stem cell niche 69 
 70 

Consider a single fCpG locus within a fixed population of 𝑆𝑆 stem cells. Within each stem cell, 71 
the locus is assumed to be diploid, so each stem cell contains 2 alleles at this locus. In this 72 
way, there are 3 possible “states” for a given stem cell, (i) neither allele methylated, (ii) both 73 
alleles methylated, (iii) or one allele methylated whilst the other is unmethylated. We are 74 
interested in the population methylation level, so we assume that the population is well-75 
mixed, which allows us to characterize the system using just 2 state variables: 𝑘𝑘 – the 76 
number of stem cells containing a single methylated allele, and 𝑚𝑚 – the number of stem cells 77 
containing 2 methylated alleles. The number of stem cells containing 0 methylated alleles is 78 
then given by 𝑆𝑆 −𝑚𝑚 − 𝑘𝑘.  79 
 80 

The states are constrained such that 0 ≤ 𝑘𝑘,𝑚𝑚 ≤ 𝑆𝑆 and 𝑘𝑘 + 𝑚𝑚 ≤ 𝑆𝑆, which allows us to 81 
calculate the total number of possible states by considering all possible combinations of 𝑘𝑘 82 
and 𝑚𝑚. If we first consider the case when 𝑚𝑚 = 0, then 𝑘𝑘 can take any value between 0 and 𝑆𝑆 83 
giving a total of 𝑆𝑆 + 1 states. If we next consider the 𝑚𝑚 = 1 case, then 𝑘𝑘 can take any value 84 
between 0 and 𝑆𝑆 − 1, a total of 𝑆𝑆 states. We can continue in this fashion for each of the 𝑆𝑆 + 1 85 
possible states for 𝑚𝑚, such that the total number of states is 86 
 

� 𝑆𝑆 + 1 −𝑚𝑚
𝑆𝑆

𝑚𝑚=0

=
1
2

(𝑆𝑆 + 1)(𝑆𝑆 + 2) 1 

 87 
We assume that there are three possible processes that can change the population 88 
methylation level (𝑘𝑘,𝑚𝑚) → (𝑘𝑘′,𝑚𝑚′): 89 

(1) an unmethylated allele spontaneously becoming methylated (which, for a single 90 
unmethylated CpG locus, occurs at a rate 𝜇𝜇 per allele per stem cell per year) 91 

(2) a methylated allele spontaneously becoming unmethylated (which occurs at a 92 
rate 𝛾𝛾 per allele per stem cell per year) 93 

(3) one stem cell replacing one of the other 𝑆𝑆 − 1 stem cells (which occurs at a rate 𝜆𝜆 94 
per stem cell per year). 95 

To formulate a system of differential equations that characterize the rates at which the 96 
population methylation changes, we first consider the probability the system in state (𝑘𝑘,𝑚𝑚) at 97 
time 𝑡𝑡 transitions to state (𝑘𝑘′,𝑚𝑚′) within the time 𝑡𝑡 + 𝛿𝛿𝑡𝑡 (where we assume 𝛿𝛿𝑡𝑡 is small 98 
enough that the probability of a “double-jump” is negligible).  99 
 100 

If we are in state (𝑘𝑘,𝑚𝑚), then the probability that one of the 𝑘𝑘 heterozygous methylated stem 101 
cells becomes unmethylated (via process (2)) in a time period 𝛿𝛿𝑡𝑡 is: 102 
 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 − 1,𝑚𝑚)� = 𝑘𝑘𝛾𝛾𝛿𝛿𝑡𝑡 2 



 103 

And the probability that the one of the 𝑚𝑚 homozygous methylated stem cells (representing 104 
2m methylated alleles) undergoes process (2) is: 105 
 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 + 1,𝑚𝑚 − 1)� = 2𝑚𝑚𝛾𝛾𝛿𝛿𝑡𝑡 3 

 106 

Similarly, considering methylation (process (1)), there are a total of 2𝑆𝑆 − 𝑘𝑘 − 2𝑚𝑚 107 
unmethylated alleles where the process could occur. The probability that one of the 108 
homozygous S-k-m unmethylated stem cells becomes heterozygous is: 109 
 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 + 1,𝑚𝑚)� = 2(𝑆𝑆 − 𝑘𝑘 −𝑚𝑚)𝜇𝜇𝛿𝛿𝑡𝑡 4 

 110 
And the probability that one of the heterozygous methylated stem cells becomes 111 
homozygous methylated is:  112 
 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 − 1,𝑚𝑚 + 1)� = 𝑘𝑘𝜇𝜇𝛿𝛿𝑡𝑡 5 

 113 

Let us now consider the replacement process. In a time period 𝛿𝛿𝑡𝑡 the probability that a 114 
replacement occurs is 𝑆𝑆𝜆𝜆𝛿𝛿𝑡𝑡. There are 𝑆𝑆(𝑆𝑆 − 1) possible replacements: 𝑆𝑆 possible cells that 115 
can expand, which must replace any of the 𝑆𝑆 − 1 other cells. To go from state (𝑘𝑘,𝑚𝑚) to a 116 
different state (𝑘𝑘′,𝑚𝑚′), we require the expanding stem cell to replace a cell with a different 117 
methylation status. Therefore, the probability of the transition (𝑘𝑘,𝑚𝑚) → (𝑘𝑘′,𝑚𝑚′) is equal to the 118 
probability that any of the cells replaces another, 𝑆𝑆𝜆𝜆𝛿𝛿𝑡𝑡, multiplied by the number of ways that 119 
particular transition could occur, and normalized by the total possible number of transitions.  120 
 121 
To give a concrete example, consider the stem the cell niche illustrated in Figure 1C, which 122 
contains 5 stem cells and is initially in the state (𝑘𝑘 = 3,𝑚𝑚 = 1). There are a total of 5 ∗ 4 =123 
20 possible replacements. Clearly, if one of the heterozygous stem cells replaces another of 124 
the heterozygous stem cells, the population methylation level will not change. To jump to the 125 
state (𝑘𝑘 = 3,𝑚𝑚 = 2) as illustrated in Figure 1C, only one replacement (the homozygous 126 
methylated stem cell replacing the homozygous unmethylated stem cell) allows the specified 127 
jump, hence the probability of the jump (3,1) → (3,2) in the time 𝛿𝛿𝑡𝑡 is 1

5∗4
5𝜆𝜆𝛿𝛿𝑡𝑡 = 1

4
𝜆𝜆𝛿𝛿𝑡𝑡. To 128 

generalise this, the fraction of possible transitions that give rise to the particular jump 129 
(𝑘𝑘,𝑚𝑚) → (𝑘𝑘′,𝑚𝑚′) is equal to the multiplicity of the expanding cell multiplied by the multiplicity 130 
of the replaced cell, divided by 𝑆𝑆(𝑆𝑆 − 1). 131 

