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Supplementary Methods

Supplementary Note 1: Inference of parameters

For brevity of description, we denote the set of all unknown parameters as Ω, and all unknown

parameters except ω as Ω−ω.

Sampling of subclone assignment C

Due to the sharing of genetic information among homogeneous cells, we assume that there are K

latent subclones in the N single cells drawn for sequencing (K � N). The latent state of cell n is

denoted by Cn = k (n ∈ {1, · · · , N}, k ∈ {1, · · · ,K}). We assume that Cn follows the Categorical

Distribution with parameter φ, where φ is a vector of length K and the sum of the elements is

1. φ describes the subclonal prevalence, where each element φk represents the proportion of cells

from subclone k. Then we introduce an additional parameter, θk, for each φk, and denote the

vector composed of all θk (k ∈ {1, · · · ,K}) as Θ. We assign each θk an independent Gamma(γ, 1)

prior distribution, and let φk = θk/
∑K

i=1 θi (k ∈ {1, · · · ,K}). This is equivalent to assigning φk

a symmetric Dirichlet(γ, γ, · · · , γ) prior distribution with mean and mode (1/K, 1/K, · · · , 1/K),

which gives no preference to any subclones. The purpose of introducing θk is that we can update

one element of Θ at a time, while sampling φk directly requires updating the entire vector of φ due

to the restriction of the sum of elements as 1. The former approach usually leads to better mixing

of the MCMC (Zeng et al., 2019).

Since the full conditional samples of θk, i.e., p(θk|D,X,Ψ, ε,Ω−θk) can not be directly sampled,

we take Metropolis-Hastings sampling method for sampling Θ.

Based on the current sample θk in Markov chain, a new θ∗k is proposed from the transition

function f(θ∗k|θk, λ), where f(θ∗k|θk, λ) is the density function of Gamma(λθk, 1/λ) with center θk

and variance θk/λ. The tuning parameter λ controls the proposing step size, and a larger λ value

usually leads to a higher acceptance rate. In our implementation, we adaptively adjust its value to

keep the acceptance rate in a reasonable range to ensure effective mixing of Markov chains (Zeng

et al., 2019).

Since the sampling space for subclone assignment is discrete and small, we perform Gibbs

sampling on C, after updated each value in Θ, by calculating the probabilities of subclone assign-

ment of each cell n. For each cell n, we calculate p(Cn = k|D,X,Ψ, ε,Ω−Cn) for all possible k

(k ∈ {1, 2, · · · ,K}) and use them as weights to sample a new state of Cn.
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Sampling of SNV and CNA origin matrices Lo, Zo and updating phase indicator g

Since the sampling spaces for CNV status Lo, SNV status Zo are discrete and relatively small, we

also apply Gibbs sampling by calculating the probabilities of all possible states as weights to build

the conditional probabilities.

Since the loci are independent when sampling SNV status, we update Zo locus by locus. For each

m, we calculate the posterior probability p(Zom = (k, v)|D,X,Ψ, ε,Ω−Zo
m

) for each state combination

(k, v). Under scenarios where CNA happens after SNV at overlapping locus m, we calculate the full

conditional distribution by integrating over all possible values of phase indicator gm. That is with

1/2 probability the subsequent CNA happened on the wild type allele (gm = 0) and with 1/2 prob-

ability the CNA occurred on the mutant allele (gm = 1), that is, p(Zom = (k, v)|D,X,Ψ, ε,Ω−Zo
m

) =
1
2p(Z

o
m = (k, v)|D,X,Ψ, ε,Ω−Zo

m
, gm = 0) + 1

2p(Z
o
m = (k, v)|D,X,Ψ, ε,Ω−Zo

m
, gm = 1). Then we

sample a new Zom from the (posterior) conditional distribution of all possible states.

The sampling process of Lo is similar to that of Zo. If segmentation information is available,

instead of up one locus at a time, all loci within a segment will be collectively updated. For each

locus in the segment, under scenarios where CNA happens after SNV at overlapping locus m,

we also calculate the full conditional distribution by integrating over all possible values of phase

indicator gm. Then we use the product of weighted posterior probabilities of all loci in the segment

as the current sampling probability of state (k, v) for Gibbs sampling of Lom.

