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Abstract

Background: Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as the
foundation of interpretable machine-learning models for computational pathology. However, generating adequate labels
for these structures is a critical barrier, given the time and effort required from pathologists. Results: This paper
describes a novel collaborative framework for engaging crowds of medical students and pathologists to produce quality
labels for cell nuclei. We used this approach to produce the NuCLS dataset, containing over 220,000 annotations of cell
nuclei in breast cancers. This builds on prior work labeling tissue regions to produce an integrated tissue region- and
cell-level annotation dataset for training that is the largest such resource for multi-scale analysis of breast cancer
histology. This paper presents data and analysis results for single and multi-rater annotations from both non-experts
and pathologists. We present a novel method for suggesting annotations that allows us to collect accurate segmentation
data without the need for laborious manual tracing of cells. Our results indicate that even noisy algorithmic suggestions
do not adversely affect pathologist accuracy, and can help non-experts improve annotation quality. We also present a
new approach for inferring truth from multiple raters, and show that non-experts can produce accurate annotations for
visually distinctive classes. Conclusions: This study is the most extensive systematic exploration of the large-scale use
of wisdom-of-the-crowd approaches to generate data for computational pathology applications.
Key words: Crowdsourcing; Deep learning; Nucleus segmentation; Nucleus classification; Breast cancer.
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Background

Motivation

Convolutional neural networks (CNN) and other deep learning
methods have been at the heart of recent advances in medicine
(see Table S1 for terminology) [1]. A key challenge in computa-
tional pathology is the scarcity of large-scale labeled datasets
for model training and validation [2, 3, 4]. Specifically, there is
a shortage of annotation data for delineating tissue regions and
cellular structures in histopathology. This information is crit-
ical for training interpretable deep-learning models, as they
allow the detection of entities that are understood by patholo-
gists and map to known diagnostic criteria [4, 5, 6, 7]. These
entities can then be used to construct higher-order relational
graphs that encode complex spatial and hierarchical relation-
ships within the tumor microenvironment, paving the way
for the computationally-driven discovery of histopathologic
biomarkers and biological associations [4, 8, 9, 10, 11, 12, 13].
Data shortage is often attributed to the domain expertise re-
quired to produce annotation labels, with pathologists spend-
ing years in residency and fellowship training [2, 14]. This
problem is exacerbated by the time constraints of clinical prac-
tice and the repetitive nature of annotation work. Manual trac-
ing of object boundaries is an incredibly demanding task, and
there is a pressing need to obtain this data using facilitated or
assisted annotation strategies [15]. By comparison, traditional
annotation problems like detecting people in natural images re-
quire almost no training and typically engage the general pub-
lic [15]. Moreover, unique problems often require new annota-
tion data, underscoring the need for scalable and reproducible
annotation workflows [16].

We address these issues using an assisted annotation
method that leverages the participation of non-pathologists
(NPs), including medical students and graduates. Medical stu-
dents typically have strong incentives to participate in annota-
tion studies, with increased reliance on research participation
in residency selection [17]. We describe adaptations to the data
collection to improve scalability and reduce effort. This work
focuses on nucleus classification, localization, and segmenta-
tion (NuCLS, for short) in whole-slide scans of hematoxylin
and eosin-stained (H&E) slides of breast carcinoma from 18 in-
stitutions from The Cancer Genome Atlas (TCGA). Our annota-
tion pipeline enables low-effort collection of nucleus segmen-
tation and classification data, paving the way for systematic
discovery of histopathologic-genomic associations and mor-
phological biomarkers of disease progression [4, 5, 8, 10, 11].

Related work

There has been growing interest in addressing data scarcity in
histopathology by either 1. scaling data generation or 2. re-
ducing reliance on manually labeled data using data synthesis
techniques like Generative Adversarial Networks [18, 19, 20, 21,
22, 23, 24, 25]. While there is a pressing need for both ap-
proaches, this work is meant to fit into the broad context of
scalable assisted manual data generation when expert annota-
tion is expensive or difficult. Crowdsourcing, the process of en-
gaging a “crowd” of individuals to annotate data, is critical to
solving this problem. There exists a large body of relevant work
in crowdsourcing for medical image analysis [15, 26, 27]. Pre-
viously, we published a study and dataset using crowdsourcing
of NPs for annotation of low-power regions in breast cancer

[28]. Our approach was structured because we assigned dif-
ferent tasks depending on the level of expertise and leveraged
collaborative annotation to obtain data that is large in scale and
high in quality. Here, we significantly expand this idea by fo-
cusing on the challenging problems of nucleus classification,
localization, and segmentation. This computer vision problem
is a subject of significant interest in computational pathology
[29, 30, 31].

While the public release of data is only one aspect of our
study, it is essential to acknowledge related nucleus classifica-
tion datasets. Some of these datasets can be used in conjunc-
tion with ours and include MoNuSAC, CoNSep, PanNuke, and
Lizard [29, 30, 32, 33, 34, 35, 36, 37, 38]. Lizard, in particu-
lar, is a highly related dataset that was recently published af-
ter we released NuCLS but focuses on colon cancer instead [37].
Additionally, the US Food and Drug Administration is leading
an ongoing study to collect regulatory-grade annotations of
stromal tumor-infiltrating lymphocytes (sTILs) [39]. Unfortu-
nately, with few exceptions, most public computational pathol-
ogy datasets are either limited in scale, were generated through
exhaustive annotation efforts by practicing pathologists, or do
not disclose or discuss data generation [2, 26, 30, 40]. Addition-
ally, to the best of our knowledge, most other works do not
explore crowdsourcing as a data generation approach or sys-
tematically explore interrater agreement for experts vs. non-
experts.

A few studies are of particular relevance to this paper. A
study by Irshad et al. showed that non-experts, recruited
through the Figure Eight platform, can produce accurate nu-
cleus detections and segmentations in renal clear cell cancer
but was limited to 10 whole-slide images [20]. Hou et al. ex-
plored the use of synthetic data to produce nuclear segmenta-
tions [41]. While a significant contribution, their work did not
address classification, relied on qualitative slide-level evalua-
tions of results, and did not explore how algorithmic bias af-
fects data quality [42, 22]. The approach we used involves click-
based approval of annotations generated by a deep-learning
algorithm. This methodological aspect is not the central focus
of this paper; it is only one of many approaches for interac-
tive segmentation and classification of nuclei explored in past
studies like HistomicsML and NuClick [42, 22].

Our contributions

This work describes a scalable crowdsourcing approach that
systematically engaged NPs and produced annotations for lo-
calization, segmentation, and classification of nuclei in breast
cancer. Our workflow required minimal effort from pathol-
ogists and used algorithmic suggestions to scale the annota-
tion process and obtain hybrid annotation datasets containing
numerous segmentation boundaries without laborious manual
tracing. We show that algorithmic suggestions can improve
the accuracy of NP annotations and that NPs are reliable anno-
tators of common cell types. In addition, we discuss a new con-
strained clustering method that we developed for reliable truth
inference in multi-rater datasets. We also show how multi-
rater data can ensure the quality of NP annotations or replace
expert supervision in some contexts. Finally, we note that
downstream deep-learning modeling using the NuCLS dataset
is discussed in a related publication and is not the focus of this
paper [43].

Compiled on: October 28, 2021.
Draft manuscript prepared by the author.
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Figure 1. Dataset annotation and quality control procedure. a. Nucleus classes annotated. b. Annotation procedure and resulting datasets. Two approaches were
used to obtain nucleus labels from non-pathologists (NPs). (Top) The first approach focused on breadth, collecting single-rater annotations over a large number of
FOVs to obtain the majority of data in this study. NPs were given feedback on their annotations, and two study coordinators corrected and standardized all single-
rater NP annotations based on input from a senior pathologist. (Bottom) The second approach evaluated interrater reliability and agreement, obtaining annotations
from multiple NPs for a smaller set of shared FOVs. Annotations were also obtained from pathologists for these FOVs to measure NP reliability. The procedure
for inferring a single set of labels from multiple participants is described in Figure 2. We distinguished between inferred NP-labels and inferred P-truth for
clarity. Three multi-rater datasets were obtained: an Evaluation dataset, which is the primary multi-rater dataset, as well as Bootstrap and Unbiased experimental
controls to measure the value of algorithmic suggestions. In all datasets except the Unbiased control, participants were shown algorithmic suggestions for nucleus
boundaries and classes. They were directed to click nuclei with correct boundary suggestions and annotate other nuclei with bounding boxes. The pipeline to
obtain algorithmic suggestions consisted of two steps: 1. Using image processing to obtain bootstrapped suggestions (Bootstrap control); 2. Training a Mask
R-CNN model to refine the bootstrapped suggestions )single-rater and Evaluation datasets).