 132 
Applying the same logic, we can derive the probability of all six possible state transitions via 133 
replacement: 134 
 

P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘,𝑚𝑚 + 1)� =  
𝑚𝑚(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡

𝑆𝑆 − 1
 6 

 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 + 1,𝑚𝑚)� =  

𝑘𝑘(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

 7 

 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 − 1,𝑚𝑚 + 1)� =
𝑘𝑘𝑚𝑚𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

  8 

 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 + 1,𝑚𝑚− 1)� =
𝑘𝑘𝑚𝑚𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

 9 



 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘,𝑚𝑚− 1)� =  

𝑚𝑚(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

 10 

 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 − 1,𝑚𝑚)� =  

𝑘𝑘(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

 11 

 135 
The methylation switching and replacement processes that we have considered separately 136 
above are independent, allowing us to simply add the probabilities together (again, 137 
assuming that 𝛿𝛿𝑡𝑡 is small enough that the probability of two processes occurring in 𝛿𝛿𝑡𝑡 is 138 
negligible) to find the total probability that a given transition would occur: 139 
 

P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘,𝑚𝑚 + 1)� =  
𝑚𝑚(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡

𝑆𝑆 − 1
 12 

 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 + 1,𝑚𝑚)� =  

𝑘𝑘(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ 2(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜇𝜇𝛿𝛿𝑡𝑡 13 

 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 − 1,𝑚𝑚 + 1)� =
𝑘𝑘𝑚𝑚𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ 𝑘𝑘𝜇𝜇𝛿𝛿𝑡𝑡  14 

 P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 + 1,𝑚𝑚 − 1)� =
𝑘𝑘𝑚𝑚𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ 2𝑚𝑚𝛾𝛾𝛿𝛿𝑡𝑡 15 

 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘,𝑚𝑚 − 1)� =  

𝑚𝑚(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

 16 

 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘 − 1,𝑚𝑚)� =  

𝑘𝑘(𝑆𝑆 −𝑚𝑚 − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ 𝑘𝑘𝛾𝛾𝛿𝛿𝑡𝑡 17 

 140 

We have considered above the transitions leading “out” of the state (𝑘𝑘,𝑚𝑚) into adjacent 141 
states (𝑘𝑘′,𝑚𝑚′). However, we can also consider the jumps “into” the state (𝑘𝑘,𝑚𝑚) from the 142 
adjacent states (𝑘𝑘′,𝑚𝑚′): 143 
 

P�(𝑘𝑘,𝑚𝑚 − 1) → (𝑘𝑘,𝑚𝑚)� =  
(𝑚𝑚 − 1)(𝑆𝑆 − (𝑚𝑚 − 1) − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡

𝑆𝑆 − 1
 18 

 
P�(𝑘𝑘 − 1,𝑚𝑚) → (𝑘𝑘,𝑚𝑚)� =  

(𝑘𝑘 − 1)�𝑆𝑆 − 𝑚𝑚 − (𝑘𝑘 − 1)�𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ 2�𝑆𝑆 − 𝑚𝑚 − (𝑘𝑘 − 1)�𝜇𝜇𝛿𝛿𝑡𝑡 19 

 
P�(𝑘𝑘 + 1,𝑚𝑚− 1) → (𝑘𝑘,𝑚𝑚)� =

(𝑘𝑘 + 1)(𝑚𝑚− 1)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ (𝑘𝑘 + 1)𝜇𝜇𝛿𝛿𝑡𝑡  20 

 
P�(𝑘𝑘 − 1,𝑚𝑚 + 1) → (𝑘𝑘,𝑚𝑚)� =

(𝑘𝑘 − 1)(𝑚𝑚 + 1)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ 2(𝑚𝑚 + 1)𝛾𝛾𝛿𝛿𝑡𝑡 

 
21 

 
P�(𝑘𝑘,𝑚𝑚 + 1) → (𝑘𝑘,𝑚𝑚)� =  

𝑚𝑚(𝑆𝑆 − (𝑚𝑚 + 1) − 𝑘𝑘)𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

 22 

 
P�(𝑘𝑘 + 1,𝑚𝑚) → (𝑘𝑘,𝑚𝑚)� =  

(𝑘𝑘 + 1)�𝑆𝑆 −𝑚𝑚 − (𝑘𝑘 + 1)�𝜆𝜆𝛿𝛿𝑡𝑡
𝑆𝑆 − 1

+ (𝑘𝑘 + 1)𝛾𝛾𝛿𝛿𝑡𝑡 

 

23 

So far, we have considered the probability that the system changes from state (𝑘𝑘,𝑚𝑚) to state 144 
(𝑘𝑘′,𝑚𝑚′) within time 𝛿𝛿𝑡𝑡. However, we primarily want to know the probability of the system 145 
being in state (𝑘𝑘,𝑚𝑚) at time 𝑡𝑡, P(𝑘𝑘,𝑚𝑚; 𝑡𝑡), and how this changes over time. For the system to 146 
be in state (𝑘𝑘,𝑚𝑚) at time 𝑡𝑡 + 𝛿𝛿𝑡𝑡, either (i) the system must have been in state (𝑘𝑘,𝑚𝑚) at time 𝑡𝑡 147 
and has not transitioned out of the state (which is equal to 1 minus the probability of 148 
transitioning to an adjacent state, defined by equations 12-17), (ii) or the system was in a 149 



different (adjacent) state (𝑘𝑘′,𝑚𝑚′) at time 𝑡𝑡 and has transitioned into the state (𝑘𝑘,𝑚𝑚) in time 𝛿𝛿𝑡𝑡 150 
(defined by equations 18-23): 151 
 

P(𝑘𝑘,𝑚𝑚; 𝑡𝑡 + 𝛿𝛿𝑡𝑡) = P(𝑘𝑘,𝑚𝑚; 𝑡𝑡)�1 − � P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘′,𝑚𝑚′)�
𝑘𝑘′,𝑚𝑚′

�

+ � P(𝑘𝑘′,𝑚𝑚′; 𝑡𝑡)P�(𝑘𝑘′,𝑚𝑚′) → (𝑘𝑘,𝑚𝑚)�
𝑘𝑘′,𝑚𝑚′

 

24 

 152 

We can rearrange equation 24, factoring out the common factor of 𝛿𝛿𝑡𝑡 in the P�(𝑘𝑘′,𝑚𝑚′) →153 
(𝑘𝑘,𝑚𝑚)� terms and take the limit 𝛿𝛿𝑡𝑡 → 0: 154 

