Quartet-Based Inference is Statistically Consistent Under the Unified Duplication-Loss-Coalescence Model

Alexey Markin Virus and Prion Research Unit National Animal Disease Center, USDA-ARS <alexey.markin@usda.gov>

Oliver Eulenstein Department of Computer Science Iowa State University <oeulenst@iastate.edu>

S1 Proofs of Lemmas 3.2 and 3.3

In this section we use t to denote the edge length from the lowest duplication point (on the internal edges of L) to the first vertex below it (as in Sections 3.1.3, 3.2.3, and 3.2.4).

Proof of Lemma 3.2. The statement is trivial for cases from Sections 3.2.1 (no duplications) and 3.2.2 (X-edge duplication). Therefore, we now prove the statement for cases from Sections 3.2.3 and 3.2.4.

• Case 3.2.3 (Y-edge duplication). It is sufficient to show that $P[a, b, c]$ coalesced before duplication grows as $x := \omega(X)$ grows. Consider the following relation:

 $P[a, b, c \text{ coalesced before duplication}] = g_{2,1}(x)g_{2,1}(t) + g_{2,2}(x)g_{3,1}(t).$

Observe that for any $x_1 > x_2$ we have $g_{2,1}(x_1) = 1 - e^{-x_1} > 1 - e^{-x_2} = g_{2,1}(x_2)$. Then we also have

 $g_{2,1}(x_1)g_{2,1}(t) + g_{2,2}(x_1)g_{3,1}(t) > g_{2,1}(x_2)g_{2,1}(t) + g_{2,2}(x_2)g_{3,1}(t),$

since $g_{2,1}(t) > g_{3,1}(t)$ and $g_{2,1}(x) + g_{2,2}(x) = 1$ for all positive x and t.

• Case 3.2.4 (root-edge duplication). In this case it is sufficient to prove that $P[a, b, c, d]$ coalesced before the duplication grows as x grows. Observe that

> $P[a, b, c, d]$ coalesced before the duplication $= g_{2,1}(x)P[3]$ lineages coalesced on Y and root edges before the duplication $+ g_{2,2}(x)P[4 \tmtext{ lineages coalesced on Y and root edges before the duplication}]$ $= g_{2,1}(x) \cdot P_3 + g_{2,2}(x) \cdot P_4.$

We introduced constants P_3 and P_4 above to simplify the notation.

It is now left to show that $P_3 > P_4$ with the remainder of the proof following similarly to Case 3.2.3 above.

Note that

$$
P_3 = g_{2,1}(y)g_{2,1}(t) + g_{2,2}(y)g_{3,1}(t)
$$

and

$$
P_4 = g_{3,1}(y)g_{2,1}(t) + g_{3,2}(y)g_{3,1}(t) + g_{3,3}(y)g_{4,1}(t).
$$

Then

$$
P_3 - P_4 = g_{2,1}(t)(g_{2,1}(y) - g_{3,1}(y)) + g_{3,1}(t)(g_{2,2}(y) - g_{3,2}(y)) - g_{4,1}(t)g_{3,3}(y)
$$

> g_{3,1}(t)(g_{2,1}(y) - g_{3,1}(y) + g_{2,2}(y) - g_{3,2}(y)) - g_{4,1}(t)g_{3,3}(t)
= g_{3,1}(t)(1 - g_{3,1}(y) - g_{3,2}(y)) - g_{4,1}(t)g_{3,3}(y)
> g_{4,1}(t)(1 - g_{3,1}(y) - g_{3,2}(y) - g_{3,3}(y)) = g_{4,1}(t)(1 - 1) = 0.

The above inequalities hold due to $g_{2,1}(z) > g_{3,1}(z) > g_{4,1}(z)$ for any positive z.

 \Box

Proof of Lemma 3.3. Observe that this statement is not trivial only in the following three cases:

(i) L is balanced, and the lowest duplication is at the root edge (Case 3.1.3). To prove that $P[\textsf{ab}|\textsf{cd} \in G \mid L] > P[\textsf{ac}|\textsf{bd} \in G \mid L]$ it is sufficient to show that

 $P[a, b, c, d]$ coalesced before duplication $\geq g_{4,1}(t)$.