Data Description

NuCLS is a large-scale multi-class dataset generated by en-
gaging crowds of medical students and pathologists. NuCLS
is sourced from the same images as the Breast Cancer Seman-
tic Segmentation (BCSS) dataset [28]. Together, these datasets
contain region- and cell-level annotations and constitute the
most extensive resource for multi-scale analysis of breast can-
cer slides. We obtained a total of 222,396 nucleus annotations,
including over 125,000 single-rater annotations and 97,000
multi-rater annotations. A detailed description of the dataset
creation protocol is presented in the methods section.

Analyses and Discussion

Structured crowdsourcing enables scalable data collec-
tion

Pathologist time is limited and expensive, and relying solely
on pathologists for generating annotations can hinder the de-
velopment of state-of-the-art models based on CNNs. In
this study, we show that NPs can perform most of the time-
consuming annotation tasks and that pathologist involvement
can be limited to low-effort tasks that include:
• Training NPs and answering their questions (Figure 1) [44].
• Qualitative scoring of NP annotations (Figure S1).
• Low-power annotation of histologic regions (Figure S2)

[28].
We used a web-based annotation platform called Histomic-

sUI for annotation, feedback, and quality review [45]. His-
tomicsUI provides a user interface with annotation tools and
an API for programmatic querying and manipulating the cen-
tralized annotation database. The NuCLS dataset includes an-

notations from 32 NPs and seven pathologists in the US, Egypt,
Syria, Australia, and the Maldives. We obtained 128,000 nu-
cleus annotations from 3,944 fields-of-view (FOV) and 125
triple-negative breast cancer patients. The annotations in-
cluded bounding box placement, classification, and for a siz-
able fraction of nuclei, segmentation boundaries. Half of these
annotations underwent quality control correction based on
feedback by a practicing pathologist.

Additionally, we obtained three multi-rater datasets con-
taining 97,300 annotations, where the same FOV was anno-
tated by multiple participants (Figure 1b, Figure 2). The col-
lection of multi-rater data enables quantitative evaluation of
NP reliability, interrater variability, and the impact of algorith-
mic suggestions on NP accuracy. Multi-rater annotations were
not corrected by pathologists and enabled an unbiased assess-
ment of NP performance. Pathologist annotations were also
collected for a limited set of multi-rater FOVs to evaluate NP
accuracy.

NPs can reliably classify common cell types

The detection accuracy of NPs was moderately high (AP=0.68)
and was similar to the detection accuracy of pathol-
ogists. Classification accuracy of NPs, on the other
hand, was only high for common nucleus classes (micro-
average AUROC=0.93[0.92,0.94] vs. macro-average AU-
ROC=0.75[0.74,0.76]) and was higher when grouping by super-
class (Figure 3, Figure S3). We reported the same phenomenon
in our previous work on crowdsourcing annotation of tissue re-
gions [28]. In addition, we observed moderate clustering by
participant experience (Figure 3d) and variability in classifica-
tion accuracy among NPs (MCC=60.7-84.2). This observation
motivated our quality control procedures. Study coordinators
manually corrected missing or misclassified cells for the single-
rater dataset, and practicing pathologists supervised and ap-

https://sites.google.com/view/nucls
https://github.com/PathologyDataScience/BCSS
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Figure 2. Inference from multi-rater datasets. The purpose of this step was to infer the nucleus locations and classifications from multi-rater data. a. The
first step involved agglomerative hierarchical clustering of bounding boxes using Intersection-Over-Union (IOU) as a similarity measure. We imposed a constraint
during clustering that prevents merging annotations where a single participant has annotated overlapping nuclei. Participant intention was preserved by demoting
annotations from the same participant to the next node (step 5, arrow). After clustering was complete, a threshold IOU value was used to obtain the final clusters
(step 5, black nodes). Within each cluster, the medoid bounding box was chosen as an anchor proposal. The result was a set of anchors with corresponding
clustered annotations. When a participant did not match to an anchor, it was considered a conscious decision not to annotate a nucleus at that location. b. Once
anchors were obtained, an expectation-maximization (EM) procedure was used to estimate: 1. which anchors represent actual nuclei, and 2. which classes to
assign these anchors. The EM procedure estimates and accounts for the reliability of each participant for each classification. EM was performed separately for NPs
and pathologists. c. Grouping of nucleus classes. Consistent with standard practice in object detection, nuclei were grouped, based on clinical reasoning, into five
classes and three super-classes.

proved annotations. For the multi-rater datasets, we inferred
a singular label from pathologists (P-truth) and NPs (NP-label)
using an Expectation-Maximization (EM) framework that es-
timates reliability values for each participant [46, 47].

When pathologist supervision is not an option, multi-rater
datasets need to have annotations from a sufficient number of
NPs to infer reliable data. We used the annotations we obtained
to perform simulations to estimate the accuracy of inferred NP-
labels with fewer numbers of participating NPs (Figure 3e).
The inferred NP-label accuracy increased up to six NPs per FOV,
after which there were diminishing returns. Our simulations
also showed that stromal nuclei require more NPs per FOV than
tumor nuclei or sTILs.

Minimal-effort collection of nucleus segmentation
data

Many nucleus detection and segmentation algorithms were de-
veloped using conventional image analysis methods before the
widespread adoption of CNNs. These algorithms have little or
no dependence on annotations, and while they may not be as
accurate as CNNs, they can correctly segment a significant frac-
tion of nuclei. We used simple nucleus segmentation heuris-
tics, combined with low-power region annotations from the
BCSS dataset, to obtain bootstrapped annotation suggestions
for nuclei (Figure S2) [28]. The suggestions were refined using
a deep-learning model (Mask R-CNN) as a function approxi-
mator trained on the bootstrapped suggestions. This procedure
allowed poor quality bootstrapped suggestions in one FOV to be
smoothed by better suggestions in other FOVs (Figure S4, Table
S2) and is analogous to fitting a regression line to noisy data
[18, 48]. This model was applied to the FOVs to generate re-
fined suggestions shown to participants when annotating the
single-rater dataset and the Evaluation dataset (the primary
multi-rater dataset) [44]. Two additional multi-rater datasets
were obtained as controls:

• Bootstrap control: participants were shown unrefined boot-
strapped suggestions.

• Unbiased control: participants were not shown any sugges-
tions. This dataset was the first multi-rater dataset to be
annotated.
Accurate suggestions can be confirmed during annotation

with a single click, reducing effort and providing valuable nu-
cleus boundaries that can aid the development of segmentation
models. Participants can annotate other nuclei with bounding
boxes that require more effort than click annotations but less
effort than manual tracing [15]. We obtained a substantial pro-
portion of nucleus boundaries through clicks: 41.7±17.3% for
the Evaluation dataset and 36.6% for the single-rater dataset
(Figure 4, Figure S5). The resultant hybrid dataset contained a
mixture of bounding boxes and accurate segmentation bound-
aries (Evaluation dataset DICE=85.0±5.9). We argue that it is
easier to handle hybrid datasets at the level of algorithm de-
velopment than to have participants trace missing boundaries
or correct imprecise ones. We evaluate the bias of using these
suggestions in the following section.