 𝑑𝑑P(𝑘𝑘,𝑚𝑚; 𝑡𝑡)
𝑑𝑑𝑡𝑡

= lim
𝛿𝛿𝛿𝛿→0

�
P(𝑘𝑘,𝑚𝑚; 𝑡𝑡 + 𝛿𝛿𝑡𝑡) − P(𝑘𝑘,𝑚𝑚; 𝑡𝑡) 

𝛿𝛿𝑡𝑡 �

= � P(𝑘𝑘′,𝑚𝑚′; 𝑡𝑡)
P�(𝑘𝑘′,𝑚𝑚′) → (𝑘𝑘,𝑚𝑚)�

𝛿𝛿𝑡𝑡
𝑘𝑘′,𝑚𝑚′

−  P(𝑘𝑘,𝑚𝑚; 𝑡𝑡) 
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘′,𝑚𝑚′)�

𝛿𝛿𝑡𝑡
 

25 

 155 
The sum over equation 12-17 in the final term evaluates as: 156 
 

�
P�(𝑘𝑘,𝑚𝑚) → (𝑘𝑘′,𝑚𝑚′)�

𝛿𝛿𝑡𝑡
𝑘𝑘′,𝑚𝑚′

= �𝑘𝑘(𝑆𝑆 − 𝑘𝑘) + 𝑚𝑚(𝑆𝑆 − 𝑘𝑘 −𝑚𝑚)�
2𝜆𝜆
𝑆𝑆 − 1

+ �2𝑆𝑆 − (𝑘𝑘 + 2𝑚𝑚)�𝜇𝜇 + (𝑘𝑘 + 2𝑚𝑚)𝛾𝛾 

 

26 

Due to the constraints on 𝑘𝑘 and 𝑚𝑚, we consider the differential equations for (𝑘𝑘 = 0,𝑚𝑚 = 0), 157 
(𝑘𝑘 = 𝑆𝑆,𝑚𝑚 = 0) and (𝑘𝑘 = 0,𝑚𝑚 = 𝑆𝑆) separately. Combining equations 25, 26 and 18-23, we 158 
derive the following set of differential equations: 159 
 𝑑𝑑P(0,0|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

𝑑𝑑𝑡𝑡
= (𝜆𝜆 + 𝛾𝛾)P(1,0|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡) + 𝜆𝜆P(0,1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡) − 𝑆𝑆𝜇𝜇P(0,0|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡) 27 

 𝑑𝑑P(𝑆𝑆, 0|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)
𝑑𝑑𝑡𝑡

= (𝜆𝜆 + 2𝜇𝜇)P(𝑆𝑆 − 1,0|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)
+ (𝜆𝜆 + 2𝛾𝛾)P(𝑆𝑆 − 1,1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)
− 𝑆𝑆(𝜇𝜇 + 𝛾𝛾)P(𝑆𝑆, 0|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡) 

28 

 𝑑𝑑P(0, 𝑆𝑆|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)
𝑑𝑑𝑡𝑡

= (𝜆𝜆 + 𝜇𝜇)P(1, 𝑆𝑆 − 1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

+ 𝜆𝜆P(0,𝑆𝑆 − 1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)
− 𝑆𝑆𝛾𝛾P(0,𝑆𝑆|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡) 

29 

 160 
Otherwise: 161 



 𝑑𝑑P(𝑘𝑘,𝑚𝑚|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)
𝑑𝑑𝑡𝑡

= �𝑆𝑆 − 𝑚𝑚 − (𝑘𝑘 − 1)� �(𝑘𝑘 − 1)
𝜆𝜆

𝑆𝑆 − 1
+ 2𝜇𝜇� P(𝑘𝑘 − 1,𝑚𝑚|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

+ (𝑚𝑚 − 1)(𝑆𝑆 − (𝑚𝑚 − 1) − 𝑘𝑘)
𝜆𝜆

𝑆𝑆 − 1
P(𝑘𝑘,𝑚𝑚 − 1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

+ (𝑘𝑘 + 1)�(𝑚𝑚− 1)
𝜆𝜆

𝑆𝑆 − 1
+ 𝜇𝜇� P(𝑘𝑘 + 1,𝑚𝑚 − 1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

+ (𝑘𝑘 + 1)��𝑆𝑆 −𝑚𝑚 − (𝑘𝑘 + 1)�
𝜆𝜆

𝑆𝑆 − 1
+ 𝛾𝛾� P(𝑘𝑘 + 1,𝑚𝑚|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

+ (𝑚𝑚 + 1)(𝑆𝑆 − (𝑚𝑚 + 1) − 𝑘𝑘)
𝜆𝜆

𝑆𝑆 − 1
P(𝑘𝑘,𝑚𝑚 + 1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

+ (𝑚𝑚 + 1)�(𝑘𝑘 − 1)
𝜆𝜆

𝑆𝑆 − 1
+ 2𝛾𝛾�P(𝑘𝑘 − 1,𝑚𝑚 + 1|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡)

− (2�𝑘𝑘(𝑆𝑆 − 𝑘𝑘) +𝑚𝑚(𝑆𝑆 − 𝑘𝑘 −𝑚𝑚)�
𝜆𝜆

𝑆𝑆 − 1
+ �2𝑆𝑆 − (𝑘𝑘 + 2𝑚𝑚)�𝜇𝜇

+ (𝑘𝑘 + 2𝑚𝑚)𝛾𝛾)P(𝑘𝑘,𝑚𝑚|𝜆𝜆, 𝜇𝜇, 𝛾𝛾; 𝑡𝑡) 
 

30 

This master equation determines how the methylation statues of a single CpG locus within 162 
the stem cell niche evolves over time. The replacement, methylation and demethylation rate 163 
are assumed to be constant, hence this process is Markovian and we are able to solve this 164 
using standard matrix exponentiation. 165 
 166 

Bayesian analysis of the effect of tissue location and disease state on stem cell 167 
dynamics 168 
 169 
The Bayesian pipeline described in the main body of the text allowed the posterior 170 
distribution of the parameters defining the stem cell dynamics (namely, the effective number 171 
of stem cells, 𝑆𝑆, and the replacement rate per stem cell, 𝜆𝜆) of each individual crypt to be 172 
inferred. To interrogate the effect of age, sex, tissue location (colon, small intestine and 173 
endometrium) and the disease state of colonic crypts (AFAP/FAP) on stem cell dynamics, 174 
we take the posterior mean of 𝑆𝑆 and 𝜆𝜆 as representative of the inferred distribution for each 175 
crypt. 176 

