1 SUPPLEMENTARY MATERIAL for:

2	Chimpanzees produce diverse vocal sequences with ordered and recombinatorial properties
3	
4	Cédric Girard-Buttoz ^{1,2,3,4&} , Emiliano Zaccarella ^{5&} , Tatiana Bortolato ^{2,3,4} , Angela D. Friederici ⁵
5	Roman M. Wittig ^{2,3,4} , Catherine Crockford ^{1, 2, 3,4}
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	

20 Supplementary discussion

21	Two-unit and longer sequences appear throughout the chimpanzee vocal repertoire and are not limited
22	to the well-described four-unit pant-hoot sequence of the chimpanzees includes single hoos (HO) – panted hoos
23	(PH) – climax phase (panted screams (PS) or panted bark (PB)), and let down phase (panted roars (PR) or
24	pants (PN)) ^{43,105} . Whilst our trigram analysis includes three sets of bigrams that can be emitted
25	independently or produced as part of the pant hoot sequence (head: HO_PH, PH_PS; tail: PH_PS), the
26	other bigram GR-PG which appears in tail and head position is not part of pant-hoot sequence. Likewise,
27	many other frequent (above chance) bigrams and trigrams we have identified are never emitted as part
28	of a pant hoot sequence (e.g., HO_PG, GR_PG_PN, GR_PG_PB, PG_PB_BK Fig. 3A, S3 D, E and F, and S5).
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	

Supplementary Figure 1: Spectrograms of chimpanzee single-unit vocalizations.

Supplementary Figure 2: Spectrograms of chimpanzee panted-unit vocalizations. Roars only occurred as

48 Supplementary Figure 3: An example showing the construction of chimpanzee single units.

49 Spectrograms show (a) a single non-panted call (e.g., series of Grunts) and (b) a single panted call (e.g.,

50 series of Panted grunts).

Supplementary Figure 4: An example showing the construction of chimpanzee sequences. Frequency
(kHz) in y-axis and time (seconds) in x-axis. Spectrograms (a), (b) and (c) show three-unit sequences
(trigrams) composed by Hoos (single hoo in (a) or series or hoos in (b) and (c)) and series of Panted hoos
followed by either a Hoo (a), series of Panted barks (b) or series of Panted screams (c). Spectrogram (d)
shows a four-unit sequence composed by series of: Panted hoos, Panted barks, Panted grunts and finally
Grunts. Spectrograms (e) and (f) show different long sequences without the structure of the classic Pant-

hoot call. The sequence in (e) is composed of Grunts, a single Panted Grunt, Panted barks, Panted
screams, Screams, a single Bark and Grunts. Sequence (f) is composed of Panted grunts, Hoos, Panted
grunts, Panted barks, Grunts, and Panted barks.

72

62

63

Supplementary Figure 5. Example of two-unit sequences (bigrams) given a certain call in position one (HO). Colours represent the number of times a certain unit is found in the bigram sample (red-toturquoise). The size of the directional edges (arrows) express the number of times that specific bigram is found in the study (thick-to-thin). The values on each calls express the number of times that the unit is found in position two with HO in position one, with corresponding percent value.

Supplementary Figure 6: Frequency of production of three-unit sequences (trigrams) that are produced 80 81 above chance (i.e., 95% more likely than by random juxtaposition of single units). The height of each bar 82 corresponds to the number of time each trigram was recorded. The colour gradient in the bars depicts 83 the number of time each trigram was observed divided by the number of time each trigram was present on average in each randomization (averaged over 1000 randomizations). The colour range from the lowest 84 in white (i.e., the trigram was present in the randomization three times less than the number of times it 85 86 was observed) to the highest ratio in red (i.e., the trigram was present in the randomization 343 times less 87 than the frequency at which it was observed). The number on top of each bar indicates the number of 88 individual that produced each trigram. The abbreviation for the call names (or single units) are as in Table 89 1.

Supplementary Figure 7: Frequency distribution of bigrams in two-unit sequences (dark blue) and of
bigrams within three-unit sequences (trigrams, light blue). The height of the bars indicates the percentage
of occurrence of each bigram within each frequency distribution as a percentage of all bigrams recorded.
The abbreviation for the unit names are as in Table 1.

Supplementary Figure 8: Number of different vocal sequences found in the Taï chimpanzee vocal
 repertoire as a function of the number of utterances recorded.