Algorithmic suggestions improve classification accu-
racy

There was value in providing the participants with suggestions
for nuclear class, which included suggestions directly inherited
from BCSS region annotations, as well as high-power refined
suggestions produced by Mask R-CNN (Figure 4). Pathologists
had substantial self-agreement when annotating FOVs with or
without refined suggestions (Kappa=87.4±7.9). NPs also had
high self-agreement but were more impressionable when pre-
sented with suggestions (Kappa=74.0±12.6). This was, how-
ever, associated with a reduction in bias in their annotations;
refined suggestions improved the classification accuracy of in-
ferred NP-labels (AUROC=0.95[0.94,0.96] vs. 0.92[0.90,0.93],
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Figure 3. Accuracy of participant annotations. a. Detection precision-recall comparing annotations to inferred P-truth. Junior pathologists tend to have similar
precision but higher recall than senior pathologists, possibly reflecting the time constraints of pathologists. b. Classification ROC for classes and super-classes.
The overall classification accuracy of inferred NP-labels was high. However, class-balanced accuracy (macro-average) is notably lower since NPs are less reliable
annotators of uncommon classes. c. Confusion between pathologist annotations and inferred P-truth. d. Multidimensional scaling (MDS) analysis of interrater
classification agreement. Some clustering by participant experience (blue ellipse) highlights the importance of modeling reliability during label inference. e. A
simulation was used to measure how redundancy impacts the classification accuracy of inferred NP-labels. While keeping the total number of NPs constant,
we randomly kept annotations for a variable number of NPs per FOV. Accuracy in these simulations was class-dependent, with stromal nuclei requiring more
redundancy for accurate inference.

p<0.001). This observation is consistent with Marzahl et al.,
who reported similar findings in a crowdsourcing study using
bovine cytology slides [27].

Region-based class suggestions for nuclei were, overall,
more concordant with the corrected single-rater annotations
compared to Mask R-CNN refined (high-power) nucleus sug-
gestions (MCC=67.6 vs. 52.7) (Figure S4, Table S2). Nonethe-
less, high-power nucleus suggestions were more accurate for
24.8% of FOVs and had a higher recall for sTILs (96.8 vs. 76.6)
[4, 11]. This result makes sense since stromal regions often
contain scattered sTILs, and a region-based approach to label-
ing would incorrectly mark these as stromal nuclei (e.g., see
Figure S6) [28, 49]. Hence, the value of low and high-power
classification suggestions is context-dependent.

Exploring nucleus detection and classification trade-
offs

Naturally, there is some variability in the judgments made by
participants about nuclear locations and classes and the accu-
racy of suggested boundaries. We study the process of inferring
a single truth from multi-rater datasets and discuss the effect
of various parameters. There is a tradeoff between the number
of nucleus anchor proposals and interrater agreement (Figure
5). The clustering IOU threshold that defines the minimum
acceptable overlap between any two annotations substantially

impacted the number of anchor proposals. We found that an
IOU threshold of 0.25 detects most nuclei with adequate pathol-
ogist classification agreement (1,238 nuclei, Alpha=55.5). We
imposed a constraint to prevent annotations from the same
participant from mapping to the same cluster —this improved
detection of touching nuclei when the number of pathologists
was limited (Figure 5b).

Nucleus detection was a more significant source of discor-
dance among participants than nucleus classification (Figure
3, Figure S7, Figure S8). Some nucleus classes were easier to
detect than others. sTILs were the easiest to detect, likely due
to their hyperchromicity and tendency to aggregate; 53.3% of
sTILs were detected by 16+ NPs (Figure S9). Fibroblasts were
demonstrably harder to detect (only 21.4% were detected by
16+ NPs), likely because of their relative sparsity and lighter
nuclear staining. Lymphocytes and plasma cells, which often
co-aggregate in lymphoplasmacytic clusters, were a source of
interrater discordance for pathologists and NPs [4, 50]. This
discordance may stem from variable degrees of reliance on low-
power vs. high-power morphologic features. Interrater agree-
ment for nuclear classification was high and significantly im-
proved when classes were grouped into clinically-salient super-
classes (Alpha=66.1 (pathologists) and 60.3 (NPs); Figure 5).

Methods
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Figure 4. Effect of algorithmic suggestions on annotation abundance and accuracy. We compared annotations from the Evaluation dataset and controls to measure
the impact of suggestions and Mask R-CNN refinement on the acquisition of nucleus segmentation data and the accuracy of annotations. a. Example annotations
from a single participant. Algorithmic suggestions allow the collection of accurate nucleus segmentations without added effort. Yellow points indicate clicks
to approve suggestions. b. The number of segmented nuclei clicked is significantly higher for the Evaluation dataset than for the Bootstrap control, indicating
that refinement improves suggestion quality. c. Accuracy of algorithmic segmentation suggestions. The comparison is made against a limited set of manually
traced segmentation boundaries obtained from one senior pathologist. Suggestions that were determined to be correct by the EM procedure had significantly more
accurate segmentation boundaries. d. Self-agreement for annotations in the presence or absence of algorithmic suggestions. The agreement is substantial for NP
and pathologist groups, indicating that algorithmic suggestions do not impact classification decisions adversely. Pathologists have higher self-agreement and are
less impressionable than NPs. e. ROC curves for the classification accuracy of inferred NP-label, using inferred P-truth as our reference. Statistically-significant
comparisons are indicated with a star (**, p<0.01; ***, p<0.001).

Data sources

The scanned diagnostic slides we used were generated by the
TCGA Research Network (https://www.cancer.gov/tcga). They
were obtained from 125 patients with breast cancer (one slide
per patient). Specifically, we chose to focus on all carcinoma
of unspecified type cases that were triple-negative. The desig-
nation of histologic and genomic subtypes was based on public
TCGA clinical records [28]. All slides were stained with Hema-
toxylin and Eosin (H&E) and were formalin-fixed and paraffin-
embedded. The scanned slides were accessed using the Digital
Slide Archive repository [45].

Region annotations were obtained from BCSS, a previous
crowdsourcing study that we conducted [28]. Regions of In-
terest (ROIs), 1 mm2 in size, were assigned to participants by
difficulty level. All region annotations were corrected and ap-
proved by a practicing pathologist. These region annotations
were used to obtain nucleus class suggestions as described be-
low. Region classes included tumor, stroma, lymphocytic infil-
trate, plasmacytic infiltrate, necrosis/debris, and other uncom-
mon regions.

Algorithmic suggestions

The process for generating algorithmic suggestions is summa-
rized in Figure S2 and involves the following steps:

Heuristic nucleus segmentation. We used simple image process-
ing heuristics to obtain noisy nucleus segmentations [31]. Im-
ages were analyzed at scan magnification (40x) with the fol-
lowing steps: 1. Hematoxylin stain unmixing using the Ma-
cenko method [51]. 2. Gaussian smoothing followed by
global Otsu thresholding to identify foreground nuclei pixels
[52]. This step was done for each region class separately to
increase robustness. We used a variance of two pixels for
lymphocyte-rich regions and five pixels for other regions. 3.
Connected-component analysis split the nuclei pixel mask us-
ing 8-connectivity and a 3x3 structuring element [53]. 4. We
computed the Euclidean distance from every nucleus pixel to
the nearest background pixel and found the peak local maxima
using a minimum distance of 10 [54]. 5. A watershed segmen-
tation algorithm split the connected components from step 3
into individual nuclei using the local maxima from step 4 as
markers [55, 56]. 6. Any object < 300 pixels in area was re-
moved.
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Figure 5. Effect of clustering on detection and interrater agreement. a. Stricter IOU thresholds reduce the number of anchor proposals generated by clustering
but increase agreement. A threshold of 0.25 provides more anchor proposals with negligible difference in agreement from the 0.5 threshold. The shaded region
indicates that by design, there are no anchor proposals with less than two clustered annotations. b. The clustering constraint prevents annotations from the
same participant from being assigned to the same anchor, preserving participant intention when annotating overlapping nuclei. This results in better detection
of overlapping nuclei during clustering (upper panel) and also impacts the inferred P-truth for anchors (bottom panel). c. Interrater classification agreement
among pathologists for tested clustering thresholds. d. Pairwise interrater classification agreement (Cohen’s Kappa) at 0.25 IOU threshold. Statistically-significant
comparisons are indicated with a star (**, p<0.01; ***, p<0.001).