As a matter of notation, let there be 𝐾𝐾 patients subscripted with 𝑘𝑘 = [1 . .  𝐾𝐾] and 𝑁𝑁 crypts 177 
subscripted with 𝑖𝑖 = [1 . .  𝑁𝑁]. The age of the 𝑘𝑘𝛿𝛿ℎ patient is 𝑡𝑡𝑘𝑘, which we normalise to be 178 
between 0 and 1 by dividing each patient’s age by the maximum age in the patient cohort. 179 
Similarly, the sex the 𝑘𝑘𝛿𝛿ℎ patient is encoded as a dummy variable, which equals 0 for female 180 
patients and 1 for male patients. The location/disease state of each crypt is encoded with the 181 
dummy variables  𝑥𝑥𝑖𝑖,𝑗𝑗 for 𝑗𝑗 ∈ {𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑆𝑆𝑚𝑚𝑆𝑆𝐶𝐶𝐶𝐶 𝐼𝐼𝐶𝐶𝑡𝑡𝐼𝐼𝐼𝐼𝑡𝑡𝑖𝑖𝐶𝐶𝐼𝐼,𝐹𝐹𝐹𝐹𝐹𝐹,  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹,𝐸𝐸𝐶𝐶𝑑𝑑𝐶𝐶𝑚𝑚𝐼𝐼𝑡𝑡𝐸𝐸𝑖𝑖𝐸𝐸𝑚𝑚}.  182 

We fit the parameters determining stem cell dynamics 𝑦𝑦 = {𝑆𝑆, 𝜆𝜆} using a generalised linear 183 
model with a gamma-distributed dependent variable (this accounts for the fact 𝑆𝑆 and 𝜆𝜆 are 184 
strictly positive). Let 𝑦𝑦𝑖𝑖,𝑘𝑘 be the dependent variable with expectation 𝑦𝑦�𝑖𝑖,𝑘𝑘, then we employ the 185 
natural log as a link function 𝑔𝑔�𝑦𝑦�𝑖𝑖,𝑘𝑘� = ln�𝑦𝑦�𝑖𝑖,𝑘𝑘�. 𝑦𝑦𝑖𝑖,𝑘𝑘 is then gamma distributed with mean 𝑦𝑦�𝑖𝑖,𝑘𝑘 186 
and a tissue/disease-specific standard deviation 𝜙𝜙𝑗𝑗. 187 

We use the parameterization of the gamma distribution in terms of its shape (𝜓𝜓) and rate 188 
(𝜔𝜔): 189 



Gamma(𝑦𝑦|𝜓𝜓,𝜔𝜔) =
𝜔𝜔𝜓𝜓

Γ(ψ)𝑦𝑦
𝜓𝜓−1𝐼𝐼−𝜔𝜔𝜔𝜔 190 

The mean of this distribution is 𝜓𝜓
𝜔𝜔

 and the variance is 𝜓𝜓
𝜔𝜔2. Hence, to parameterize the gamma 191 

distribution in terms of its mean (𝑦𝑦�) and standard deviation (𝜙𝜙), we apply the transformation 192 
𝜓𝜓 = 𝜔𝜔�2

𝜙𝜙2
, 𝜔𝜔 = 𝜔𝜔�

𝜙𝜙2
. 193 

Our dataset contains multiple samples from the same patient, so we assume the offset in the 194 
linear predictor is drawn for each patient from a hierarchical normal distribution with mean 𝜈𝜈 195 
and variation 𝜎𝜎 (hence accounting for random inter-patient variability, not attributable to the 196 
factors we are explicitly modelling). Similarly, to maximize the information that can be drawn 197 
from the data, we allowed the tissue/disease-specific intrapatient standard deviation, 𝜙𝜙𝑗𝑗, to 198 
be drawn from a lognormal distribution, with a population mean 𝜌𝜌 and standard deviation 𝜁𝜁. 199 
Priors: 200 

𝑆𝑆𝑘𝑘~normal(𝜈𝜈,  𝜎𝜎) 201 

ln�𝜙𝜙𝑗𝑗�~normal(𝜌𝜌, 𝜁𝜁) 202 

Model: 203 

ln�𝑦𝑦�𝑖𝑖,𝑘𝑘� = 𝑆𝑆𝑘𝑘 + 𝑏𝑏𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗 +  𝑐𝑐𝑡𝑡𝑘𝑘 + 𝑑𝑑𝐼𝐼𝑘𝑘 204 

𝑦𝑦𝑖𝑖,𝑘𝑘~gamma�
𝑦𝑦�𝑖𝑖,𝑘𝑘

2

𝜙𝜙𝑗𝑗2
,
𝑦𝑦�𝑖𝑖,𝑘𝑘
𝜙𝜙𝑗𝑗2

� 205 

The hierarchical Bayesian model was fit to the data using pystan, a python implementation 206 
of Stan5, a probabilistic programming language that allows for rapid MCMC sampling. 207 
 208 

Because a log-link function was used to ensure the positivity of 𝑦𝑦�𝑖𝑖,𝑘𝑘, the coefficients of the 209 
regression, 𝑏𝑏𝑗𝑗, encode the difference between each tissue-type or disease-state, and colon 210 
on the log scale. We take the exponential transform of each of these regression coefficients 211 
to derive the posterior for the relative stem cell number and replacement rate of each tissue-212 
type and disease-state relative to colon. We take a hypothesis testing by parameter 213 
inference approach, where the effect of a particular tissue/disease on the dependent 214 
variable is termed significant when the 95% equal-tailed credible interval does not overlap 0. 215 
The hierarchical Bayesian model that we have developed naturally penalizes increasing 216 
numbers of parameters, hence there is no need to apply a multiple test correction 6. 217 
 218 

Investigating the well-mixed assumption 219 
 220 
One of the major assumptions taken in the development of the mathematical model 221 
describing the FMC distribution was that the stem cells within the niche are well-mixed; that 222 
is, each stem cell can replace any other stem cell with equal probability. This assumption 223 
was made to minimize the mathematical and computational complexity of the model, as it 224 
allowed the state of the stem cell system to be fully characterized with just 2 state variables. 225 
However, previous work in mouse suggests that stem cells within the crypt are organized 226 
into a ring-like structure, where each stem cell can only replace the 2 cells directly 227 
neighboring it (Fig. S3A). It is worth noting that the replacement rate in mouse is on the 228 
order of months7, whereas in human the replacement rate is on the order of years8. Hence 229 
the potential of stem cells to randomly swap position, as identified by Ritsma et al.9, raises 230 
the possibility that within human crypts, the most accurate model of stem cell replacement is 231 
neither perfectly well-mixed nor perfectly organized into a ring.  232 