For the hyper-parameter π of Lo, we adopt Gibbs sampling to update π since we can write the

fully conditional distribution in the form of Beta distribution as follows:

p(π|Lo) ∼ Beta(u+ α, S − u+ β),

where S is the number of genome segments, and u is the number of segments without CNA

(Zeng et al., 2019).

After performing Gibbs sampling on Lo and Zo, we estimate each element of g with the maxi-

mum probability at each locus.

Sampling of clone tree T

Since the sampling space of phylogenetic tree is discrete, but the size increases rapidly with the

growth of the number of subclones K, it will be a huge computational burden to explore all the

discrete values of the tree and calculate the posterior probabilities. Here, we adopt a mixed sampling

method for the tree, which randomly applies Metropolis-Hastings sampling and slice sampling.

For Metropolis-Hastings sampling, we adopt the following sampling method: randomly select a

leaf node and reconnect it to a randomly selected parent node to obtain a new tree structure. How-
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ever, Metropolis-Hastings sampling may fall into a local tree structure, as so, we also occasionally

apply slice sampling:

(1) randomly generate a parameter σ ∼ Uniform(0, p(T |D,X,Ψ, ε,Ω−T )),

(2) randomly and repeatedly sample a T ∗ from tree space and accept T ∗ if p(T ∗|D,X,Ψ, ε,Ω−T ) ≥
σ.

Slice sampling enables our sampler to make big jumps which can avoid the chain being trapped

into local mode. According to empirical analysis, the combination of Metropolis-Hastings sampling

and slice sampling not only increases the sampler’s mobility, but also produces a higher acceptance

rate and is robust in a variety of simulation situations.

Sampling of missing rate ρ, ADO rate µ, dispersion parameters w and s

Since the full conditional distribution of ρ is difficult to sample directly, we use Metropolis sampling

with uniform prior on interval [0, 1] to update ρ. Assuming that ρ0 is the sample of the current

estimated missing rate in MCMC chain, we randomly and uniformly sample a new sample ρ1 in the

interval [0, 1], calculate the ratio of the posterior probability of ρ (i.e., p(ρ|D,X,Ψ, ε,Ω−ρ)) before

and after sampling to judge whether to accept the new sample ρ1 according to the Metropolis

sampling criterion. The sampling processes of µ is the same to that of ρ.

For the dispersion parameters s and w of the Negative Binomial distribution and Beta-Binomial

distribution, we also use Metropolis sampling with Gamma prior. Specifically, assuming that s0 is

the currently estimated sample in the MCMC chain, we generate a new sample s1 from the normal

distribution with mean s0 and variance sd (given in advance). Then we calculate the ratio of the

posterior probability of s before and after sampling to judge whether to accept the new sample s1

(Marass et al., 2016). The sampling processes of w is the same to that of s.

Supplementary Note 2: Heuristic initialization process for MCMC parallel chains

We use heuristic initialization for each parallel chain before MCMC sampling. We calculate the

variant reads frequency (VRF) at each locus in each cell based on the total reads and mutant reads.

Generally, cells from the same subclone have similar VRF. Therefore, based on the VRF matrix, we

use Gaussian mixture model to cluster the cells and obtain the subclone cell assignment to initialize

C. Then we obtain the VRF of each subclone at each locus, and use the minimum spanning tree

(MST) algorithm to construct the subclonal evolutionary path to initialize the clone tree T . After

initializing C and T for each chain, CNA and SNV are randomly allocated on the tree, and then

MCMC sampling optimization is performed.
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Supplementary Note 3: Derivation of the fully conditional distribution for all

model parameters and maximum likelihood inference for g

(1) π

the posterior distribution of π is (with prior Beta(α, β)):

p(π|Lo) ∝ p(Lo|π)p(π)

∝ πu(1− π)S−up(π)

∝ Beta(u+ α, S − u+ β),

where S is the number of genome segments, and u is the number of segments without CNA.

(2) Θ

the posterior distribution of Θ is:

p(Θ|D,X,Ψ, ε,Ω−Θ) = p(Θ|C)

∝ p(C|Θ)p(Θ)

∝ p(Θ)
∏
k

(
θk∑
k θk

)Nk ,

where Nk is the number of cells belonging to subclone k.