Bootstrapping noisy training data. Region annotations were used
to assign a noisy class to each segmented nucleus. This deci-
sion was based on the observation that although tissue regions
usually contain multiple cell types, there is often a single pre-
dominant cell type: tumor regions / tumor cells, stromal re-
gions / fibroblasts, lymphocytic infiltrate / lymphocytes, plas-
macytic infiltrate / plasma cells, other regions / other cells. One
exception to this direct mapping is stromal regions, which con-
tain a large number of sTILs in addition to fibroblasts. Within
stromal regions, a nucleus was considered a fibroblast if it had
a spindle-like shape with an aspect ratio between 0.4 and 0.55
and circularity between 0.7 and 0.8.
Mask R-CNN refinement of bootstrapped suggestions. A Mask R-
CNN model with a Resnet50 backbone was used as a function
approximator to refine the bootstrapped nucleus suggestions.
This model was trained using randomly cropped 128x128 tiles
where the number of nuclei was limited to 30. Table S3 sum-
marizes the hyperparameters used.
FOV sampling procedure. ROIs were tiled into non-overlapping
potential FOVs. These were selected for inclusion in our study
based on predefined stratified sampling criteria. 16.7% of FOVs
were sampled such that the majority of refined suggestions
were a single class, e.g., almost all suggestions are tumor.

16.7% were sampled to favor FOVs with two almost equally-
represented classes, e.g., many tumor and fibroblast sugges-
tions. Finally, 16.7% of FOVs were sampled to favor discor-
dance between the bootstrapped suggestions and Mask R-CNN-
refined suggestions, e.g., a stromal region with sTILs. The re-
maining 50% of FOVs were randomly sampled from the follow-
ing pool, with the intent of favoring the annotation of difficult
nuclei: a) the bottom 5% of FOVs containing high numbers of
nuclei with low Mask R-CNN confidence; b) and the top 5% of
FOVs containing extreme size detections, presumably clumped
nuclei.

Annotation procedure and data management

The annotation protocol used is provided in the supplement.
We asked the participants to annotate the single-rater dataset
first because this also acted as their de-facto training. Partic-
ipants were blinded to the multi-rater dataset name to avoid
biasing them. The Unbiased control was annotated first for the
same reason. A summary of the data management procedure
is provided below.
HistomicsUI. We used the Digital Slide Archive, a web-based
data management tool, to assign slides and annotation tasks
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(digitalslidearchive.github.io) [45]. HistomicsUI, the associ-
ated annotation interface, was used for creating, correcting,
and reviewing annotations. Using a centralized setup avoids
participants installing software and simplifies the dissemina-
tion of images, control over view/edit permissions, monitoring
progress, and collecting results. The annotation process is il-
lustrated in this video. The process of pathologist review of
annotations is illustrated in Figure S1.
HistomicsTK API. The HistomicsTK Restful Application Pro-
gramming Interface (API) was used to manage data, users, and
annotations programmatically. This includes uploading algo-
rithmic suggestions, downloading participant annotations, and
scalable correction of systematic annotation errors where ap-
propriate.

Obtaining labels from multi-rater datasets

Obtaining anchor proposals. We implemented a constrained ag-
glomerative hierarchical clustering process to obtain anchor
proposals (Figure 2a). The algorithm is summarized in Figure
S10. In order to have a single frame of reference for compar-
ison, annotations from all participants and for all multi-rater
datasets were clustered. After clustering, we used two rules to
decide which anchor proposals corresponded to actual nuclei
(for each multi-rater dataset independently): 1. At least two
pathologists must detect a nucleus. 2. The inferred P-truth
must concur that the anchor is a nucleus.
Inference of NP-labels and P-truth. We used the Expectation-
Maximization (EM) framework described by Dawid and Skene
and implemented in Python by Zheng et al. [46, 47, 57]. Each
participant was assigned an initial quality score of 0.7, and 70
EM iterations were performed. As illustrated in Figure 2b, un-
detected was considered a nucleus class for P-truth/NP-label
inference. The same process was used to infer whether the
boundary of an algorithmic suggestion was accurate. In effect,
the segmentation accuracy was modeled as a binary variable
(clicked vs. not clicked), and the EM procedure was applied to
infer its value.

Class grouping

We defined two levels of grouping for nuclei classes as illus-
trated in Figure 2c. This was done for both the single-rater
and multi-rater dataset annotations. Aggregate EM probabil-
ity was calculated by summing probabilities across subsets.

Participant agreement

Overall interrater agreement was measured using Krippen-
dorff’s alpha statistic, implemented in Python by Santiago Cas-
tro and Thomas Grill [58, 59, 60]. This statistic was chosen be-
cause of its ability to handle missing values [61]. Pairwise inter-
rater agreement was measured using Cohen’s Kappa statistic
[62]. Likewise, self-agreement was measured using Cohen’s
Kappa. All of these measures range from -1 (perfect disagree-
ment) to +1 (perfect agreement). A kappa (or alpha) value of
zero represents agreement that is expected by random chance.
We used thresholds set by Fleiss for defining slight, fair, mod-
erate, substantial, and near-perfect agreement [61].

Annotation redundancy simulations

We performed simulations to measure the impact of the num-
ber of NPs assigned to each FOV on the accuracy of NP-label

inference (Figure 3e). We kept the total number of NPs con-
stant at 18 and randomly removed annotations to obtain a de-
sired number of NPs per FOV. No constraints were placed on
how many FOVs any single NP had. This simulated the real-
istic scenario where participants can annotate as many FOVs
as they want, and our decision-making focuses on FOV assign-
ment. For each random realization, we calculated the inferred
NP-labels using EM and measured accuracy against the static
P-truth. This process was repeated for 1000 random realiza-
tions per configuration.

Software

Data management, machine learning models, and plotting
were all implemented using Python 3+. Pytorch and Ten-
sorflow libraries were used for various deep-learning exper-
iments. Scikit-learn, Scikit-image, OpenCV, HistomicsTK,
Scipy, Numpy, and Pandas libraries were used for matrix and
image processing operations. Openslide library and Histomic-
sTK API were used for interaction with whole-slide images.

Statistical tests

The Mann-Whitney U test was used for unpaired compar-
isons. The Wilcoxon signed-rank test was used for paired
comparisons. Confidence bounds for the AUROC values were
obtained by bootstrap sampling with replacement using 1000
trials [63, 64]. AUROC values are presented in the format:
value[5th percentile, 95th percentile].

Conclusion

In summary, we have described a scalable crowdsourcing ap-
proach that benefits from the participation of NPs to reduce
pathologist effort and enables minimal-effort collection of seg-
mentation boundaries. We systematically examined aspects re-
lated to the interrater agreement and truth inference. There
are important limitations and opportunities to improve on our
work. Our results suggest that the participation of NPs can help
address the scarcity of pathologists’ availability, especially for
repetitive annotation tasks. This benefit, however, is restricted
to annotating predominant and visually distinctive patterns.
Naturally, pathologist input — and possibly full-scale anno-
tation effort- would be needed to supplement uncommon and
challenging classes that require greater expertise. Some nu-
clear classes may be challenging to annotate in H&E stained
slides reliably and would be subject to considerable interrater
variability even among practicing pathologists. In these set-
tings, and where resources allow, IHC stains may be used as a
more objective form of ground truth [65].

We chose to engage medical students and graduates with
the presumption that familiarity with basic histology would
help acquire higher-quality data. Whether this presumption
was warranted or whether it was possible to engage a broader
pool of participants was not investigated. On a related note,
while we observed differences based on pathologist expertise,
this was not our focus. We expect to address related questions
such as the value of fellowship specialization in future work.
Also, we did not measure the time it took participants to create
annotations; we relied on the safe assumption that certain an-
notation types evidently take less time and effort than others.

Another limitation is that the initial bootstrapped nuclear
boundaries were generated using classical image processing
methods, which tend to underperform where nuclei are highly
clumped or have very faint staining. This theoretically intro-
duces some bias in our dataset, with an overrepresentation of

https://youtu.be/HTvLMyKYyGs


Amgad et al. | 9

simpler nuclear boundaries. We focused our annotation efforts
on nucleus detection, as opposed to whole cells. Nuclei have
distinct staining (hematoxylin) and boundaries, potentially re-
ducing the interrater variability associated with the detection
of cell boundaries. Finally, we would point out that dataset cu-
ration is context-dependent and likely differs depending on the
problem. Nevertheless, we trust that most of our conclusions
have broad implications for other histopathology annotation
efforts.