 233 
To investigate the effect of this well-mixed assumption, a Gillespie simulation was developed 234 
to model the stem cell replacement process for the well-mixed and ring geometry (code 235 
accessible at https://github.com/CalumGabbutt/flipflop.git10, see gillespie_crypt.py). Briefly, 236 
we generated a 3-dimensional binary array of size [𝑆𝑆, 2,𝐶𝐶] to model the stem cell niche. The 237 
time until the next replacement event was drawn from a Poisson distribution by generating a 238 
random uniform number 𝐸𝐸~uniform(0, 1) as follows: 239 

Δ𝑡𝑡 =
1
𝜆𝜆𝑆𝑆

log �
1
𝐸𝐸
� 240 

 241 
We accounted for the (de)methylation of the individual CpG loci by recognizing that each 242 
individual CpG locus on a particular DNA strand was effectively a 2-state system with 243 
forward rate 𝜇𝜇 and reverse rate 𝛾𝛾. Given that a given CpG locus is methylated at time 𝑡𝑡, the 244 
probability that the CpG locus is still methylated at time 𝑡𝑡 + Δ𝑡𝑡 is: 245 

𝐹𝐹(𝐶𝐶𝐶𝐶|𝐶𝐶𝐶𝐶) =  
𝜇𝜇

𝜇𝜇 + 𝛾𝛾
+ �1 −

𝜇𝜇
𝜇𝜇 + 𝛾𝛾

� 𝐼𝐼−(𝜇𝜇+𝛾𝛾)Δ𝛿𝛿 246 

Whilst the probability that the same locus is not methylated is: 247 
𝐹𝐹(𝐶𝐶𝑜𝑜𝑜𝑜|𝐶𝐶𝐶𝐶) = 1 − 𝐹𝐹(𝐶𝐶𝐶𝐶|𝐶𝐶𝐶𝐶) 248 

Similarly, the probability that a given CpG locus that is demethylated at time 𝑡𝑡 is methylated 249 
at 𝑡𝑡 + Δ𝑡𝑡 is: 250 

𝐹𝐹(𝐶𝐶𝐶𝐶|𝐶𝐶𝑜𝑜𝑜𝑜) =
𝜇𝜇

𝜇𝜇 + 𝛾𝛾 �
1 − 𝐼𝐼−(𝜇𝜇+𝛾𝛾)Δ𝛿𝛿� 251 

And the probability that that CpG locus is still demethylated at time 𝑡𝑡 + Δ𝑡𝑡 is: 252 

𝐹𝐹(𝐶𝐶𝑜𝑜𝑜𝑜|𝐶𝐶𝑜𝑜𝑜𝑜) = 1 − 𝐹𝐹(𝐶𝐶𝐶𝐶|𝐶𝐶𝑜𝑜𝑜𝑜) 253 
 254 
Hence, once the time until the next replacement had been drawn, we could update the 255 
methylation states of the individual CpG sites by drawing new methylation states with the 256 
aforementioned probabilities. The replacement could then be handled by choosing one cell 257 
to clonally expand and another to recede. Depending on the geometry of the crypt that the 258 
simulation was intended to model, this could be done by selecting one cell at random and 259 
then selecting one of that cell’s neighbors with equal probability (ring model), or by selecting 260 
two cells at randomly without replacement (well-mixed model). To ensure that that our 261 
analysis was probing the effect of differing geometry, in each case 100 synthetic crypts were 262 
generated and the average methylation probability distribution determined.  263 
  264 

For crypts containing 𝑆𝑆 = 5 stem cells which replace each other at a rate 𝜆𝜆 = 1.0 265 
replacements/stem cell/year. The average FMC distribution of the ring simulations is not 266 
significantly different from predictions of the well-mixed model (Fig. S3B, 𝑝𝑝 > 0.05 267 
Kolmogorov–Smirnov test). 268 
 269 
The impact of the geometry with increasing numbers of stem cells on the inference 270 
performed upon the methylation distribution was also explored. The above simulations were 271 
replicated for 𝑆𝑆 = 10 and 𝑆𝑆 = 15 for both ring and well-mixed geometries, and the Bayesian 272 
inference framework was run upon each of the average methylation distributions. At low 273 
values of 𝑆𝑆, the inference model was able to accurately recover the known stem cell 274 
dynamics parameters; however, for higher values of 𝑆𝑆 the inferred replacement rate of the 275 

https://github.com/CalumGabbutt/ticktockclock.git


ring simulations was lower than the ground truth value (Fig. S3C). The majority of samples 276 
analyzed in this study had an inferred stem cell number lower than 10, hence, the impact of 277 
the well-mixed assumption was likely to be minimal.  278 
 279 
This result intuitively aligns with our understanding of the mean fixation time (the average 280 
time for a mutation that occurs at 𝑡𝑡 = 0 to sweep through the population and become clonal, 281 
conditioned upon survival), at low stem cell number the two geometries have similar fixation 282 
times; however, the fixation time for the ring model scales as ~𝑆𝑆2, whereas the fixation time 283 
for the well-mixed model only scales ~𝑆𝑆 (Fig. S3D). In the case of a ring geometry with a 284 
large number of stem cells, the mean fixation time is larger than for the well-mixed case, and 285 
hence there are a greater number of subclonal fCpG loci, which the inference model 286 
accounts for by proposing a lower inferred replacement rate.  287 
 288 

 
Supplementary Figure 3: Well-mixed vs. ring stem cell geometry 
A: To test the effect of the stem cell geometry on the resulting FMC distribution and the 
inference process, a simulation of the crypt stem cell dynamics was developed with either 
a well-mixed (each cell can replace any other) or ring (each cell can only replace its 
neighbors) geometry. B: (top) A histogram displaying the discrete methylation fraction 
distribution (i.e. before sampling/technical noise has been added) for a set of 100 
simulations of 𝑆𝑆 = 5 stem cells arranged in a ring geometry, with the well-mixed model 
predictions overlaid. Error bars denote 1 standard deviation. (bottom) A Q-Q plot 
comparing the average methylation fraction distribution of the set of 100 ring simulations 
against that of 100 well-mixed distributions. The two distributions are not statistically 
different (𝑝𝑝 > 0.05 two-sided KS test). C: The 95% credible interval of the posterior for the 



number of stem cells (left) and replacement rate (right) compared to the ground truth. D: A 
modified version of the simulation was designed to track the fixation time of a mutation 
introduced at 𝑡𝑡 = 0 to fix within the population. The resulting mean fixation time (10000 
total simulations per stem cell number), conditioned on survival, is plotted against the 
number of stem cells, with the analytic predictions of each model overlaid (𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟𝑟𝑟 = 𝑆𝑆2−1

6𝜆𝜆
, 

𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑆𝑆−1)2

𝑆𝑆𝜆𝜆
). Bars denote 95% confidence intervals. 

