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Appendix A: Extensions and Variations

In this section, we discuss several extensions and variations to our model. In particular, because multiple

approaches to modelling epidemics have been proposed, it is important to understand how our approach of

combining an epidemic and a machine learning model would work in those cases and whether the insights

would be qualitatively different.

A.1. Nonlinear infection transition term in SIR models

One key modelling phase necessary for the development of any SIR model is to decide at which rate susceptible

individuals are infected – that is, to choose a so-called force of infection λ in equation Ṡ =−λS. Our model

is based on the density-dependent approach for transmission, namely λ= βI, as opposed to the frequency-

dependent approach for transmission, which reads λ= β

N
I, where N is the total number of individuals, Begon

et al. (2002). The former choice is usually advocated for when the contact rate between individuals increases

with density, as is the case for COVID-19.
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The situation becomes more intricate when containment comes into play (see Acemoglu et al. (2021) for

an in-depth discussion of this scenario). The key point is that in the presence of containment policies, a

fine-modelled infection probably should exist between the two approaches. Hence, one way to generalize our

model is to interpolate between the two scenarios as Acemoglu et al. (2021) did by introducing an additional

parameter η ∈ [0,1] so that λ= β

Nη I.

Importantly, taking η = 0, as we do, is a conservative approach because this maximizes the transmission

rate among possible η choices. In other words, any intermediate value for the parameter η will lead to better

results in terms of curbing the epidemic, all else equal: faster exits, fewer people in confinement, etc.

A.2. Heterogeneity in model parameters – a “contact-matrix”-like approach

Another extension could deal with heterogeneity in model parameters. For instance Baqaee et al. (2020)

consider an SIR-like model where each compartment is split by age into five groups: 0-19, 20-44, 45-64, 65-74,

and 75+ (Duque et al. (2020) consider a similar split). Then, a susceptible adult of age a1 who comes into

contact with an adult of age a2 has an instantaneous infection probability of β times the probability that

the latter adult is infected. The total instantaneous probability of infection is the sum over the expected

transmission by contacts of different ages.

Our model has important similarities to and differences from such an approach. We also split each com-

partment but the split is not static; by choosing ρ, we “move” individuals between the groups and the risk

model’s ROC curve dictates if such moves are correct or are mistakes. Other than that, the instantaneous

infection probability behaves identically; most importantly, it also depends on the behavior and sizes of the

released and confined groups, even though we use the same level of β at every ρ.

A model that combines the contact-matrix approach and ours is not difficult to build. Interestingly, in

a context like that of COVID-19, the qualitative outcome of such an exercise is evident. The severity risk

increases with age, while the degree of social interactions decreases with age. Therefore, interactions with

the elderly will be restricted both because they are confined with δc and because they otherwise interact less

than young people, i.e., as if δc decreases in ρ. This, again, makes our results conservative with respect to

incorporating the heterogeneous interactions between age groups, and the qualitative results will hold. That

said, in contexts other than COVID-19, such combined models may prove valuable.
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A.3. Alternative epidemic models: stochastic, agent-based, etc.

A completely different modelling approach is to use agent-based models that explicitly model each individual

whose status evolves according to some probabilistic rules. Such models have been developed to analyze the

spread of COVID-19 and other diseases such as seasonal influenza, e.g., Chao et al. (2010, 2020), Koo et al.

(2020).

Rahmandad and Sterman (2008) provide an excellent comparison of the ODE- and agent-based models

utilizing controlled experiments. Their overarching conclusion is that the differences between the two model

types are small. They further note, “In the realistic situation where policymakers face time pressure, imperfect

data and uncertainty about public behaviour, the wise course may be to use a computationally efficient

deterministic compartment model with a broad model boundary, to enable sensitivity and policy tests in

time for action, rather than a computationally intensive individual-level model with a constrained boundary

and limited ability to carry out parametric and structural sensitivity and policy tests.” This clearly favors

ODE-based models for a new pathogen like SARS-CoV-2.

An additional drawback of agent-based models is their computational load. For instance, Chao et al. (2010)

note that a single run of their simulation “takes about 6 hours (192 hours of total CPU time)” ... [on a]

“cluster of 32 processors.” This makes a combination of such a model with the optimal control problem like

ours hardly feasible. In fact, the other studies that implemented optimal control, such as Acemoglu et al.

(2021), Duque et al. (2020), Baqaee et al. (2020), all use SIR-like models. Taken together, these factors

suggest that the use of the SIR-like model may be preferred for a study like ours.