Availability of supporting data and materials

The datasets used are available at the NuCLS website.
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Abstract

Background: Deep learning enables accurate high-resolution mapping of cells and tissue structures that can serve as thefoundation of interpretable machine-learning models for computational pathology. However, generating adequate labels for thesestructures is a critical barrier, given the time and effort required from pathologists. Results: This paper describes a novelcollaborative framework for engaging crowds of medical students and pathologists to produce quality labels for cell nuclei. We usedthis approach to produce the NuCLS dataset, containing over 220,000 annotations of cell nuclei in breast cancers. This builds onprior work labeling tissue regions to produce an integrated tissue region- and cell-level annotation dataset for training that is thelargest such resource for multi-scale analysis of breast cancer histology. This paper presents data and analysis results for singleand multi-rater annotations from both non-experts and pathologists. We present a novel method for suggesting annotations thatallows us to collect accurate segmentation data without the need for laborious manual tracing of cells. Our results indicate thateven noisy algorithmic suggestions do not adversely affect pathologist accuracy, and can help non-experts improve annotationquality. We also present a new approach for inferring truth from multiple raters, and show that non-experts can produce accurateannotations for visually distinctive classes. Conclusions: This study is the first systematic exploration of the large-scale use ofwisdom-of-the-crowd approaches to generate data for computational pathology applications.
Key words: Crowdsourcing; Deep learning; Nucleus segmentation; Nucleus classification; Breast cancer.
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Background

Motivation

Convolutional neural networks (CNN) and other deep learningmethods have been at the heart of recent advances in medicine(see Table S1 for terminology) [1]. A key challenge in computa-tional pathology is the scarcity of large-scale labeled datasets formodel training and validation [2, 3, 4]. Specifically, there is a short-age of annotation data for delineating tissue regions and cellularstructures in histopathology. This information is critical for train-ing interpretable deep-learning models, as they allow the detec-tion of entities that are understood by pathologists and map toknown diagnostic criteria [4, 5, 6, 7]. These entities can then beused to construct higher-order relational graphs that encode com-plex spatial and hierarchical relationships within the tumor mi-croenvironment, paving the way for the computationally-drivendiscovery of histopathologic biomarkers and biological associations[4, 8, 9, 10, 11, 12, 13]. Data shortage is often attributed to the do-main expertise required to produce annotation labels, with pathol-ogists spending years in residency and fellowship training [2, 14].This problem is exacerbated by the time constraints of clinical prac-tice and the repetitive nature of annotation work. Manual tracingof object boundaries is an incredibly demanding task, and thereis a pressing need to obtain this data using facilitated or assistedannotation strategies [15]. By comparison, traditional annotationproblems like detecting people in natural images require almostno training and typically engage the general public [15]. Moreover,unique problems often require new annotation data, underscoringthe need for scalable and reproducible annotation workflows [16].
We address these issues using an assisted annotation methodthat leverages the participation of non-pathologists (NPs), includ-ing medical students and graduates. Medical students typicallyhave strong incentives to participate in annotation studies, withincreased reliance on research participation in residency selection[17]. We describe adaptations to the data collection to improve scala-bility and reduce effort. This work focuses on nucleus classification,localization, and segmentation (NuCLS, for short) in whole-slidescans of hematoxylin and eosin-stained (H&E) slides of breast car-cinoma from 18 institutions from The Cancer Genome Atlas (TCGA).Our annotation pipeline enables low-effort collection of nucleussegmentation and classification data, paving the way for systematicdiscovery of histopathologic-genomic associations and morpholog-ical biomarkers of disease progression [4, 5, 8, 10, 11].

Related work

There has been growing interest in addressing data scarcity inhistopathology by either 1. scaling data generation or 2. reducingreliance on manually labeled data using data synthesis techniqueslike Generative Adversarial Networks [18, 19, 20, 21, 22, 23, 24, 25].While there is a pressing need for both approaches, this work ismeant to fit into the broad context of scalable assisted manual datageneration when expert annotation is expensive or difficult. Crowd-sourcing, the process of engaging a “crowd” of individuals to an-notate data, is critical to solving this problem. There exists a largebody of relevant work in crowdsourcing for medical image analy-sis [15, 26, 27]. Previously, we published a study and dataset usingcrowdsourcing of NPs for annotation of low-power regions in breastcancer [28]. Our approach was structured because we assigneddifferent tasks depending on the level of expertise and leveragedcollaborative annotation to obtain data that is large in scale andhigh in quality. Here, we significantly expand this idea by focusing

on the challenging problems of nucleus classification, localization,and segmentation. This computer vision problem is a subject ofsignificant interest in computational pathology [29, 30, 31].
While the public release of data is only one aspect of our study, itis essential to acknowledge related nucleus classification datasets.Some of these datasets can be used in conjunction with ours andinclude MoNuSAC, CoNSep, PanNuke, and Lizard [29, 30, 32, 33, 34,35, 36, 37, 38]. Lizard, in particular, is a highly related dataset thatwas recently published after we released NuCLS but focuses on coloncancer instead [37]. Additionally, the US Food and Drug Administra-tion is leading an ongoing study to collect regulatory-grade annota-tions of stromal tumor-infiltrating lymphocytes (sTILs) [39]. Un-fortunately, with few exceptions, most public computational pathol-ogy datasets are either limited in scale, were generated throughexhaustive annotation efforts by practicing pathologists, or do notdisclose or discuss data generation [2, 26, 30, 40]. Additionally, tothe best of our knowledge, most other works do not explore crowd-sourcing as a data generation approach or systematically exploreinterrater agreement for experts vs. non-experts.
A few studies are of particular relevance to this paper. A studyby Irshad et al. showed that non-experts, recruited through theFigure Eight platform, can produce accurate nucleus detectionsand segmentations in renal clear cell cancer but was limited to 10whole-slide images [20]. Hou et al. explored the use of syntheticdata to produce nuclear segmentations [41]. While a significantcontribution, their work did not address classification, relied onqualitative slide-level evaluations of results, and did not explorehow algorithmic bias affects data quality [42, 22]. The approachwe used involves click-based approval of annotations generated bya deep-learning algorithm. This methodological aspect is not thecentral focus of this paper; it is only one of many approaches forinteractive segmentation and classification of nuclei explored inpast studies like HistomicsML and NuClick [42, 22].

Our contributions

This work describes a scalable crowdsourcing approach that sys-tematically engaged NPs and produced annotations for localization,segmentation, and classification of nuclei in breast cancer. Ourworkflow required minimal effort from pathologists and used al-gorithmic suggestions to scale the annotation process and obtainhybrid annotation datasets containing numerous segmentationboundaries without laborious manual tracing. We show that algo-rithmic suggestions can improve the accuracy of NP annotationsand that NPs are reliable annotators of common cell types. In ad-dition, we discuss a new constrained clustering method that wedeveloped for reliable truth inference in multi-rater datasets. Wealso show how multi-rater data can ensure the quality of NP anno-tations or replace expert supervision in some contexts. Finally, wenote that downstream deep-learning modeling using the NuCLSdataset is discussed in a related publication and is not the focus ofthis paper [43].