 289 

Non-fluctuating CpG loci 290 
 291 
In the development of our inference framework, one of the implicit assumptions was that 292 
every CpG loci that we had identified as an fCpG was actually behaving in a fluctuating 293 
manner. However, whilst every precaution was taken to filter out CpGs which were likely to 294 
be under active selection/regulation (see main text), there remained the possibility that a 295 
fraction of the identified CpGs do not truly fluctuate. CpG loci that do not behave in a 296 
clocklike manner will not track the clonal dynamics of the stem cells, and therefore will dilute 297 
the timing signal of the fCpGs.  298 
 299 
To investigate the effect that this would have upon our inference framework, we first 300 
generated a synthetic crypt containing 𝑆𝑆 = 5 stem cells, with a replacement rate 𝜆𝜆 = 1.0 301 
replacements/ stem cell/year and a (de)methylation rate 𝜇𝜇 = 𝛾𝛾 = 0.05 per allele/stem 302 
cell/year. The noise due to sampling was then simulated so that each of the resulting 303 
samples were identical with respect to the fCpG loci using the transforms specified in the 304 
main text (𝛿𝛿 = 0.04, 𝜖𝜖 = 0.92,𝜅𝜅 = 200). Then we replaced a fraction of the fCpGs, 𝜔𝜔 =305 
{0, 0.05,0.1, … ,0.9, 0.95, 1} with CpGs that were randomly assigned a beta value of either 0 or 306 
1 with equal probability (with noise added such that the non-fluctuating CpG loci had the 307 
same noise profile as the fCpG sites).  308 
 309 
The inference framework pipeline was run upon each of the 11 resulting synthetic crypts 310 
(example posteriors for 𝜔𝜔 = 005, 0.25, 0.5 are presented in Fig. S4A). The effect of non-311 
fluctuating CpG loci was to effectively reassign clonal heterozygous and subclonal CpGs to 312 
clonal homozygous states. For 𝜔𝜔 ≤ 0.5, there are still sufficient subclonal mutations to 313 
accurately infer the number of stem cells (Fig. S4B). Initially, the effect of the relabeling on 314 
the inferred parameters was to decrease both the (de)methylation rate and the replacement 315 
rate, effectively assuming that the methylation distribution has not relaxed as far from the 316 
initial conditions (Fig. S4C). However, once 𝜔𝜔 > 0.5, the inference struggles to infer the 317 
number of stem cells, and the uncertainty over 𝑆𝑆 is propagated into the posterior for 𝜆𝜆 due to 318 
the correlations in the posterior between 𝜆𝜆 and 𝑆𝑆.  319 
 320 
This modelling applies equally well to mistakenly identifying fCpG loci that do not fluctuate 321 
and are static over time, and the possibility that a fraction of fCpG loci are actively regulated, 322 
dynamically setting the methylation status of all the stem cells in the crypt at that locus to be 323 
the same. Note that our analysis of fCpG loci located on chromosome X (Fig. S1D) and our 324 
finding that fCpG methylation status is preserved along the crypt (Fig. 2C) suggests the 325 
influence of cell-type specific methylation is unlikely to be major. 326 



 
Supplementary Figure 4: Non-fluctuating CpG loci 
To investigate the effect of a fraction of the CpG sites that we have identified as FMCs in 
fact being under active regulation, we generated synthetic crypts with an increasing 
fraction of non-fluctuating CpG loci and ran the inference framework upon them.  
A: Example posterior predictive distributions and posterior distributions for 5, 25 and 50% 
of non-fCpGs. (middle) Error bars were calculated from the estimated error (1 standard 
deviation) on the log-evidence. B-C: 95% credible intervals for the inferred replacement 
rate and stem cell number respectively for an increasing fraction of non-fluctuating CpG 
sites. 

 327 
Mean fixation time 328 
 329 



For small populations of cells in a process of neutral competition, one cell stochastically 330 
clonally expanding until it dominates the niche is an inevitability; however, the time-scale 331 
over which this process occurs varies depending on both the replacement rate per stem cell 332 
and the number of stem cells within the niche. The time it takes for a mutation appearing 333 
within a single cell to undergo monoclonal convergence, conditioned upon that mutation not 334 
going extinct, follows a positive skewed distribution (Fig. S5A); however, this distribution is 335 
often summarized using a single statistic – the mean fixation time.  336 
 337 
For a ring geometry, where stem cells can only replace their neighbors, the mean fixation 338 
time scales ~ 𝑆𝑆2

𝜆𝜆
, whereas for a well-mixed geometry the mean fixation time scales ~ 𝑆𝑆

𝜆𝜆
 (Fig. 339 

S3D). Our inference framework relies upon a well-mixed geometry, and therefore for 340 
reasons of self-consistency we shall assume the formula for the mean fixation time is 341 
𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑆𝑆−1)2

𝜆𝜆𝑆𝑆
. 342 

 343 
For each crypt sample, for every point in the posterior we calculated the mean fixation time 344 
to generate a corresponding posterior for the mean fixation time. We followed the same 345 
hierarchical Bayesian generalized linear model as in the main text. The only significant factor 346 
was the age of the patient (Fig. S5B), suggesting that the rate at which a stem cell colonizes 347 
a crypt slows down over the course of a patient’s lifetime. We present the mean fixation time 348 
for all of the intestinal crypts in Fig. S5C.  349 
 350 

 



Supplementary Figure 5: Mean fixation time 
A: The time for a mutation introduced at 𝑡𝑡 = 0 to “fix” within the population, conditioned 
upon that mutation not going extinct, was simulated using the same simulations outlined in 
“Supplementary Materials - Investigating the Well-Mixed Assumption”. The fixation time 
follows a skewed distribution, with different shapes depending upon the geometry of the 
stem cells population. B: posterior distributions (95% credible intervals) for the effect of 
patient age (per decade), sex (with female encoded as reference), tissue type and disease 
state on the relative mean fixation time compared to normal colon. C: individual crypt and 
posterior mean per patient for the mean fixation time, with the 95% credible range of the 
generalized linear model (GLM) expectation, accounting for age, sex, tissue, disease state 
and intra- and inter-patient heterogeneity. 