104 The dark blue line depicts the number of unique sequences as defined in our study. The sequence

- 105 considered are the ones where the same single unit can occur more than ones within the sequence but
- 106 not after itself. For instance, A_A_B_C would be coded as A_B_C and be no different to an A_B_C
- 107 sequence. In contrast, A_B_C_A would be different from A_B_C or from B_C_A since A appears twice in
- 108 the sequence but not after itself.
- 109 The light blue line depicts the number of unique sequences in which the same single unit is not repeated
- at all. For instance, the sequence A_B_A_C would be considered the same as the sequence A_B_C since
- 111 the repetition of A in the first sequence would not be taken into account).
- 112 We depict here these two quantification methods since both methods are used in the primate vocal
- 113 communication literature to assess the diversity of sequences produced by other primate species.

Supplementary Figure 9: Spectrograms of chimpanzees' graded vocal system showing (a) a gradient

117 from a Grunt to a Bark; and (b) a gradient from Panted-grunts to Panted-barks.

122 Supplementary Figure 10: Illustration of bigrams produced above chance which were produced only as

123 bigrams alone, as bigrams within trigrams or both.

132 Supplementary Tables

133 Supplementary Table 1: Positional occurrences in two-unit sequences (bigrams)

							sec	cond pos	ition					
first position	unit	BK	GR	HO	NV	PB	PG	PH	PN	PR	PS	SC	WH	total
	BK		5	1	0	4	0	0	0	0	0	8	0	18
	GR	18		22	0	5	102	9	48	0	2	9	2	217
	HO	8	52		0	1	59	114	10	0	0	1	1	246
	NV	0	0	0		0	0	0	0	0	0	0	0	0
	PB	6	0	3	0		0	1	0	0	0	2	0	12
	PG	4	31	1	0	9		4	10	0	2	4	0	65
	PH	1	3	22	0	65	18		3	0	60	13	1	186
	PN	1	12	1	0	1	21	0		0	0	0	1	37
	PR	0	0	0	0	0	0	0	0		0	0	0	0
	PS	1	0	0	0	3	0	1	0	0		8	0	13
	SC	9	0	0	0	3	0	0	0	0	3		2	17
	WH	0	0	0	0	0	0	4	0	0	0	2		6
	total	48	103	50	0	91	200	133	71	0	67	47	7	817

134

135

136 Supplementary Table 2: Positional occurrences in three-unit sequences (trigrams)

1				
	two-unit	Head	Tail	total
	HO_PH	94	0	94
2	GR_PG	105	8	113
)	PH_PB	62	25	87
	PH_PS	36	40	76
4	PN_PG	10	3	13
3	HO_PH GR_PG PH_PB PH_PS PN_PG	94 105 62 36 10	0 8 25 40 3	94 113 87 76 13

- 140
- 141

142 Supplementary Table 3: Transitional relationships (forward) in three-unit sequences (trigrams)

143

two-unit utterance

	unit	GR_PG	GR_PN	HO_PG	HO_PH	PH_PB	PH_PS	PN_PG
144	BK	5	0	0	0	4	2	0
	GR	72	8	1	6	6	0	4
	НО	0	0	2	21	7	0	0
145	NV	0	1	0	0	0	0	0
all	PB	10	0	0	20	0	12	0
	PG	0	2	0	3	7	3	0
146 <u> </u>	PH	2	0	2	0	22	10	2
	PN	14	0	1	0	0	8	4
fo	PR	0	0	0	0	1	0	0
	PS	1	0	0	38	13	0	0
	SC	1	0	0	5	1	1	0
	WH	0	0	0	1	1	0	0
	total	105	11	6	94	62	36	10

151 Supplementary Table 4: Transitional relationships (backward) in three-unit sequences (trigrams)

152		two-unit utterance									
450		two-unit	GR_PG	GR_PN	HO_PG	НО_РН	PH_PB	PH_PS	PN_PG		
153		BK	0	0	0	0	1	0	0		
		GR	0	0	0	0	1	0	2		
. – .		НО	3	2	0	0	20	38	1		
154	÷	NV	0	0	0	0	0	0	0		
	un	PB	0	0	0	0	0	0	0		
	ing	PG	2	0	0	0	1	0	0		
155	bed	PH	1	1	0	0	0	0	0		
	orec	PN	2	3	0	0	0	0	0		
	0	PR	0	0	0	0	0	0	0		
156		PS	0	0	0	0	0	0	0		
		SC	0	0	0	0	0	0	0		
		WH	0	0	0	0	2	2	0		
157		total	8	6	0	0	25	40	3		
159 160											
161											
162											
163											
164											
165											