Agonist-dependent coupling of the promiscuous adenosine A_{2B} receptor to Ga protein subunits

Jan Hendrik Voss,¹ Andhika B. Mahardhika,^{1,2} Asuka Inoue,³ and Christa E. Müller^{1,2*}

¹PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany

²Research Training Group GRK1873, University of Bonn, Germany

³Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi, 980-8578 Japan

Keywords: adenosine, BAY 60-6583, G protein coupling, $G_q/G_s/G_i/G_{12/13}$ proteins, HEK293 cells, NECA

Running title: A_{2B} receptor Ga protein coupling

*To whom correspondence should be addressed: Prof. Dr. Christa E. Müller, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, Phone: +49-(0)-228-73-2301; Fax: +49-(0)-228-73-2567; E-Mail: <u>christa.mueller@uni-bonn.de</u>

Table of contents

Table S1: Potency and efficacy of A2BAR agonists and CCh at HEK cells recombinant	ıtly
expressing $G\alpha_{q/11}$ proteins determined by calcium mobilization assays.	3
Table S2 : Potency (pEC_{50}) of A _{2B} AR agonists at respective Ga proteins determined	by
TRUPATH BRET2 assays.	4
Table S3: Efficacy (Emax, % of maximum activation of a model receptor) of A2BAR agonists	s at
respective Ga proteins determined by TRUPATH BRET2 assays	5

Figure S1: Structures of the investigated A2BAR agonists, and assay principles of the calciur	n
mobilization assay and the TRUPATH BRET2 assay.	. 7
Figure S2: Establishment of TRUPATH assay: concentration-response curves of standard	
agonists at control receptors	. 8
Figure S3: Statistical analysis of TRUPATH BRET2 assay data	. 9

Cell line	HEK-Gaq	HEK-Ga11	HEK-Ga14	HEK-Ga15		
Adenosine						
Potency (<i>p</i> EC ₅₀)	4.84 ± 0.17^{b}	partial activation	partial activation	5.52 ± 0.29^{c}		
Efficacy (AU)	4398 ± 1290^{b}	1800 ± 350^a	3570 ± 680^{b}	6480 ± 410^{c}		
NECA						
Potency (<i>p</i> EC ₅₀)	4.37 ± 0.34^{b}	n.a.	n.a.	5.79 ± 0.21^{c}		
Efficacy (AU)	4820 ± 840^{b}	n.a.	n.a.	5450 ± 900^{c}		
BAY 60-6583						
Potency (<i>p</i> EC ₅₀)	n.a.	n.a.	n.a.	n.a.		
Efficacy (AU)	n.a.	n.a.	n.a.	n.a.		
CCh						
Potency (<i>p</i> EC ₅₀)	6.61 ± 0.24	6.55 ± 0.18	5.12 ± 0.83	5.28 ± 0.32^{a}		
Efficacy (AU)	6160 ± 1370	6790 ± 890	8060 ± 2930	4750 ± 900^a		
Data are presented as means \pm SEM from 3 independent experiments performed in						
duplicates if not otherwise indicated.						

Table S1: Potency and efficacy of A_{2B}AR agonists and CCh at HEK cells recombinantly expressing $G\alpha_{q/11}$ proteins determined in calcium mobilization assays.

^a Data from four independent experiments.
^b Data from five independent experiments.

^c Data from six independent experiments.

n.a. no activation at the highest tested concentration

TRUPATH	Adenosine	NECA	NECA	BAY	BAY 60-6583
Biosensor		-ADA	+ADA	-ADA	+ ADA
Gα _s subfamily					
Gas-s	4.99 ± 0.22	6.73 ± 0.18	6.50 ± 0.19^{c}	7.46 ± 0.55	7.91 ± 0.45^{a}
Gα _{i/o} subfamily					
Gα _{i1}	5.19 ± 0.20	n.d.	7.97 ± 0.30	n.d.	n.a., <5
$G\alpha_{i2}$	5.38 ± 0.09	n.d.	7.43 ± 0.22	n.d.	n.a., <5
$G\alpha_{i3}$	5.58 ± 0.07	n.d.	8.00 ± 0.28	n.d.	n.a., <5
Gα _{oA}	$5.18\pm0.19^{\rm a}$	n.d.	6.36 ± 0.71^a	n.d.	n.a., <5
$G\alpha_{oB}$	5.39 ± 0.11^{a}	n.d.	6.29 ± 0.49^{b}	n.d.	n.a., <5
Gagust	n.a., <4	n.d.	n.a., <4	n.d.	n.a., <5
Gαz	6.19 ± 0.48^{a}	n.d.	7.17 ± 0.28^{a}	n.d.	n.a., <5
Gα _q subfamily					
Gαq	6.48 ± 0.34^{a}	$7.05 \pm 0.63^{\circ}$	5.90 ± 0.29^{c}	n.a., <5	n.a., <5
Ga_{11}	$5.85 \pm 0.32^{\mathrm{b}}$	$7.89 \pm 0.55^{\circ}$	6.90 ± 0.39^{d}	n.a., <5	n.a., <5
Ga_{15}	6.51 ± 0.32^{d}	7.56 ± 0.25^{d}	8.67 ± 0.23^{b}	$7.14 \pm 0.69^{\circ}$	9.23 ± 0.08
Ga12/13 subfamily					
Ga_{12}	5.66 ± 0.03	n.d.	7.06 ± 0.48^{a}	n.d.	8.61 ± 0.24^{a}
$G\alpha_{13}$	5.66 ± 0.17	n.d.	6.67 ± 0.36^b	n.d.	n.a., <5

Table S2: Potency (*p*EC₅₀) of A_{2B}AR agonists at Gα proteins determined by TRUPATH BRET2 assays.

