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Supplementary Fig. 1 | Velocity neural tuning curves. For (a-d), we calculated the hand velocity direction 
for each 300ms and calculated the spike counts during that 300ms. We plotted the spikes counts vs hand 
velocity direction for each real and virtual neuron. The red line is the velocity neural tuning curve fitted by a 
cosine function. The black dot is the spike counts for each bin at each angle. The heatmap counts how many 
black dots are in an area.  a) real velocity neural tuning curve for neuron 32. b) generated velocity neural 
tuning curve for neuron 32. c) real velocity neural tuning curve in velocity space for neuron 57. d) generated 
velocity neural tuning curve for neuron 57. e) histogram of preferred direction for real neurons. f) histogram 
of preferred direction for virtual neurons.  
 
 
 
  



 

 
 
Supplementary Fig. 2 | Position activity maps. a, Position activity maps for all virtual and real neurons 
with clipped colour bar. 
 



 

 
 
Supplementary Fig. 3 | Correlations across neural spike trains samples for each neuron sorted by the 
averaged correlation coefficient for each neuron.  a, Random permutation baseline. Blue curve is the 
correlation between synthesized (from the spike synthesizer) and real neural data with shaded blue error bar 
(mean + / - S.D., sample number = 63). Red curve is the correlation between real spike trains through 
random permutation with shaded red error bar (mean + / - S.D., sample number = 63). b, Homogeneous 
Poisson distribution baseline. Correlations across neural spike trains samples for each neuron sorted by the 
averaged correlation coefficient for each neuron. Blue curve is the correlation between synthesized (from the 
spike synthesizer) and real neural data with shaded blue error bar (mean + / - S.D., sample number = 63). 
Red curve is the correlation between synthesized neural (from a homogeneous Poisson distribution) and real 
neural data with shaded red error bar (mean + / - S.D., sample number = 63). 
 



 

 
 
Supplementary Fig. 4 | Visualization examples of actual movement trajectory for GAN-Augmentation, 
Mutation-Augmentation, Stretch-Augmentation, Real-Concatenation and Real-Only methods compared to 
ground truth. 
 



 

 
 
Supplementary Fig. 5 | Normalized velocity activity map, constructed as the histogram of neural 
activity as a function of velocity.  a, Velocity activity map for real neuron 35 normalized across the 
workspace. b, corresponding velocity activity map for virtual neuron 35.   c, d, Velocity activity maps for real 
and virtual neuron 51. e, Histogram of mean squared error between the real and generated activity maps for 
all neurons. The purple line is the trimmed averaged mean square error (based on 99% samples, 0.11) 
between real neurons. It provides a reasonable bound for quantifying the difference between real and virtual 
neurons. 
 
 
 
 
 
 
 
 



 

 
 
Supplementary Fig 6 | Normalized acceleration activity map, constructed as the histogram of neural 
activity as a function of acceleration.  a, acceleration activity map for real neuron 35 normalized across 
the workspace. b, corresponding acceleration activity map for virtual neuron 35.   c, d, acceleration activity 
maps for real and virtual neuron 51. e, Histogram of mean squared error between the real and generated 
activity maps for all neurons. The purple line is the trimmed averaged mean square error (based on 99% 
samples, 0.10) between real neurons. It provides a reasonable bound for quantifying the difference between 
real and virtual neurons. 
 
 
 
 
 
 
 
 
 



 

Supplementary Discussion 
 
Stabilization 
 
David et, al.1 demonstrated that training an RNN decoder from many months of previously recorded data can 
be more robust to future neural variability. Here, our work is training a spike synthesizer (GAN) to learn good 
neural attributes from a single session of neural data. Inspired by that paper, our spike synthesizer could be 
trained with more general neural attributes across multiple sessions and monkeys. With more general neural 
attributes, the spike synthesizer could synthesize neural data that would enhance the cross-sessions and 
cross-subjects decoding. Our work differs in at least three aspects: 
 
1) Our spike synthesizer could learn more generalizable neural attributes 
2) The decoding approach generalizes to multiple sessions and subjects 
3) We can achieve saturating performance with much less historical training data 
 
Alan et, al.2 demonstrated that a manifold-based stabilizer can help a BCI decoder recover proficient control 
under different instability conditions such as tuning change, drop-outs or baseline shifts. The authors 
hypothesized that “even though the specific neurons being recorded may change over time, the recorded 
population activity reflects a stable underlying representation of movement intent that lies within the neural 
manifold”. This is a sound hypothesis for the neural data collected from the same subject. However, this 
approach, which requires a subset of stable electrodes cannot be used across subjects or when the specific 
neurons change dramatically. Even within a subject, the method requires a substantial number of stable 
neurons in order to accomplish the realignment. It will fundamentally not work between subjects. In 
comparison, our spike synthesizer learned general neural attributes and could quickly adapt itself to new 
sessions or subjects using limited additional neural data. 
 
Possible caveat 
 
We could use large amounts neural data from multiple monkeys and multiple sessions to build a better 
embedding of GAN. This embedding would be expected to generalize better. Yet, for cross-subject 
decoding, more abundant neural data might yield lower performance for the already “good” covariates such 
as pos x and pos y. Since, in our work, the embedding of GAN is learned from only one monkey, just fine-
tuning the read-out module is not good enough to synthesize neural data that match the distribution of the 
other subjects perfectly. Thus, the combination of large amounts of additional neural data with synthesized 
neural data could yield a lower performance on already good covariates. This caveat could be addresses by 
training our CC-LSTM-GAN with neural data from multiple monkeys and sessions. 
 
Determine the weights for equation (11) and (12) 
 
To better train a CC-LSTM-GAN, you must assign a big portion of the weights to the GAN loss discriminator 
and generator losses (equation (11) and (12)). Weight ratios of other properties (e.g., decoder loss or inner 
product loss) should be small compared to these. The exact weights were optimized using trial and error, as 
it takes 3-4 days to train the CC-LSTM-GAN, which limited our ability to explore the space of all possible 
combinations more thoroughly. The exact weights were optimized using trial and error as it takes 3-4 days to 
train the CC-LSTM-GAN, which limited our ability to explore the space of all possible combinations more 
thoroughly. 
 
Collecting ground truth of the covariate of interest 
 
It is true that “ground truth” kinematic signals are typically available only from animal (mostly monkey) 
studies. If it were not possible to construct such decoders without reference to actual movement, the entire 
field would have no relevance to paralyzed patients. Fortunately, this problem has been solved through the 
use of “observation” based decoders, trained not on actual kinematics, but on the instructed kinematic 
trajectory that the patient is asked to mimic3.  
 
  



 

Hyperparameters  
 

Modules Sample 
size 

Timestep Hidden 
dimensions 

Training 
Epochs 

Learning 
rates 

optimizer activation 

Generator 128 200 200 4000 0.0006* Adam52 tanh 
Discriminator 128 200 200 4000 0.0003 SGD sigmoid 
GANta 
LSTM 
Deocder 

128 200 200 200 0.003* Adam N/A 

LSTM BCI 
decoder** 

128 200 200 200 0.003* Adam N/A 

*with exponential learning rates decay, ** same hyperparameters for all data augmentation methods 
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