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Supplementary Figures 

 

 

Fig. S1. Histopathology of tumor and adjacent non-tumor biopsies in the 3 NAFLD-related 

HCC cases. 

Histopathology slides using hematoxylin and eosin and trichrome stains demonstrate tumor and 

patient heterogeneity. 
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Fig. S2. Overview of study design to profile cell composition changes in HCC. 

Single-cell and single-nucleus RNA-seq (scRNA-seq and snRNA-seq) were used to profile cell-

type transcriptomes in human livers from non-HCC, HCC tumor, and adjacent non-tumor tissue. 

We performed snRNA-seq on tumor and adjacent non-tumor biopsies from three patients with 

fatty liver related HCC. Our snRNA-seq was integrated with two single-cell RNA-seq data sets 

from Aizarani et al. 7 and Sharma et al. 8 to characterize transcriptional profiles across various 

etiologies of HCC. The identified cell-types and their gene expression were used to estimate their 

proportions in larger bulk liver HCC RNA-seq cohorts with survival outcome data. These analyses 

highlighted the role of a tumor-associated mitotic cell-type Prol, associated with survival outcomes 

and TP53 mutations. 

  



 

 

Fig. S3. Un-integrated merging of the three single cell level cohorts results in cohort- and 

patient-specific batch effects. 
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a-c, UMAP plots of the three single cell level cohorts after merging without integration. Raw 

counts were normalized with sctransform 37, and clustering was performed on the PCs with a 

resolution of 1.0. Cells and nuclei are colored by a, cluster, b, patient, and c, cohort (source). d,e, 

The heatmap plots show the prevalence of cohort and patient effects in the merged data without 

integration. Each heatmap indicates the proportion of droplets in a cluster that originate from d, 

cohort (source) and e, HCC patient (excluding the Aizarani et al. cohort 7 that comprises only 

healthy controls and the healthy control from the Sharma et al. data 8). For each of the 54 clusters, 

the column proportions sum to 1. Cells and nuclei from a cohort cluster together, indicating the 

presence batch effects, while several clusters show patient-specific effects and suggest inter-

patient heterogeneity. 

  



 

 

Fig. S4. Expression of top up-regulated marker genes across cell-types in the integrated 

single cell level data supports the functional identity of the assigned cell-types. 
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a,b, Expression of the top marker genes for a, main cell-types and b, subcell-types supports the 

functional identity of the assigned cell-types. The a, top 8 marker genes per main cell-type and b, 

top 3 marker genes per subcell-type are shown. A logistic regression in Seurat 38 was used to test 

the difference in expression between droplets in the indicated main cell-type/subcell-type and all 

other droplets. The percent of droplets expressing the marker gene indicates the percent which 

have at least one UMI aligned to the gene. The average log fold change indicates the log2 fold 

change of the average expression of the main cell-type/subcell-type droplets over the average 

expression of all other droplets. Main cell-types were assigned by merging subcell-types based on 

their major lineage. Cells and nuclei from T_7 contain no statistically significant marker genes. 

  



 

 

 

Fig. S5. Cells and nuclei from the Prol cell-type subcluster into main liver cell-types. 

a, UMAP of cells and nuclei from Prol colored by subcluster. The 1,743 droplets from the Prol 

cluster identified in the full single-cell-level data set were subclustered after sctransform 37 and 

CCA integration by cohort using a resolution of 0.2 38. b, Proportion of cells/nuclei in the Prol 

cell-type classified into all other major cell-types. Classifications were performed using SingleR 

43 with a reference trained on the full data set that excluded the Prol cluster. c, UMAP of Prol cells 

and nuclei colored by SingleR classification to all other main cell-types (consisting of 41.7% 
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hepatocyte, 33.8% T, 9.9% myeloid, 7.7% cholangiocyte, 4.4% endothelial, 1.6% stellate, and 

0.9% B cells). d-i, UMAP of Prol cells/nuclei colored by log-normalized gene expression. 

Expression of the marker genes d, ASGR1 (Hepatocyte), e, LYVE1 (Endothelial), f, CD3E (T), g, 

CD68 (Macrophage), h, MUC6 (Cholangiocyte), i, ACTA2 (Stellate) are shown in subclusters. 

  



 

 

Fig. S6. Proportion estimates for sub cell-types within a main group show high correlation 

in TCGA. 

The heatmap shows the pairwise Pearson correlation coefficients (R) between sub cell-type 

proportion estimates in TCGA. Proportions were estimated in the 410 bulk liver RNA-seq liver 

samples using Bisque 14. Cell-types from the same main group (for example, hepatocytes) show 

high correlations. 
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Fig. S7. High intra-cell-type co-expression of main cell-type markers supports decomposed 

proportion estimates in TCGA and LCI. 

Marker gene co-expression and proportion correlation for the main cell-types validates the 

reference-free approach to decompose cell-type frequency estimates. The plots show the co-

expression of the top subset of marker genes ordered by cell-type as well as the expression-

proportion correlations in a, TCGA (n=410) and b, LCI (n=430). Each tile displays the Pearson 

correlation coefficient (R). The left panel shows the correlation between of the expression of 

marker pairs, where marker genes within the same cell-type display higher co-expression than 

outside the cell-type. The right panel shows the correlation between the expression of marker genes 

and proportion estimates. The co-expressed marker genes show high correlations with their cell-

type proportion estimates, validating that the proportion estimates are reflective of marker gene 

RNA abundance. The top subset of single cell markers and proportion estimates were calculated 

by Bisque 14 in the reference-free decomposition procedure. Marker genes for the B cell-type in 

the LCI cohort show lower intra-correlations when compared to marker gene sets of the other main 

cell-types, indicating that their expression is not indicative of B cell abundance. 
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Fig. S8. Expression of Prol marker genes are associated with poor survival outcomes in 

TCGA and LCI. 

a-c, The bar plots show the percent of marker genes that are positively and significantly associated 

with a, overall survival (OS) and b, progression free interval (PFI) in TCGA and c, OS in LCI. We 

considered marker genes as those with a log2 fold change (logFC) greater than 0.5 and an FDR-

adjusted p-value less than 0.05. For each main cell-type, the percent of its marker genes that 

decrease survival outcomes (HR > 1) and increase survival outcomes (HR < 1) are shown by color. 

The percent of these genes that pass genome-wide multiple testing with an FDR-adjusted p-value 

less than 0.05 are shown by the darker fill for each direction. 

  



 

 

Fig. S9. Prol proportions are increased with TP53 and RB1 mutations. 

The plot shows the proportion estimates of significantly increased cell-types (bottom) by somatic 

mutation (top). Proportions were tested for differences between individuals with and without a 

somatic mutation in significantly mutated HCC genes with a Wilcoxon test (n=357). Significant 

gene-cell-type pairs with an increase in proportions are shown (FDR-adjusted p < 0.05). The top 

panel shows the somatic mutation (colored by type) present in each of the 357 primary tumor 

samples, while the bottom panel shows their estimated cell-type proportions (scaled). 
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