Data Description

NuCLS is a large-scale multi-class dataset generated by engagingcrowds of medical students and pathologists. NuCLS is sourcedfrom the same images as the Breast Cancer Semantic Segmentation(BCSS) dataset [28]. Together, these datasets contain region- andcell-level annotations and constitute the most extensive resourcefor multi-scale analysis of breast cancer slides. We obtained a totalof 222,396 nucleus annotations, including over 125,000 single-rater

Compiled on: October 28, 2021.Draft manuscript prepared by the author.

https://sites.google.com/view/nucls
https://github.com/PathologyDataScience/BCSS
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Figure 1. Dataset annotation and quality control procedure. a. Nucleus classes annotated. b. Annotation procedure and resulting datasets. Two approaches were used to
obtain nucleus labels from non-pathologists (NPs). (Top) The first approach focused on breadth, collecting single-rater annotations over a large number of FOVs to obtain the
majority of data in this study. NPs were given feedback on their annotations, and two study coordinators corrected and standardized all single-rater NP annotations based on
input from a senior pathologist. (Bottom) The second approach evaluated interrater reliability and agreement, obtaining annotations from multiple NPs for a smaller set of
shared FOVs. Annotations were also obtained from pathologists for these FOVs to measure NP reliability. The procedure for inferring a single set of labels from multiple
participants is described in Figure 2. We distinguished between inferred NP-labels and inferred P-truth for clarity. Three multi-rater datasets were obtained: an Evaluation
dataset, which is the primary multi-rater dataset, as well as Bootstrap and Unbiased experimental controls to measure the value of algorithmic suggestions. In all datasets
except the Unbiased control, participants were shown algorithmic suggestions for nucleus boundaries and classes. They were directed to click nuclei with correct boundary
suggestions and annotate other nuclei with bounding boxes. The pipeline to obtain algorithmic suggestions consisted of two steps: 1. Using image processing to obtain
bootstrapped suggestions (Bootstrap control); 2. Training a Mask R-CNN model to refine the bootstrapped suggestions )single-rater and Evaluation datasets).

annotations and 97,000 multi-rater annotations. A detailed descrip-tion of the dataset creation protocol is presented in the methodssection.

Analyses and Discussion

Structured crowdsourcing enables scalable data collection

Pathologist time is limited and expensive, and relying solely onpathologists for generating annotations can hinder the develop-ment of state-of-the-art models based on CNNs. In this study, weshow that NPs can perform most of the time-consuming annotationtasks and that pathologist involvement can be limited to low-efforttasks that include:
• Training NPs and answering their questions (Figure 1) [44].• Qualitative scoring of NP annotations (Figure S1).• Low-power annotation of histologic regions (Figure S2) [28].

We used a web-based annotation platform called HistomicsUIfor annotation, feedback, and quality review [45]. HistomicsUIprovides a user interface with annotation tools and an API for pro-grammatic querying and manipulating the centralized annotationdatabase. The NuCLS dataset includes annotations from 32 NPsand seven pathologists in the US, Egypt, Syria, Australia, and theMaldives. We obtained 128,000 nucleus annotations from 3,944fields-of-view (FOV) and 125 triple-negative breast cancer patients.The annotations included bounding box placement, classification,and for a sizable fraction of nuclei, segmentation boundaries. Halfof these annotations underwent quality control correction based onfeedback by a practicing pathologist.Additionally, we obtained three multi-rater datasets containing97,300 annotations, where the same FOV was annotated by multipleparticipants (Figure 1b, Figure 2). The collection of multi-raterdata enables quantitative evaluation of NP reliability, interrater vari-ability, and the impact of algorithmic suggestions on NP accuracy.

Multi-rater annotations were not corrected by pathologists andenabled an unbiased assessment of NP performance. Pathologistannotations were also collected for a limited set of multi-rater FOVsto evaluate NP accuracy.

NPs can reliably classify common cell types

The detection accuracy of NPs was moderately high (AP=0.68) andwas similar to the detection accuracy of pathologists. Classificationaccuracy of NPs, on the other hand, was only high for commonnucleus classes (micro-average AUROC=0.93[0.92,0.94] vs. macro-average AUROC=0.75[0.74,0.76]) and was higher when groupingby super-class (Figure 3, Figure S3). We reported the same phe-nomenon in our previous work on crowdsourcing annotation oftissue regions [28]. In addition, we observed moderate cluster-ing by participant experience (Figure 3d) and variability in clas-sification accuracy among NPs (MCC=60.7-84.2). This observa-tion motivated our quality control procedures. Study coordinatorsmanually corrected missing or misclassified cells for the single-rater dataset, and practicing pathologists supervised and approvedannotations. For the multi-rater datasets, we inferred a singu-lar label from pathologists (P-truth) and NPs (NP-label) using anExpectation-Maximization (EM) framework that estimates relia-bility values for each participant [46, 47].
When pathologist supervision is not an option, multi-raterdatasets need to have annotations from a sufficient number of NPsto infer reliable data. We used the annotations we obtained to per-form simulations to estimate the accuracy of inferred NP-labelswith fewer numbers of participating NPs (Figure 3e). The inferredNP-label accuracy increased up to six NPs per FOV, after whichthere were diminishing returns. Our simulations also showed thatstromal nuclei require more NPs per FOV than tumor nuclei or sTILs.
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Figure 2. Inference from multi-rater datasets. The purpose of this step was to infer the nucleus locations and classifications from multi-rater data. a. The first step involved
agglomerative hierarchical clustering of bounding boxes using Intersection-Over-Union (IOU) as a similarity measure. We imposed a constraint during clustering that
prevents merging annotations where a single participant has annotated overlapping nuclei. Participant intention was preserved by demoting annotations from the same
participant to the next node (step 5, arrow). After clustering was complete, a threshold IOU value was used to obtain the final clusters (step 5, black nodes). Within each
cluster, the medoid bounding box was chosen as an anchor proposal. The result was a set of anchors with corresponding clustered annotations. When a participant did not
match to an anchor, it was considered a conscious decision not to annotate a nucleus at that location. b. Once anchors were obtained, an expectation-maximization (EM)
procedure was used to estimate: 1. which anchors represent actual nuclei, and 2. which classes to assign these anchors. The EM procedure estimates and accounts for the
reliability of each participant for each classification. EM was performed separately for NPs and pathologists. c. Grouping of nucleus classes. Consistent with standard practice
in object detection, nuclei were grouped, based on clinical reasoning, into five classes and three super-classes.

Minimal-effort collection of nucleus segmentation data

Many nucleus detection and segmentation algorithms were de-veloped using conventional image analysis methods before thewidespread adoption of CNNs. These algorithms have little or nodependence on annotations, and while they may not be as accurateas CNNs, they can correctly segment a significant fraction of nuclei.We used simple nucleus segmentation heuristics, combined withlow-power region annotations from the BCSS dataset, to obtainbootstrapped annotation suggestions for nuclei (Figure S2) [28].The suggestions were refined using a deep-learning model (MaskR-CNN) as a function approximator trained on the bootstrappedsuggestions. This procedure allowed poor quality bootstrapped sug-gestions in one FOV to be smoothed by better suggestions in otherFOVs (Figure S4, Table S2) and is analogous to fitting a regressionline to noisy data [18, 48]. This model was applied to the FOVs togenerate refined suggestions shown to participants when annotat-ing the single-rater dataset and the Evaluation dataset (the primarymulti-rater dataset) [44]. Two additional multi-rater datasets wereobtained as controls:
• Bootstrap control: participants were shown unrefined boot-strapped suggestions.• Unbiased control: participants were not shown any suggestions.This dataset was the first multi-rater dataset to be annotated.

Accurate suggestions can be confirmed during annotation witha single click, reducing effort and providing valuable nucleus bound-aries that can aid the development of segmentation models. Partici-pants can annotate other nuclei with bounding boxes that requiremore effort than click annotations but less effort than manual trac-ing [15]. We obtained a substantial proportion of nucleus boundariesthrough clicks: 41.7±17.3% for the Evaluation dataset and 36.6%for the single-rater dataset (Figure 4, Figure S5). The resultanthybrid dataset contained a mixture of bounding boxes and accu-rate segmentation boundaries (Evaluation dataset DICE=85.0±5.9).We argue that it is easier to handle hybrid datasets at the level ofalgorithm development than to have participants trace missing

boundaries or correct imprecise ones. We evaluate the bias of usingthese suggestions in the following section.