Data are presented as means \pm SEM from three independent experiments (unless otherwise noted) performed in duplicates.

pEC₅₀ values calculated from experiments conducted with NECA and BAY 60-6583 were performed in the presence of ADA.

^a Data from four independent experiments.
^b Data from five independent experiments.
^c Data from six independent experiments.

^d Data from seven independent experiments.

n.a., no activation at the highest tested concentration

n.d., not determined

TRUPATH	Adenosine	NECA	NECA	BAY	BAY 60-6583
Biosensor		-ADA	+ADA	-ADA	+ ADA
Gas subfamily					
Gas-s	120 ± 15	110 ± 23	63 ± 6^{c}	113 ± 38	32 ± 12^{a}
Gα _{i/o} subfamily					
Ga _{i1}	22 ± 5	n.d.	36 ± 6	n.d.	n.a., <10
$G\alpha_{i2}$	49 ± 18	n.d.	76 ± 12	n.d.	n.a., <10
$G\alpha_{i3}$	29 ± 2	n.d.	27 ± 4	n.d.	n.a., <10
Gα _{oA}	28 ± 4^{a}	n.d.	33 ± 9^{a}	n.d.	n.a., <10
$G\alpha_{oB}$	44 ± 4^{a}	n.d.	37 ± 3^{b}	n.d.	n.a., <10
Gagust	n.a., <4	n.d.	n.a., <4	n.d.	n.a., <10
Gαz	47 ± 11^{a}	n.d.	44 ± 11^{a}	n.d.	n.a., <10
Gαq/11 subfamily					
$G\alpha_q$	25 ± 6^{a}	29 ± 6^{c}	22 ± 2^{c}	n.a., <10	n.a., <10
$G\alpha_{11}$	34 ± 4^{b}	28 ± 3^{c}	22 ± 4^d	n.a., <10	n.a., <10
Ga_{15}	88 ± 24^d	49 ± 9^{c}	95 ± 18^{b}	$64 \pm 20^{\circ}$	131 ± 13
Ga12/13 subfamily					
Ga_{12}	64 ± 10	n.d.	51 ± 10^{a}	n.d.	23 ± 2^a
Ga_{13}	18 ± 6	n.d.	31 ± 2^{b}	n.d.	n.a., <10

Table S3: Efficacy (E_{max}, % of maximum activation of a model receptor) of A_{2B}AR agonists at respective Gα proteins determined by TRUPATH BRET2 assays.

 E_{max} values were calculated by dividing the maximum $\Delta BRET$ shift measured for the A_{2B}AR by the maximum $\Delta BRET$ shift observed by a control receptor (β_2 adrenoceptor for the Ga_s family, μ opioid receptor for the Ga_{i/o} family, neurotensin 1 receptor for the $G\alpha_{q/11}$ and $G\alpha_{12/13}$ family). Means \pm SEM from three independent experiments unless otherwise noted.

^a Data from four independent experiments.
^b Data from five independent experiments.

^c Data from six independent experiments.

^d Data from seven independent experiments.

n.a., no activation at the highest tested concentration

n.d., not determined

Coelenterazine 400a

6

Figure S1: Structures of the investigated A_{2B}AR agonists, and assay principles of the calcium mobilization assay and the TRUPATH BRET2 assay. A. Structural formulas of investigated A_{2B}AR agonists. **B**. Calcium mobilization assay: Fluo-4-acetoxymethylester (Fluo-4-AM) penetrates the cell membrane. In the cytosol, the ester bonds are cleaved by esterases and the resulting anionic Fluo-4 is thereby trapped in the cytosol. Upon GPCR activation, G_{q/11}-family proteins release GDP and bind GTP instead, leading to calcium release from the endoplasmic reticulum via the phospholipase C- β (PLC- β) – inositol trisphosphate (IP₃) pathway. Free Ca²⁺ binds to Fluo-4 forming a fluorescent complex, which allows the monitoring of changes in the intracellular calcium concentration by fluorescence measurement at an emission wavelength of 520 nm after excitation of the complex at 488 nm. C. TRUPATH BRET2 assay: in the inactive receptor state, the RLuc8-tagged Ga subunit is bound to GDP and associated to the GBy dimer. The RLuc8 domain oxidizes coelenterazine 400a, emitting a constant signal of blue light, which in turn excites the proximate Gy-GFP2 fusion protein resulting in a high BRET2 ratio (luminescence / fluorescence). In the active receptor state, the active, GTP-bound Gα-RLuc8 fusion protein separates from the $G\beta\gamma$ -GFP2 dimer. Due to the increased distance between RLuc8 and GFP2, energy transfer is reduced and the BRET2 ratio decreases.

Figure S2: Establishment of TRUPATH assay: concentration-response curves of standard agonists at control receptors. **A**. $G\alpha_q$ biosensor, **B**. $G\alpha_{i1}$ biosensor, transiently expressed in HEK293 cells together with the investigated control GPCR. *p*EC₅₀ values: $G\alpha_q$ - U46619 - TP = 8.02; $G\alpha_{i1}$ – NECA - A₃AR = 7.72. Data points are means ± SEM of three independent experiments performed in duplicates.

Figure S3: Statistical analysis of potency and efficacy values obtained from TRUPATH BRET2 assays. P-values were obtained from one-way analysis of variance (corrected for multiple comparisons using Turkey's test) comparing mean potencies and efficacies of adenosine (A, B), NECA (C, D), and BAY 60-6583 (E, F) at each investigated G α subunit. High significance levels between means are indicated in red color.