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Figure legends

Fig S1. Tecrl deficiency did not induce cardiac dysfunction at four to five weeks of age.
(a) Representative echocardiography images of WT and Tecrl KO mice at the age of
four to five weeks. (b) Quantification of LVEF, LVFS, LVIDd, LVIDs, LVEDYV, and
LVESV in WT and Tecrl KO mice (four to five weeks) (n = 6). (¢) Representative
immunoblotting images of TECRL of the patient and his parents. Values are mean + SE.

P <0.05 was considered significant.

Fig S2. Tecrl deficiency increases reactive oxygen species production. (a, b)
Representative images of the DHE staining and statistical charts. The WT and Tecrl KO
mouse tissues were measured at the age of four to five weeks (n = 6). Values are mean

+ SE. P <0.05 was considered significant.

Fig S3. Visualization of differentially regulated proteins in mitochondria isolated from
the WT and Tecrl KO mice hearts. (a) Volcano plots of differentially regulated proteins
in cardiac mitochondria, those achieving P < 0.05 and [fold-change| > 1.3 are
highlighted. (b) KEGG enrichment analysis of the differentially expressed proteins in

WT and Tecrl KO mouse mitochondria.

Fig S4. Overexpression of TECRL can induce mitochondrial respiration in HOC2 cells.
(a-d) The relative mRNA levels of NRF2, FAS, MFN2, and TECRL in H9C2 cells after
siTECRL treatment (n = 6). (e-g) Measure of OCR and respective quantitative analysis
in H9C2 cells (n = 12), FCCP, trifluoromethoxy carbonyl cyanide phenylhydrazone.

Values are mean + SE. P < 0.05 was considered significant.

Fig S5. TECRL effects on NRF2, MFN2, and FAS in H9C2. (a-c) Representative
immunoblotting images and quantification of the expression of NRF2, MFN2, FAS,
and TECRL in H9C2 following TECRL knockdown using siRNA (n=8). Values are

mean + SE. P <0.05 was considered significant.
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Fig S6. Construction of the Tecrl KO mice. (a) The location of the primers. (b) The

sequence of the primers.

Table information
Table S1. The relative protein expression of WT and Tecrl KO mouse hearts through

mass spectrometry.

Table S2. The relative differential expression of genes in WT and Tecrl KO mouse

hearts through RNA-sequencing.

Table S3. A total of 306 (16.2%) cardiac proteins were differentially expressed in Tecrl

KO mice relative to WT, observed through mitochondrial proteomics detection.

Table S4. Baseline of contraction of TECRL knockdown hiPSC-CMs versus baseline.

Table S5. All the expression of proteins after TECRL overexpression in the hiPSC-CMs

through mass spectrometry.

Table S6. All the expression of proteins after co-immunoprecipitation overexpressed by

TECRL in the hiPSC-CMs through mass spectrometry.

Video S1. The representative video of cardiomyocytes (hiPSC-CMs) beating

spontaneously.
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Fig S1. Tecrl deficiency did not induce cardiac dysfunction at four to five weeks of age.
(a) Representative echocardiography images of WT and Tecrl KO mice at the age of
four to five weeks. (b) Quantification of LVEF, LVFS, LVIDd, LVIDs, LVEDYV, and
LVESV in WT and Tecrl KO mice (four to five weeks) (n = 6). (c) Representative

immunoblotting images of TECRL of the patient and his parents. Values are mean + SE.

P < 0.05 was considered significant.
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Fig S2. Tecrl deficiency increases reactive oxygen species production. (a, b)
Representative images of the DHE staining and statistical charts. The WT and Tecrl KO
mouse tissues were measured at the age of four to five weeks (n = 6). Values are mean

+ SE. P <0.05 was considered significant.
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Fig S3. Visualization of differentially regulated proteins in mitochondria isolated from
the WT and Tecrl KO mice hearts. (a) Volcano plots of differentially regulated proteins
in cardiac mitochondria, those achieving P < 0.05 and [fold-change| > 1.3 are

highlighted. (b) KEGG enrichment analysis of the differentially expressed proteins in
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Fig S4. Overexpression of TECRL can induce mitochondrial respiration in HOC2 cells.
(a-d) The relative mRNA levels of NRF2, FAS, MFN2, and TECRL in H9C2 cells after
siTECRL treatment (n = 6). (e-g) Measure of OCR and respective quantitative analysis
in H9C2 cells (n = 12), FCCP, trifluoromethoxy carbonyl cyanide phenylhydrazone.

Values are mean + SE. P < 0.05 was considered significant.
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Fig S5. TECRL effects on NRF2, MFN2, and FAS in H9C2. (a-c) Representative
immunoblotting images and quantification of the expression of NRF2, MFN2, FAS,
and TECRL in H9C2 following TECRL knockdown using siRNA (n=8). Values are
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Fig S6. Construction of the Tecrl KO mice. (a) The location of the primers. (b) The

sequence of the primers.
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