 351 

Linkage between CpG Loci 352 
 353 
The mathematical model describing how the distribution of methylation patterns evolves over 354 
time presented in the main text treats each fCpG locus independently; however, the 355 
replacement process will couple the methylation status of individual CpG loci (because a cell 356 
contains a set of genetically “linked” CpGs). Unlike traditional unidirectional lineage tracing 357 
markers (e.g. SNVs), the relabeling of individual CpG loci will cause these correlations to 358 
naturally erode over time. To investigate the effect that these correlations between individual 359 
CpG sites will have upon the FMC distribution, we employed the well-mixed Gillespie 360 
simulations described above (Investigating the Well-Mixed Assumption) to generate 100 361 
synthetic crypts (𝑆𝑆 = 5, 𝜆𝜆 = 1.0,𝜇𝜇 = 𝛾𝛾 = 0.05) which will naturally include intra- CpG 362 
correlations. The resulting probability mass functions (PMF) were compared to 100 draws 363 
from the analytic model. The mean PMF of the synthetic crypts exactly matched that of the 364 
analytic model (Fig. S6), but the crypt simulations exhibited a wider degree of variability than 365 
would be expected from the analytic model alone. 366 



 
Supplementary Figure 6: Correlations Between Different fCpG Loci 
The analytic model derived in the text assumes that individual CpG loci behave 
independently; however, the replacement process will correlate the fates of CpG loci 
located on separate chromosomes. To investigate this, 100 simulations of well-mixed 
crypt were performed, and the mean and the standard deviation of the methylation 
recorded for each possible methylation state. Similarly, the analytic probability distribution 
was sampled 100 times. Error bars denote 1 standard deviation. The effect of these 
correlations is that the mean methylation distribution of the simulated crypts exactly 
matches that of the analytic model, but that the simulated crypts had a higher degree of 
intra-crypt variability than the analytic model predicts. 

 367 

Identifiability of rate parameters 368 
 369 
The posterior of the inference presented in the main text exhibits a degree of collinearity 370 
between 𝜇𝜇, 𝛾𝛾 and 𝜆𝜆 (Fig. 3A, 4A and 5B). To demonstrate that the system is sensitive to the 371 
absolute values of the rate parameters, rather than just their relative values, the methylation 372 
distribution was generated for an identical crypt to the “just right” crypt generated in Fig. 3, 373 
but with all the rate parameters 10 times smaller (i.e. 𝜆𝜆 = 0.1 replacements/stem cell/year, 374 
𝜇𝜇 = 𝛾𝛾 = 0.005 per CpG locus/year). The resulting methylation was markedly different (Fig. 375 
S7A), lacking the clonal heterozygous peak at 0.5 as the system has not yet decayed far 376 
from the initial conditions.  377 
 378 
 379 



The intuition behind this result, and the reason why the absolute rate parameters are 380 
obtainable, is because of the slow speed at which the model converges to the steady state. 381 
The matrix exponentiation step discussed above can be re-written in terms of the 382 
eigenvalues (𝐸𝐸𝑖𝑖) and eigenvectors (�⃗�𝑣𝑖𝑖) of the transition matrix.  383 

𝐹𝐹�⃑ (𝑡𝑡) = 𝐼𝐼𝛿𝛿𝑻𝑻𝐹𝐹�⃑ (𝑡𝑡 = 0) = �𝑐𝑐𝑖𝑖𝐼𝐼𝑢𝑢𝑖𝑖𝛿𝛿�⃗�𝑣𝑖𝑖 384 

 385 
The system decays from the initial state according to the magnitude of the non-zero 386 
eigenvalues (which are all negative) towards the steady state (the eigenvector 387 
corresponding to the eigenvalue with 0 magnitude). Therefore, the smallest magnitude non-388 
zero eigenvalue determines how rapidly the system decays to the steady state.  389 
 390 

The eigenvalues can be calculated numerically for a given set of parameters {𝜆𝜆, 𝜇𝜇, 𝛾𝛾, 𝑆𝑆}. If we 391 
use the same set of parameters as in the “just right” simulated data (Fig. 3, {𝜆𝜆 = 1.0,𝜇𝜇 =392 
0.05,𝛾𝛾 = 0.05,𝑆𝑆 = 5}), then the smallest magnitude non-zero eigenvalue has a value of −0.1 393 
/year. After 30 years, the slowest eigenvalue will have decayed to 𝐼𝐼−3 ≈ 0.05 of its initial 394 
value – certainly low, but sufficient for the inference model to accurately infer the 395 
replacement rates in real units, as exhibited in Fig. 3. When we scale each of the rate 396 
parameters to be 10 times smaller, as presented in Fig. S7A, then although the ratio of the 397 
replacement:methylation:demethylation rates are unchanged, the system has decayed much 398 
less towards the steady state, which the inference framework is able to detect and quantify. 399 
This reinforces the importance of selecting fCpG loci with a (de)methylation rate that is “just 400 
right”. If sites (de)methylate too quickly, the system is indistinguishable from the steady state 401 
distribution and the information on the absolute values of the rate parameters is lost (as in 402 
the “too fast” synthetic crypt in Fig. 3). If sites (de)methylate too slowly, the methylation state 403 
of the system does not evolve sufficiently over the observed time period. 404 
 405 
We note that in the real patient data, the mean inferred methylation rate is 0.027 across the 406 
sample cohort, approximately half that of the assumed value in the simulated data, and so 407 
the decay to steady state in patient is slower than presented in the simulations in Fig 3.  408 
 409 
To ensure that the parameters were separately identifiable, the inference on the “just right” 410 
simulated data (Fig. 3) was repeated with a wider prior on the (de)methylation rate 411 
(𝜇𝜇, 𝛾𝛾~halfnormal(0.5)). The 95% credible interval still contained the ground truth parameters 412 
values and the posterior predictive distribution well-matched the data (Fig. S7B-D), hence 413 
the parameters were separately identifiable.   414 
 415 



 
Supplementary Figure 7: Identifiability of parameters 
A: Example methylation distributions for identical crypts, except with the rate parameters 
of one crypt 10 times smaller than the other. The resulting methylation distributions are 
strikingly different. B-C To demonstrate that the parameters are separately identifiable, the 
inference upon the “just right” synthetic crypts (Fig. 3) was repeated with 10 times wider 
priors upon the (de)methylation rates. The resulting posterior is still able to accurately 
recover the ground truth values. Error bars were calculated from the estimated error (1 
standard deviation) on the log-evidence. 

