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S1 Proofs of Lemmas 3.2 and 3.3

In this section we use t to denote the edge length from the lowest duplication point (on the internal
edges of L) to the first vertex below it (as in Sections 3.1.3, 3.2.3, and 3.2.4).

Proof of Lemma 3.2. The statement is trivial for cases from Sections 3.2.1 (no duplications) and
3.2.2 (X-edge duplication). Therefore, we now prove the statement for cases from Sections 3.2.3
and 3.2.4.

• Case 3.2.3 (Y -edge duplication). It is sufficient to show that P [a, b, c coalesced before duplication]
grows as x := ω(X) grows. Consider the following relation:

P [a, b, c coalesced before duplication] = g2,1(x)g2,1(t) + g2,2(x)g3,1(t).

Observe that for any x1 > x2 we have g2,1(x1) = 1 − e−x1 > 1 − e−x2 = g2,1(x2). Then we
also have

g2,1(x1)g2,1(t) + g2,2(x1)g3,1(t) > g2,1(x2)g2,1(t) + g2,2(x2)g3,1(t),

since g2,1(t) > g3,1(t) and g2,1(x) + g2,2(x) = 1 for all positive x and t.

• Case 3.2.4 (root-edge duplication). In this case it is sufficient to prove that
P [a, b, c, d coalesced before the duplication] grows as x grows. Observe that

P [a, b, c, d coalesced before the duplication]

= g2,1(x)P [3 lineages coalesced on Y and root edges before the duplication]

+ g2,2(x)P [4 lineages coalesced on Y and root edges before the duplication]

= g2,1(x) · P3 + g2,2(x) · P4.

We introduced constants P3 and P4 above to simplify the notation.

It is now left to show that P3 > P4 with the remainder of the proof following similarly to
Case 3.2.3 above.

Note that
P3 = g2,1(y)g2,1(t) + g2,2(y)g3,1(t)

and
P4 = g3,1(y)g2,1(t) + g3,2(y)g3,1(t) + g3,3(y)g4,1(t).
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Then

P3 − P4 = g2,1(t)
(
g2,1(y)− g3,1(y)

)
+ g3,1(t)

(
g2,2(y)− g3,2(y)

)
− g4,1(t)g3,3(y)

> g3,1(t)
(
g2,1(y)− g3,1(y) + g2,2(y)− g3,2(y)

)
− g4,1(t)g3,3(t)

= g3,1(t)
(
1− g3,1(y)− g3,2(y)

)
− g4,1(t)g3,3(y)

> g4,1(t)
(
1− g3,1(y)− g3,2(y)− g3,3(y)

)
= g4,1(t)(1− 1) = 0.

The above inequalities hold due to g2,1(z) > g3,1(z) > g4,1(z) for any positive z.

Proof of Lemma 3.3. Observe that this statement is not trivial only in the following three cases:

(i) L is balanced, and the lowest duplication is at the root edge (Case 3.1.3). To prove that
P [ab|cd ∈ G | L] > P [ac|bd ∈ G | L] it is sufficient to show that

P [a, b, c, d coalesced before duplication] ≥ g4,1(t).

Observe then that

P [a, b, c, d coalesced before duplication] =

4∑
k=2

gk,1(t)P [k lineages entered the root edge] ≥ g4,1(t).

The inequality holds since gk,1(t) ≥ g4,1(t) for all k ∈ {2, 3, 4} and

4∑
k=2

P [k lineages entered the root edge] = 1.

(ii) L is a caterpillar, and the lowest duplication is on the Y edge (Case 3.2.3). In this case, it is
sufficient to show that P [a, b, c coalesced before duplication] ≥ g3,1(t). Similarly to the above
case, observe that

P [a, b, c coalesced before duplication] =
3∑

k=2

gk,1(t)P [k lineages entered edge Y ] ≥ g3,1(t).

Then the inequality holds since gk,1(t) ≥ g3,1(t) for all k ∈ {2, 3}.

(iii) L is a caterpillar, and the lowest duplication is at the root edge (Case 3.2.4). In this case, we
need to show that

P [a, b, c, d coalesced before the duplication] ≥ g3,2(y)g3,1(t) + g3,1(y)g2,1(t) + g3,3(y)g4,1(t).

Consider now the following relation that comes from the proof of Lemma 3.2:

P [a, b, c, d coalesced before the duplication]

= g2,1(x)P [3 lineages coalesced on Y and root edges before the duplication]

+ g2,2(x)P [4 lineages coalesced on Y and root edges before the duplication]

= g2,1(x) · P3 + g2,2(x) · P4.