(3) C

we update C one by one:

p(Cn|D,X,Ψ, ε,Ω−Cn) = p(Cn|D,X,Ψ, Lo, Zo, T , g, ρ, µ, s, w, ε)

∝ p(Cn)
∏
m

p(xmn|dmn, Zom, Lom, Cn, T , µ, w, ε, gm)p(dmn|ψn, Lom, Cn, T , ρ, µ, s, ε)

(4) Zo

we update Zo row by row:

p(Zom|D,X,Ψ, ε,Ω−Zo
m

) = p(Zom|D,X,Lom, C, T , w, µ, ε)

∝ p(Zom)

∫
gm

∏
n

p(xmn|dmn, Zom, Lom, Cn, T , w, µ, ε, gm)

(5) Lo
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we update rows of Lo in the same segment together. Consider the loci in segment ∆i and

assume they share the same CNA status Lo∆i
:

p(Lo∆i
|D,X,Ψ, ε,Ω−Lo

{m:m∈∆i}
) = p(Lo∆i

|D,X,Ψ, Zo, C, T , ρ, µ, ε, w, s)

∝ p(Lo∆i
)
∏
m∈∆i

∫
gm

∏
n

p(xmn|dmn, Zom, Lom = Lo∆i
, Cn, T , w, µ, ε, gm)

×
∏
m∈∆i

∏
n

p(dmn|ψn, Lom = Lo∆i
, Cn, T , ρ, µ, s, ε).

(6) T

the posterior distribution of T is:

p(T |D,X,Ψ, ε,Ω−T ) = p(T |D,X,Ψ, C, Lo, Zo, g, ρ, µ, w, s, ε)

∝ p(T )
∏
m,n

p(xmn|dmn, Zom, Lom, Cn, T , µ, w, ε, gm)p(dmn|ψn, Lom, Cn, T , ρ, µ, s, ε)

(7) ρ

the posterior distribution of ρ (with uniform prior on interval [0, 1]) is:

p(ρ|D,X,Ψ, ε,Ω−ρ) = p(ρ|D,Ψ, Lo, C, T , µ, s, ε)

∝ p(ρ)
∏
m,n

p(dmn|ψn, Lom, Cn, T , ρ, µ, s, ε)

(8) µ

the posterior distribution of µ (with uniform prior on interval [0, 1]) is:

p(µ|D,X,Ψ, ε,Ω−µ) = p(µ|D,X,Ψ, Lo, Zo, C, g, ρ, w, s, ε)

∝ p(µ)
∏
m,n

p(xmn|dmn, Zom, Lom, Cn, T , µ, w, ε, gm)p(dmn|ψn, Lom, Cn, T , ρ, µ, s, ε)

(9) s

the posterior distribution of s (with Gamma prior) is:

p(s|D,X,Ψ, ε,Ω−s) = p(s|D,Ψ, Lo, C, T , ρ, µ, ε)

∝ p(s)
∏
m,n

p(dmn|ψn, Lom, Cn, T , ρ, µ, s, ε)

8



(10) w

the posterior distribution of w (with Gamma prior) is:

p(w|D,X,Ψ, ε,Ω−w) = p(w|D,X,Lo, Zo, C, T , g, µ, ε)

∝ p(w)
∏
m,n

p(xmn|dmn, Zom, Lom, Cn, T , µ, w, ε, gm)

(11) g

the inference of g with the maximum probability at each locus m is:

gm = argmaxgm∈{0,1}
∏
n

p(xmn|dmn, Zom, Lom, Cn, T , w, µ, ε, gm)

Supplementary Note 4: Model selection

After performing inference on each fixed number of subclones (k), we need to solve the model

selection problem to find the best k. Selecting the model with maximum likelihood will lead to

overfitting, because the models with more subclones are more likely to yield an improved likelihood.