Observe then that

 $P[a, b, c, d]$ coalesced before duplication $= \sum$ 4 $k=2$ $g_{k,1}(t)P[k]$ lineages entered the root edge] $\geq g_{4,1}(t)$. The inequality holds since $q_{k,1}(t) \geq q_{4,1}(t)$ for all $k \in \{2, 3, 4\}$ and

$$
g_{k,1}(v) = g_{4,1}(v) \text{ for all } n \in [2, 0, 1] \text{ and}
$$

$$
\sum_{k=2} P[k \text{ lineages entered the root edge}] = 1.
$$

(ii) L is a caterpillar, and the lowest duplication is on the Y edge (Case 3.2.3). In this case, it is sufficient to show that $P[a, b, c]$ coalesced before duplication $\geq g_{3,1}(t)$. Similarly to the above case, observe that

$$
P[a, b, c \text{ coalesced before duplication}] = \sum_{k=2}^{3} g_{k,1}(t) P[k \text{ lineages entered edge } Y] \ge g_{3,1}(t).
$$

Then the inequality holds since $g_{k,1}(t) \ge g_{3,1}(t)$ for all $k \in \{2,3\}.$

(iii) L is a caterpillar, and the lowest duplication is at the root edge (Case 3.2.4). In this case, we need to show that

 $P[a, b, c, d]$ coalesced before the duplication $\geq g_{3,2}(y)g_{3,1}(t) + g_{3,1}(y)g_{2,1}(t) + g_{3,3}(y)g_{4,1}(t)$.

Consider now the following relation that comes from the proof of Lemma 3.2:

 $P[a, b, c, d]$ coalesced before the duplication $= g_{2,1}(x)P[3]$ lineages coalesced on Y and root edges before the duplication $+ g_{2,2}(x)P[4 \tmtext{ lineages coalesced on } Y \tmtext{ and root edges before the duplication}]$ $= g_{2,1}(x) \cdot P_3 + g_{2,2}(x) \cdot P_4.$

Then, using the P_3 and P_4 notation, we need to show that

$$
g_{2,1}(x)P_3 + g_{2,2}(x)P_4 \ge P_4.
$$

Note that $g_{2,1}(x) + g_{2,2}(x) = 1$. Further, in the proof of Lemma 3.2 we show that $P_3 \geq P_4$. Then the inequality follows.

 \Box

S2 Proof of Lemma 4.6

Proof. First of all, note that for, e.g., the (ab, c, d) case to be feasible, we need to have at least three root lineages. That is, $l \geq 3$. Next, observe that

$$
P[AB] = P[(ab, c, d) \lor (cd, a, b)] = P[i_a = i_b, i_c \neq i_d] - P[(abc, d)] - P[(abd, c)]
$$

+
$$
P[i_c = i_d, i_a \neq i_b] - P[(acd, b)] - P[(bcd, a)];
$$

$$
P[AC] = P[(ac, b, d) \lor (bd, a, c)] = P[i_a = i_c, i_b \neq i_d] - P[(abc, d)] - P[(acd, b)]
$$

+
$$
P[i_b = i_d, i_a \neq i_c] - P[(abd, c)] - P[(bcd, a)].
$$

Therefore, it is sufficient to show that

$$
P[i_a = i_b, i_c \neq i_d] + P[i_c = i_d, i_a \neq i_b] \ge P[i_a = i_c, i_b \neq i_d] + P[i_b = i_d, i_a \neq i_c].
$$

Let $x := P[i_a = i_b]$ and $y := P[i_c = i_d]$. Recall that, by Lemma 4.1, $x, y \geq \frac{1}{l}$. Then,

$$
P[i_a = i_b, i_c \neq i_d] + P[i_c = i_d, i_a \neq i_b] = x(1 - y) + y(1 - x) = x + y - 2xy.
$$
 (1)