A.4. Alternative approaches to modelling severity risk

An implicit assumption is that our risk model assigns individual risk scores (i.e., a chance that a specific

individual, given his or her features, would require an ICU if infected), and that these scores are constant over

time. However, this narrow interpretation is not the only possible one, as the following example illustrates:

Imagine a household in which two young adults live with their elderly parents. The individual risks for the

young adults are low and our model would classify them as released, but an individual risk for an elderly

parent may be high, and they would need to be confined. How can our model handle this?

First, because confinement in our model is imperfect, δc < 1 already implicitly captures multi-generational

household situations like the above. Surveys suggest that ∼ 25% of households in the developed world are
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multi-generational. Combined with the base rate of needing an ICU in single percent, less than ∼ 1% of high-

risk individuals would be impacted by this. Because our simulations use δc ∈ {0.7,0.9}, the multi-generational

situations are already captured implicitly.

Second, one can redefine the risk score on a household, rather than individual, level, taking the probability

that someone in a household would require an ICU if one of the members gets infected. In practice, this

would, of course, require data about the composition of the households and such data would add to the

features that the risk classifier uses. With such an approach, one also could implement the dependency of the

risk scores on time. Importantly, because the household risk score would be the highest of the individual risk

scores, such scores only would decrease over time as high-risk individuals are infected and removed. This,

again, makes our results conservative vis-a-vis the efficacy of pandemic management policies in practice.

A.5. Alternative objective functions and constraints

Lastly, we comment on the formulation of our optimization model. Unlike some other authors, who evaluate

the detailed socio-economic consequences of lockdowns, e.g., Acemoglu et al. (2021), Baqaee et al. (2020), our

implicit goal is to design policies that impose lockdowns that affect the smallest number of people and for the

shortest period of time. Duque et al. (2020) incorporate this goal explicitly, by minimizing the total number

of “people-days” during the lockdown. With our risk model, this is unnecessary because the highest-risk

individuals are released last and only when their chance of contracting the disease are small enough because

most others have been removed. In other words, it is sub-optimal to confine a lower-risk individual at time

ti if releasing him or her is feasible. This is because releasing strictly increases the number of those removed,

allowing for the faster release of the remaining high-risk individuals.

Similarly, we implicitly assume that the release policies are optimized subject to constraints on ICU avail-

ability. In practice, however, overall hospital capacity might be reached before that of the ICU. Incorporating

this is straightforward: We add two additional compartments before the ICU (recall Figure 1 in the main

body of the paper), together with the corresponding parameters, which can be easily obtained, e.g., from

Salje et al. (2020).

Finally, δc in practice may depend on ρ. For instance, it may be possible to impose a tougher restriction,

δ
′

c > δc, on only a small fraction of the population, but restricting a larger group may only be feasible with

δ
′′

c < δc. More generally, one could consider δc(ρ) and optimize as we did in the main body of the paper for
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time-dependent δc due to fatigue. This is a plausible extension for our work, but our current results again

could be viewed as conservative if one views δc as a lower-bound on such a function. Indeed, if the remaining

high-risk individuals would be better confined, our model would release more low-risk individuals and sooner.

Appendix B: Further sensitivity analyses for a single release

We here gather additional sensitivity analyses in the case of a single release, presented in Figure 1, with

respect to key parameters of the model: the percentage p of the population with severe symptoms upon

infection plays a crucial role, which we decrease from the posterior average ∼ 0.993 to 0.98, and the ICU

capacity, which we increase from 7250 to 15000. Other parameters are same as in Figure 3 in th main body

of the paper.

First, as expected, the lower p, the less the impact of a risk prediction model keeping the risk-model AUC

constant. Given the limited ICU – and possibly other – resources, a smaller p allows for a smaller range

of percentages of the population being released, making all differences between policies smaller in absolute

terms. Second, when we compare the main-body Figure 3 (a) and (c) with Figures 1 (a) and (c) here, where

the only difference is in the total ICU capacity, we see that the more ICUs available the larger the impact

of using personalized policies, keeping everything else constant. More available resources allow for a larger

range of percentage of released people making the differences between policies – risk based vs. not – larger

in absolute terms. Note that in all cases a risk prediction model approach allows for confining fewer people;

this is consistent with the value of information-related arguments, as any test provides information that can

be beneficial assuming everything else (including behavioral aspects) kept constant.
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Figure 1 Difference in maximal possible percentage of released people without exceeding the ICU capacity,

compared to the case of not using a risk prediction model, plotted as a function of the AUC of a risk

prediction model and the protection level δc for confined peoplections. δr = 0.1 for all figures.
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