The Bayesian Information Criterion (BIC), which proposed by Schwarz et al. (1978) as,

BIC = −2lnf(x|θ̂) + plnn,

not only prefers the model with large loglikelihood values, but also adds the penalty on the number

of free model parameters to punish the complexity of the model and shows heavily penalization on

more complicated models for large samples. In addition, to avoid simulation-based maximization

in performing model selection, we choose to apply a modified version of BIC (Carlin and Louis,

2009; Turkman et al., 2019), defined as,

BIC = −2Eθ|x[lnf(x|θ)] + plnn.

Supplementary Note 5: Simulation process

We first designed ground truth information under different group parameters, including the tree

structure T , the subclonal SNV genotype matrix Z and CNA genotype matrix L, which are dis-

played in Figure S1-S2 and S4-S6. We allocate cells almost evenly to each subclone, thereby

obtaining the real cellular SNV and CNA genotypes according to the subclones they belong to. For

each locus j in each cell i, we introduce allelic drop-out rate µ: we randomly lose an allele with the

probability of µ. Then we use Negative Binomial distribution and Beta-Binomial distribution with

sequencing errors ε and sequencing depths Ψ to generate total reads matrix D and mutant reads
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matrix X. Finally, we randomly select some sites in D and X with the probability ρ, and change

the total reads and mutant reads to 0 to simulate missing events.

Supplementary Note 6: Evaluations of ARI

For comparison of the accuracy of subclone assignment, we used ARI (Rand, 1971; Qiu et al.,

2017) to measure the similarity between ground truth and estimation of C. Assume there are

two partitions, P (1) = {P (1)
1 , P

(1)
2 , · · · , P (1)

r } and P (2) = {P (2)
1 , P

(2)
2 , · · · , P (2)

s } that divide set

A into r and s groups, respectively. Let nij represents the overlap number in P
(1)
i and P

(2)
j ,

that is, nij = |P (1)
i ∩ P (2)

j |, then the set {nij |i ∈ {1, · · · , r}, j ∈ {1, · · · , s}} describes overlaps

between all possible pairs in P (1) and P (2). We then define the number of cells within group i from

partition P (1), as ai =
∑s

j=1 nij , and the number of cells within subclone j from partition P (2), as

bj =
∑r

i=1 nij . Then ARI of the two partitions can be calculated by

ARI(P (1), P (2)) =

∑
ij

(nij

2

)
− [
∑

i

(
ai
2

)∑
j

(bj
2

)
]/
(
n
2

)
1
2 [
∑

i

(
ai
2

)
+
∑

j

(bj
2

)
]− [

∑
i

(
ai
2

)∑
j

(bj
2

)
]/
(
n
2

) .
The value of ARI is in the region of [0,1]. A larger value indicates better assignment.

Supplementary Note 7: Preprocessing of raw data in ERBC datasets

In order to obtain mutant reads and total reads information from FASTQ files as the input of

BiTSC2, the preprocessing steps of read alignment and SNV calling are described as follows. For

read alignment, single-cell and bulk reads are aligned to human reference GRCh37 using the MEM

algorithm in BWA software. Then, following a standardized best-practices pipeline, mapped reads

are processed by filtering reads with low mapping-quality, performing local realignment around

indels and removing PCR duplicates. For SNV calling, the single-cell SNV calls are obtained using

Monovar software (Zafar et al., 2016), a variant caller specifically designed for single-cell data, with

default parameter settings. The SNV calls of bulk datasets are obtained by the paired-sample

variant-calling approach implemented with VarDict software. The low-quality bulk SNV calls are

removed by the SelectVariants tool in Genome Analysis Toolkit (GATK). Then the bulk SNVs

passed QC are further divided into two categories: “germline” SNVs which present in both tumor

and normal bulk samples, and “Somatics” SNVs which can only be found in tumor bulk samples.

We exclude the small indels and other complex structural rearrangements in our final list of ”gold-

standard” bulk SNVs. Finally, the gold-standard SNVs present in single-cell calls are extracted,

resulting in the mutant reads and total reads in 55 single cells with 1137 SNVs obtained. The

corresponding accession codes can refer to the Supplementary Note of Alves and Posada (2018).
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Supplementary Figures

Figure S1: The ground truth of simulation datasets in G1, containing subclonal

phylogenetic tree (T ) and genotype matrix of CNA (L) and SNV (Z).
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Fig. S1. The ground truth of simulation datasets in G1, containing phylogenetic tree (T ) and

subclonal genotype matixes of CNA (L) and SNV (Z).
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Figure S2: The ground truth of simulation datasets in G2, containing subclonal

phylogenetic tree (T ) and genotype matrixes of CNA (L) and SNV (Z).