Then, using the P3 and P4 notation, we need to show that

g2,1(x)P3 + g2,2(x)P4 ≥ P4.

Note that g2,1(x) + g2,2(x) = 1. Further, in the proof of Lemma 3.2 we show that P3 ≥ P4.
Then the inequality follows.
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S2 Proof of Lemma 4.6

Proof. First of all, note that for, e.g., the (ab, c, d) case to be feasible, we need to have at least
three root lineages. That is, l ≥ 3. Next, observe that

P [AB] = P [(ab, c, d) ∨ (cd, a, b)] = P [ia = ib, ic 6= id]− P [(abc, d)]− P [(abd, c)]

+ P [ic = id, ia 6= ib]− P [(acd, b)]− P [(bcd, a)];

P [AC] = P [(ac, b, d) ∨ (bd, a, c)] = P [ia = ic, ib 6= id]− P [(abc, d)]− P [(acd, b)]

+ P [ib = id, ia 6= ic]− P [(abd, c)]− P [(bcd, a)].

Therefore, it is sufficient to show that

P [ia = ib, ic 6= id] + P [ic = id, ia 6= ib] ≥ P [ia = ic, ib 6= id] + P [ib = id, ia 6= ic].

Let x := P [ia = ib] and y := P [ic = id]. Recall that, by Lemma 4.1, x, y ≥ 1
l . Then,

P [ia = ib, ic 6= id] + P [ic = id, ia 6= ib] = x(1− y) + y(1− x) = x + y − 2xy. (1)

Further,

P [ib = id | ia = ic] =
l∑

j=1

P [ib = id | ia = ic = j]P [ia = ic = j | ia = ic] (2)

=
1

l

l∑
j=1

l∑
k=1

P [ib = id = k | ia = ic = j] (3)

=
1

l

l∑
j=1

l∑
k=1

P [ib = k | ia = j]P [id = k | ic = j] (4)

=
1

l
l
(
P [ib = 1 | ia = 1]P [id = 1 | ic = 1] + . . . + P [ib = l | ia = 1]P [id = l | ic = 1]

)
(5)

= xy + (l − 1)
(1− x)

(l − 1)

(1− y)

(l − 1)
. (6)

• The transition to equality 3 is due to P [ia = ic = j | ia = ic] = P [ia=ic=j]
P [ia=ic]

= 1/l2

1/l = 1/l (via

Claims 4.1 and 4.2).

• The transition to equality 4 is due to the independence of the ib and id random variables (as
well as of ia and ic).

• To understand the transition to equalities 5 and 6, observe that (due to the symmetry of the
duplication/loss process)

P [ib = k | ia = k] = P [ib = 1 | ia = 1] = x

for any k, and

P [ib = k | ia = j] = P [ib = k | ia = 1] =
1− x

l − 1

for any k 6= 1 and j 6= k.

Similarly, we have
P [id = k | ic = k] = P [id = 1 | ic = 1] = y
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for any k, and

P [ib = k | ia = j] = P [ib = k | ia = 1] =
1− y

l − 1

for any k 6= 1 and j 6= k.

Then,

P [ia = ic, ib 6= id] = (1− P [ib = id | ia = ic])P [ia = ic] = (1− xy − (1− x)(1− y)

(l − 1)
)
1

l
;

P [ia = ic, ib 6= id] + P [ib = id, ia 6= ic] =
2

l(l − 1)
(l − 2− lxy + x + y). (7)

Multiplying Equations 1 and 7 by l(l − 1) and fixing some y ∈ [1/l, 1] we obtain two linear
functions.

f(x) := l(l − 1)(x + y − 2xy)

g(x) := 2(l − 2− lxy + x + y).

It is then sufficient to show that f(1/l) ≥ g(1/l) and f(1) ≥ g(1) to conclude the proof (since x is
in the [1/l, 1] range).

f(1/l) = l − 1 + y(l − 1)(l − 2);

g(1/l) = 2l − 4− 2y + 2/l + 2y = 2l − 4 + 2/l.

Observe that f(1/l) is minimum when y = 1/l (since that is the smallest possible value for y). In
that case f(1/l) = l− 1 + (l2 − 3l + 2)/l = 2l− 4 + 2/l. That is, f(1/l) ≥ g(1/l) for all values of y.
Let us now compare f(1) and g(1).

f(1) = l(l − 1)(1− y);

g(1) = 2(l − 2− ly + 1 + y) = 2(l − 1− y(l − 1)) = 2(l − 1)(1− y).

It is then not difficult to see that f(1) ≥ g(1) for all l ≥ 3.
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