Further,

$$
P[i_b = i_d | i_a = i_c] = \sum_{j=1}^{l} P[i_b = i_d | i_a = i_c = j] P[i_a = i_c = j | i_a = i_c]
$$
 (2)

$$
= \frac{1}{l} \sum_{j=1}^{l} \sum_{k=1}^{l} P[i_b = i_d = k \mid i_a = i_c = j]
$$
\n(3)

$$
= \frac{1}{l} \sum_{j=1}^{l} \sum_{k=1}^{l} P[i_b = k \mid i_a = j] P[i_d = k \mid i_c = j]
$$
\n(4)

$$
= \frac{1}{l}l\Big(P[i_b = 1 \mid i_a = 1]P[i_d = 1 \mid i_c = 1] + \ldots + P[i_b = l \mid i_a = 1]P[i_d = l \mid i_c = 1]\Big) \tag{5}
$$

$$
= xy + (l-1)\frac{(1-x)}{(l-1)}\frac{(1-y)}{(l-1)}.
$$
\n(6)

- The transition to equality [3](#page-2-0) is due to $P[i_a = i_c = j | i_a = i_c] = \frac{P[i_a = i_c = j]}{P[i_a = i_c]} = \frac{1/l^2}{1/l} = 1/l$ (via Claims 4.1 and 4.2).
- The transition to equality [4](#page-2-1) is due to the independence of the i_b and i_d random variables (as well as of i_a and i_c).
- To understand the transition to equalities 5 and 6 , observe that (due to the symmetry of the duplication/loss process)

$$
P[i_b = k \mid i_a = k] = P[i_b = 1 \mid i_a = 1] = x
$$

for any k , and

$$
P[i_b = k \mid i_a = j] = P[i_b = k \mid i_a = 1] = \frac{1 - x}{l - 1}
$$

for any $k \neq 1$ and $j \neq k$.

Similarly, we have

$$
P[i_d = k \mid i_c = k] = P[i_d = 1 \mid i_c = 1] = y
$$

for any k , and

$$
P[i_b = k \mid i_a = j] = P[i_b = k \mid i_a = 1] = \frac{1 - y}{l - 1}
$$

for any $k \neq 1$ and $j \neq k$.

Then,

$$
P[i_a = i_c, i_b \neq i_d] = (1 - P[i_b = i_d \mid i_a = i_c])P[i_a = i_c] = (1 - xy - \frac{(1 - x)(1 - y)}{(l - 1)}\frac{1}{l};
$$

$$
P[i_a = i_c, i_b \neq i_d] + P[i_b = i_d, i_a \neq i_c] = \frac{2}{l(l-1)}(l-2-lxy+x+y). \tag{7}
$$

Multiplying Equations [1](#page-2-4) and [7](#page-3-0) by $l(l-1)$ and fixing some $y \in [1/l, 1]$ we obtain two linear functions.

$$
f(x) := l(l-1)(x + y - 2xy)
$$

$$
g(x) := 2(l - 2 - lxy + x + y).
$$

It is then sufficient to show that $f(1/l) \ge g(1/l)$ and $f(1) \ge g(1)$ to conclude the proof (since x is in the $[1/l, 1]$ range).

$$
f(1/l) = l - 1 + y(l - 1)(l - 2);
$$

\n
$$
g(1/l) = 2l - 4 - 2y + 2/l + 2y = 2l - 4 + 2/l.
$$

Observe that $f(1/l)$ is minimum when $y = 1/l$ (since that is the smallest possible value for y). In that case $f(1/l) = l - 1 + (l^2 - 3l + 2)/l = 2l - 4 + 2/l$. That is, $f(1/l) \ge g(1/l)$ for all values of y. Let us now compare $f(1)$ and $g(1)$.

$$
f(1) = l(l-1)(1-y);
$$

$$
g(1) = 2(l-2-ly+1+y) = 2(l-1-y(l-1)) = 2(l-1)(1-y).
$$

It is then not difficult to see that $f(1) \ge g(1)$ for all $l \ge 3$.