 416 

Whole blood simulations 417 
 418 
Whole blood was simulated in Java using the HAL framework11 as a non-spatial agent-419 
based model using 27,634 fCpG sites as measured in the experimental data. Parameters 420 
(Supplemental Table 1) for normal hematopoiesis are numbers of hematopoietic stem cells 421 
(N, HSCs), number of possible division events (T), CpG error rates (S, methylation and 422 
demethylation) for the fCpG sites, and HSC replacement dynamics (λ). To model clonal 423 
expansion, a single cell was selected to grow upon induction, and added parameters are its 424 
expansion rate (E) and its final blood frequency of the clonal expansion (ω). These clonal 425 
expansions resulted in the overall population size to grow until the appropriate final blood 426 
frequency was reached. The output of the simulations provided the beta values at the fCpG 427 
sites and the overall distribution variance over time. 428 
The number of HSCs was set at a lower value of 1000 initiating cells. This was much lower 429 
than the 30,000 based on the large number of HSC inferred by DNA sequencing studies12,13; 430 
however, the results shown here are invariant to more than 100 initiating cells. CpG error 431 



rates varied between CpG sites and were assigned based on the distribution averages of the 432 
656 normal individuals from GSE4027914. We found that some of the whole blood fCpGs did 433 
not appear to have equal methylation and demethylation error rate because their averages 434 
tended to always be above or below 50% in multiple individuals. Hence, to better model and 435 
match the data, we used a look-up distribution table in the simulations in order to initialize a 436 
cell’s fCpG parameters, with lower and unequal error rates at CpG sites with average 437 
methylation typically found near 0.4 (demethylation > methylation) or near 0.6 (methylation > 438 
demethylation) to maintain the variance of the 27,634 fCpG sites around 0.1 during cell 439 
divisions. The error rates varied between 0.0001 to 0.001 changes per division, with the 440 
highest error rates and more equal methylation and demethylation rates at CpG sites near 441 
50% methylation. 442 
Cell survival was set at exact replacement (one cell produces one living offspring), and 443 
results did not vary much if random replacement was simulated. A proportion of cells 444 
underwent replacement at each timestep (Supplemental Table 1). For the neoplastic 445 
simulations in Fig 6D in the manuscript, the expansion rate (E) was varied to model either 446 
rapid expansion (visible or more than 5% leukemic cells within 1 year or 200 divisions) akin 447 
to acute leukemia, modest expansion (visible within 4 years or 12,000 divisions), or very 448 
slow expansion (visible within 6 years or 18,000 divisions). The extent of blood involvement 449 
was varied between 20% (black lines), 50% (blue lines) and 90% (red lines). These 450 
simulations indicated that how clonal expansions change whole blood  fCpG variances 451 
depends both on how fast the expansion grows and to what extent it involves the blood. 452 
Rapid growth to high levels like acute leukemias results in high fCpG variances and 453 
characteristic W-shaped fCpG distributions. Slower growth to lower levels like chronic 454 
leukemias results in low fCpG variances and broader distributions that lack the W-shape. 455 
Interestingly, very indolent clonal expansions which may occur with CHIP15 can result in 456 
small increases in fCpG variances, which may account for the age-related increase in fCpG 457 
variances seen in Fig 6A in the manuscript. 458 
More sophisticated modelling with a better selection of whole blood fCpG sites could 459 
improve the extraction of ancestral information. For example, a selection of slower fCpG 460 
sites may improve the detection and analysis of indolent clonal expansions, where many of 461 
the faster fluctuations return to average ~50% methylation by the time the expansion 462 
reaches detectable blood levels. 463 
The simulation framework can be obtained, along with sample simulation results, on GitHub 464 
through https://github.com/MathOnco/flipflopblood.git16. A GUI compatible with most 465 
operating systems is accompanied to allow for rapid evaluation of different parameters. 466 
 467 

Parameter Description Values 
N Number of HSCs, initial population 100 

T Simulation time 2,500 

S CpG error rates 0.0001-0.001 per division 

λ Cell survival, exact replacement 0.6 

E Disease expansion rate (0.1, 0.005, 0.00225) 

ω  Final blood frequency (0.2, 0.5, 0.9) 

Supplementary Table 1: Parameters of whole blood simulations  
Parameters used in simulations describing how the methylation distribution of well-mixed 
hematopoietic stem cells (HSCs) changes in response to the expansion of a single clonal 
population. 

 468 

https://github.com/MathOnco/flipflopblood.git


Supplementary References 469 
 470 
1. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. 471 

Nature 452, 45–50 (2008). 472 
2. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 473 

112–115 (2008). 474 
3. Rulands, S. et al. Genome-Scale Oscillations in DNA Methylation during Exit from 475 

Pluripotency. Cell Syst. 7, 63-76.e12 (2018). 476 
4. Parry, A., Rulands, S. & Reik, W. Active turnover of DNA methylation during cell fate 477 

decisions. Nature Reviews Genetics vol. 22 59–66 (2021). 478 
5. Carpenter, B. et al. Stan: A Probabilistic Programming Language. J. Stat. Software; 479 

Vol 1, Issue 1  (2017). 480 
6. Gelman, A., Hill, J. & Yajima, M. Why We (Usually) Don’t Have to Worry About 481 

Multiple Comparisons. J. Res. Educ. Eff. 5, 189–211 (2012). 482 

7. Kozar, S. et al. Continuous Clonal Labeling Reveals Small Numbers of Functional 483 
Stem Cells in Intestinal Crypts and Adenomas. Cell Stem Cell 13, 626–633 (2013). 484 

8. Nicholson, A. M. et al. Fixation and Spread of Somatic Mutations in Adult Human 485 
Colonic Epithelium. Cell Stem Cell 22, 909-918.e8 (2018). 486 

9. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single stem cell level by in 487 
vivo live-imaging. Nature 507, 362–365 (2014). 488 

10. Gabbutt, C. et al. Cell lineage tracing with molecular clocks based on fluctuating DNA 489 
methylation - flipflop. Zenodo (2021) doi:10.5281/zenodo.5347259. 490 

11. Bravo, R. R. et al. Hybrid Automata Library: A flexible platform for hybrid modeling 491 
with real-time visualization. PLoS Comput. Biol. 16, e1007635 (2020). 492 

12. Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic 493 
mutations. Nature 561, 473–478 (2018). 494 

13. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal 495 
hematopoiesis. Science (80-. ). 367, 1449–1454 (2020). 496 

14. Hannum, G. et al. Genome-wide Methylation Profiles Reveal Quantitative Views of 497 
Human Aging Rates. Mol. Cell 49, 359–367 (2013). 498 

15. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 499 
(80-. ). 366, eaan4673 (2019). 500 

16. Schenck, R. et al. Cell lineage tracing with molecular clocks based on fluctuating DNA 501 
methylation – Flip flop blood model. Zenodo (2021) doi:10.5281/zenodo.5348301. 502 

 503 


	SpringerNature_NatBio_1109_ESM.pdf
	Supplementary Information
	Supplementary Figures
	Evidence for fluctuating human CpG sites
	Derivation of model describing methylation within the stem cell niche
	Bayesian analysis of the effect of tissue location and disease state on stem cell dynamics
	Investigating the well-mixed assumption
	Non-fluctuating CpG loci
	Mean fixation time
	Linkage between CpG Loci
	Identifiability of rate parameters
	Whole blood simulations
	Supplementary References