Algorithmic suggestions improve classification accuracy

There was value in providing the participants with suggestions fornuclear class, which included suggestions directly inherited fromBCSS region annotations, as well as high-power refined suggestionsproduced by Mask R-CNN (Figure 4). Pathologists had substan-tial self-agreement when annotating FOVs with or without refinedsuggestions (Kappa=87.4±7.9). NPs also had high self-agreementbut were more impressionable when presented with suggestions(Kappa=74.0±12.6). This was, however, associated with a reductionin bias in their annotations; refined suggestions improved the clas-sification accuracy of inferred NP-labels (AUROC=0.95[0.94,0.96]vs. 0.92[0.90,0.93], p<0.001). This observation is consistent withMarzahl et al., who reported similar findings in a crowdsourcingstudy using bovine cytology slides [27].
Region-based class suggestions for nuclei were, overall, moreconcordant with the corrected single-rater annotations com-pared to Mask R-CNN refined (high-power) nucleus suggestions(MCC=67.6 vs. 52.7) (Figure S4, Table S2). Nonetheless, high-powernucleus suggestions were more accurate for 24.8% of FOVs and hada higher recall for sTILs (96.8 vs. 76.6) [4, 11]. This result makessense since stromal regions often contain scattered sTILs, and aregion-based approach to labeling would incorrectly mark these asstromal nuclei (e.g., see Figure S6) [28, 49]. Hence, the value of lowand high-power classification suggestions is context-dependent.

Exploring nucleus detection and classification tradeoffs

Naturally, there is some variability in the judgments made by par-ticipants about nuclear locations and classes and the accuracy ofsuggested boundaries. We study the process of inferring a singletruth from multi-rater datasets and discuss the effect of various pa-rameters. There is a tradeoff between the number of nucleus anchor
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Figure 3. Accuracy of participant annotations. a. Detection precision-recall comparing annotations to inferred P-truth. Junior pathologists tend to have similar precision but
higher recall than senior pathologists, possibly reflecting the time constraints of pathologists. b. Classification ROC for classes and super-classes. The overall classification
accuracy of inferred NP-labels was high. However, class-balanced accuracy (macro-average) is notably lower since NPs are less reliable annotators of uncommon classes. c.
Confusion between pathologist annotations and inferred P-truth. d. Multidimensional scaling (MDS) analysis of interrater classification agreement. Some clustering by
participant experience (blue ellipse) highlights the importance of modeling reliability during label inference. e. A simulation was used to measure how redundancy impacts
the classification accuracy of inferred NP-labels. While keeping the total number of NPs constant, we randomly kept annotations for a variable number of NPs per FOV.
Accuracy in these simulations was class-dependent, with stromal nuclei requiring more redundancy for accurate inference.

proposals and interrater agreement (Figure 5). The clustering IOUthreshold that defines the minimum acceptable overlap betweenany two annotations substantially impacted the number of anchorproposals. We found that an IOU threshold of 0.25 detects mostnuclei with adequate pathologist classification agreement (1,238nuclei, Alpha=55.5). We imposed a constraint to prevent annota-tions from the same participant from mapping to the same cluster—this improved detection of touching nuclei when the number ofpathologists was limited (Figure 5b).

Nucleus detection was a more significant source of discordanceamong participants than nucleus classification (Figure 3, Figure S7,Figure S8). Some nucleus classes were easier to detect than others.sTILs were the easiest to detect, likely due to their hyperchromicityand tendency to aggregate; 53.3% of sTILs were detected by 16+ NPs(Figure S9). Fibroblasts were demonstrably harder to detect (only21.4% were detected by 16+ NPs), likely because of their relativesparsity and lighter nuclear staining. Lymphocytes and plasmacells, which often co-aggregate in lymphoplasmacytic clusters,were a source of interrater discordance for pathologists and NPs[4, 50]. This discordance may stem from variable degrees of relianceon low-power vs. high-power morphologic features. Interrateragreement for nuclear classification was high and significantlyimproved when classes were grouped into clinically-salient super-classes (Alpha=66.1 (pathologists) and 60.3 (NPs); Figure 5).

Methods

Data sources

The scanned diagnostic slides we used were generated by the TCGAResearch Network (https://www.cancer.gov/tcga). They were ob-tained from 125 patients with breast cancer (one slide per patient).Specifically, we chose to focus on all carcinoma of unspecified typecases that were triple-negative. The designation of histologic andgenomic subtypes was based on public TCGA clinical records [28].All slides were stained with Hematoxylin and Eosin (H&E) and wereformalin-fixed and paraffin-embedded. The scanned slides wereaccessed using the Digital Slide Archive repository [45].
Region annotations were obtained from BCSS, a previous crowd-sourcing study that we conducted [28]. Regions of Interest (ROIs),1 mm2 in size, were assigned to participants by difficulty level. Allregion annotations were corrected and approved by a practicingpathologist. These region annotations were used to obtain nucleusclass suggestions as described below. Region classes included tu-mor, stroma, lymphocytic infiltrate, plasmacytic infiltrate, necro-sis/debris, and other uncommon regions.

Algorithmic suggestions

The process for generating algorithmic suggestions is summarizedin Figure S2 and involves the following steps:
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Figure 4. Effect of algorithmic suggestions on annotation abundance and accuracy. We compared annotations from the Evaluation dataset and controls to measure the
impact of suggestions and Mask R-CNN refinement on the acquisition of nucleus segmentation data and the accuracy of annotations. a. Example annotations from a single
participant. Algorithmic suggestions allow the collection of accurate nucleus segmentations without added effort. Yellow points indicate clicks to approve suggestions. b. The
number of segmented nuclei clicked is significantly higher for the Evaluation dataset than for the Bootstrap control, indicating that refinement improves suggestion quality. c.
Accuracy of algorithmic segmentation suggestions. The comparison is made against a limited set of manually traced segmentation boundaries obtained from one senior
pathologist. Suggestions that were determined to be correct by the EM procedure had significantly more accurate segmentation boundaries. d. Self-agreement for annotations
in the presence or absence of algorithmic suggestions. The agreement is substantial for NP and pathologist groups, indicating that algorithmic suggestions do not impact
classification decisions adversely. Pathologists have higher self-agreement and are less impressionable than NPs. e. ROC curves for the classification accuracy of inferred
NP-label, using inferred P-truth as our reference. Statistically-significant comparisons are indicated with a star (**, p<0.01; ***, p<0.001).

Heuristic nucleus segmentation. We used simple image processingheuristics to obtain noisy nucleus segmentations [31]. Images wereanalyzed at scan magnification (40x) with the following steps: 1.Hematoxylin stain unmixing using the Macenko method [51]. 2.Gaussian smoothing followed by global Otsu thresholding to iden-tify foreground nuclei pixels [52]. This step was done for each re-gion class separately to increase robustness. We used a varianceof two pixels for lymphocyte-rich regions and five pixels for otherregions. 3. Connected-component analysis split the nuclei pixelmask using 8-connectivity and a 3x3 structuring element [53]. 4.We computed the Euclidean distance from every nucleus pixel to thenearest background pixel and found the peak local maxima using aminimum distance of 10 [54]. 5. A watershed segmentation algo-rithm split the connected components from step 3 into individualnuclei using the local maxima from step 4 as markers [55, 56]. 6.Any object < 300 pixels in area was removed.
Bootstrapping noisy training data. Region annotations were used toassign a noisy class to each segmented nucleus. This decision wasbased on the observation that although tissue regions usually con-tain multiple cell types, there is often a single predominant cell type:tumor regions / tumor cells, stromal regions / fibroblasts, lympho-cytic infiltrate / lymphocytes, plasmacytic infiltrate / plasma cells,other regions / other cells. One exception to this direct mapping isstromal regions, which contain a large number of sTILs in addition

to fibroblasts. Within stromal regions, a nucleus was considered afibroblast if it had a spindle-like shape with an aspect ratio between0.4 and 0.55 and circularity between 0.7 and 0.8.
Mask R-CNN refinement of bootstrapped suggestions. A Mask R-CNNmodel with a Resnet50 backbone was used as a function approxima-tor to refine the bootstrapped nucleus suggestions. This model wastrained using randomly cropped 128x128 tiles where the number ofnuclei was limited to 30. Table S3 summarizes the hyperparametersused.
FOV sampling procedure. ROIs were tiled into non-overlapping po-tential FOVs. These were selected for inclusion in our study basedon predefined stratified sampling criteria. 16.7% of FOVs were sam-pled such that the majority of refined suggestions were a singleclass, e.g., almost all suggestions are tumor. 16.7% were sampled tofavor FOVs with two almost equally-represented classes, e.g., manytumor and fibroblast suggestions. Finally, 16.7% of FOVs were sam-pled to favor discordance between the bootstrapped suggestionsand Mask R-CNN-refined suggestions, e.g., a stromal region withsTILs. The remaining 50% of FOVs were randomly sampled fromthe following pool, with the intent of favoring the annotation of dif-ficult nuclei: a) the bottom 5% of FOVs containing high numbers ofnuclei with low Mask R-CNN confidence; b) and the top 5% of FOVscontaining extreme size detections, presumably clumped nuclei.
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c
Interrater anchor classi�cation agreement

Pairwise anchor

classi�cation agreement

d

E�ect of clustering IOU on anchor proposala b E�ect of clustering constraint

Figure 5. Effect of clustering on detection and interrater agreement. a. Stricter IOU thresholds reduce the number of anchor proposals generated by clustering but increase
agreement. A threshold of 0.25 provides more anchor proposals with negligible difference in agreement from the 0.5 threshold. The shaded region indicates that by design,
there are no anchor proposals with less than two clustered annotations. b. The clustering constraint prevents annotations from the same participant from being assigned to
the same anchor, preserving participant intention when annotating overlapping nuclei. This results in better detection of overlapping nuclei during clustering (upper panel)
and also impacts the inferred P-truth for anchors (bottom panel). c. Interrater classification agreement among pathologists for tested clustering thresholds. d. Pairwise
interrater classification agreement (Cohen’s Kappa) at 0.25 IOU threshold. Statistically-significant comparisons are indicated with a star (**, p<0.01; ***, p<0.001).

Annotation procedure and data management

The annotation protocol used is provided in the supplement. Weasked the participants to annotate the single-rater dataset first be-cause this also acted as their de-facto training. Participants wereblinded to the multi-rater dataset name to avoid biasing them. TheUnbiased control was annotated first for the same reason. A sum-mary of the data management procedure is provided below.
HistomicsUI. We used the Digital Slide Archive, a web-based datamanagement tool, to assign slides and annotation tasks (digital-slidearchive.github.io) [45]. HistomicsUI, the associated annotationinterface, was used for creating, correcting, and reviewing anno-tations. Using a centralized setup avoids participants installingsoftware and simplifies the dissemination of images, control overview/edit permissions, monitoring progress, and collecting results.The annotation process is illustrated in this video. The process ofpathologist review of annotations is illustrated in Figure S1.
HistomicsTK API. The HistomicsTK Restful Application Program-ming Interface (API) was used to manage data, users, and anno-tations programmatically. This includes uploading algorithmicsuggestions, downloading participant annotations, and scalablecorrection of systematic annotation errors where appropriate.

Obtaining labels from multi-rater datasets

Obtaining anchor proposals. We implemented a constrained agglom-erative hierarchical clustering process to obtain anchor proposals(Figure 2a). The algorithm is summarized in Figure S10. In orderto have a single frame of reference for comparison, annotationsfrom all participants and for all multi-rater datasets were clustered.After clustering, we used two rules to decide which anchor pro-posals corresponded to actual nuclei (for each multi-rater datasetindependently): 1. At least two pathologists must detect a nucleus.2. The inferred P-truth must concur that the anchor is a nucleus.

Inference of NP-labels and P-truth. We used the Expectation-Maximization (EM) framework described by Dawid and Skene andimplemented in Python by Zheng et al. [46, 47, 57]. Each partici-pant was assigned an initial quality score of 0.7, and 70 EM iterationswere performed. As illustrated in Figure 2b, undetected was con-sidered a nucleus class for P-truth/NP-label inference. The sameprocess was used to infer whether the boundary of an algorithmicsuggestion was accurate. In effect, the segmentation accuracy wasmodeled as a binary variable (clicked vs. not clicked), and the EMprocedure was applied to infer its value.

https://youtu.be/HTvLMyKYyGs
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Class grouping

We defined two levels of grouping for nuclei classes as illustrated inFigure 2c. This was done for both the single-rater and multi-raterdataset annotations. Aggregate EM probability was calculated bysumming probabilities across subsets.
Participant agreement

Overall interrater agreement was measured using Krippendorff’salpha statistic, implemented in Python by Santiago Castro andThomas Grill [58, 59, 60]. This statistic was chosen because ofits ability to handle missing values [61]. Pairwise interrater agree-ment was measured using Cohen’s Kappa statistic [62]. Likewise,self-agreement was measured using Cohen’s Kappa. All of thesemeasures range from -1 (perfect disagreement) to +1 (perfect agree-ment). A kappa (or alpha) value of zero represents agreement thatis expected by random chance. We used thresholds set by Fleissfor defining slight, fair, moderate, substantial, and near-perfectagreement [61].
Annotation redundancy simulations

We performed simulations to measure the impact of the numberof NPs assigned to each FOV on the accuracy of NP-label inference(Figure 3e). We kept the total number of NPs constant at 18 andrandomly removed annotations to obtain a desired number of NPsper FOV. No constraints were placed on how many FOVs any singleNP had. This simulated the realistic scenario where participantscan annotate as many FOVs as they want, and our decision-makingfocuses on FOV assignment. For each random realization, we cal-culated the inferred NP-labels using EM and measured accuracyagainst the static P-truth. This process was repeated for 1000 ran-dom realizations per configuration.
Software

Data management, machine learning models, and plotting were allimplemented using Python 3+. Pytorch and Tensorflow librarieswere used for various deep-learning experiments. Scikit-learn,Scikit-image, OpenCV, HistomicsTK, Scipy, Numpy, and Pandaslibraries were used for matrix and image processing operations.Openslide library and HistomicsTK API were used for interactionwith whole-slide images.
Statistical tests

The Mann-Whitney U test was used for unpaired comparisons. TheWilcoxon signed-rank test was used for paired comparisons. Confi-dence bounds for the AUROC values were obtained by bootstrap sam-pling with replacement using 1000 trials [63, 64]. AUROC valuesare presented in the format: value[5th percentile, 95th percentile].

Conclusion

In summary, we have described a scalable crowdsourcing approachthat benefits from the participation of NPs to reduce pathologist ef-fort and enables minimal-effort collection of segmentation bound-aries. We systematically examined aspects related to the interrateragreement and truth inference. There are important limitationsand opportunities to improve on our work. Our results suggest thatthe participation of NPs can help address the scarcity of patholo-gists’ availability, especially for repetitive annotation tasks. Thisbenefit, however, is restricted to annotating predominant and visu-ally distinctive patterns. Naturally, pathologist input — and pos-

sibly full-scale annotation effort- would be needed to supplementuncommon and challenging classes that require greater expertise.Some nuclear classes may be challenging to annotate in H&E stainedslides reliably and would be subject to considerable interrater vari-ability even among practicing pathologists. In these settings, andwhere resources allow, IHC stains may be used as a more objectiveform of ground truth [65].
We chose to engage medical students and graduates with the pre-sumption that familiarity with basic histology would help acquirehigher-quality data. Whether this presumption was warranted orwhether it was possible to engage a broader pool of participants wasnot investigated. On a related note, while we observed differencesbased on pathologist expertise, this was not our focus. We expectto address related questions such as the value of fellowship special-ization in future work. Also, we did not measure the time it tookparticipants to create annotations; we relied on the safe assumptionthat certain annotation types evidently take less time and effortthan others.
Another limitation is that the initial bootstrapped nuclearboundaries were generated using classical image processing meth-ods, which tend to underperform where nuclei are highly clumpedor have very faint staining. This theoretically introduces some biasin our dataset, with an overrepresentation of simpler nuclear bound-aries. We focused our annotation efforts on nucleus detection, asopposed to whole cells. Nuclei have distinct staining (hematoxylin)and boundaries, potentially reducing the interrater variability asso-ciated with the detection of cell boundaries. Finally, we would pointout that dataset curation is context-dependent and likely differsdepending on the problem. Nevertheless, we trust that most ofour conclusions have broad implications for other histopathologyannotation efforts.

Availability of supporting data and materials

The datasets used are available at the NuCLS website.
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