CNA-driven 
losses of SNVs

CNA

SNV

CNA-driven 
gains of SNVs SNV

CNA

phylogenetic tree 

subclonesubclone

lo
cu

s

lo
cu

s

A

B C SNV genotype matrix, ZCNA genotype matrix, L

Fig. S2. The ground truth of simulation datasets in G2, containing phylogenetic tree (T ) and

subclonal genotype matrixes of CNA (L) and SNV (Z). In panel A, the blue box visualizes the

CNA-driven losses of mutations on a genomic segment happening in subclone4. The red box

visualizes the CNA-driven gains of mutations on another genomic segment occurring in subclone5.

Panels B and C are the true genotypes of CNA and SNV. The blue and red boxes in panels B and

C highlight the corresponding changes in the genotypes of subclone4 and subclone5.
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Figure S3: The clone tree can be reconstructed by SNV markers.
150 datasets (G1-G5) under different parameter settings
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The clone tree can be reconstructed 
only with SNV markerFig. S3. The clone tree can be reconstructed by SNV markers. The copy loss in the first locus

and the mutation in the third locus provide same information for recovering the true topology of

the tree, then information of CNA is redundant with respect to the tree topology.
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Figure S4: The ground truth of simulation datasets in G3-G5, containing sub-

clonal phylogenetic tree (T ) and genotype matrix of CNA (L) and SNV (Z).
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Fig. S4. The ground truth of simulation datasets in G3-G5, containing subclonal phylogenetic

tree (T ) and genotype matrix of CNA (L) and SNV (Z).
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Figure S5: The ground truth of simulation datasets in G6, containing subclonal

phylogenetic tree (T ) and genotype matrix of CNA (L) and SNV (Z).
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Fig. S5. The ground truth of simulation datasets in G6, containing subclonal phylogenetic tree

(T ) and genotype matrix of CNA (L) and SNV (Z).
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Figure S6: The ground truth of simulation datasets in G7, containing subclonal

phylogenetic tree (T ) and genotype matrix of CNA (L) and SNV (Z).
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Fig. S6. The ground truth of simulation datasets in G7, containing subclonal phylogenetic tree

(T ) and genotype matrix of CNA (L) and SNV (Z).
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Figure S7: The simulated coverage heterogeneity in sequencing technologies

under different sequencing depths.
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Fig. S7. The simulated coverage heterogeneity in sequencing technologies under different sequenc-

ing depths.
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Figure S8: Comparison of performance on G1 for subclone assignment, sub-

clonal CNA genotype recovery and tree reconstruction between BiTSC2 with

true segment information as input and ground truth.
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Fig. S8. Comparison of performance on G1 for subclone assignment, subclonal CNA genotype re-

covery and tree reconstruction between BiTSC2 with true segment information as input and ground

truth. On the far left of the figure, we show the ground truth information of G1, which includes

the phylogenetic tree and the subclonal CNA genotype matrix. For each dataset, from left to right,

we display the phylogenetic tree reconstructed by BiTSC2 with true segment information as input,

the CNA subclonal genotype matrix (the horizontal axis represents the subclone, the vertical axis

represents the locus), and the heatmap of the corresponding relationship between true subclones

and estimated subclones (the shade of the color indicates the number of cells overlapped by the true

subclones and the estimated subclones, where the darker the color indicates the more overlapped

cells, and the lighter the color indicates the less overlapping cells. ES stands for ”estimated sub-

clone”, TS stands for ”true subclone”). BiTSC2 completely recovers the cellular CNA genotypes

for G1.
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Figure S9: Comparison of performance on G2 for subclone assignment, sub-

clonal CNA genotype recovery and tree reconstruction between BiTSC2 with

true segment information input and ground truth.
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Fig. S9. Comparison of performance on G2 for subclone assignment, subclonal CNA genotype

recovery and tree reconstruction between BiTSC2 with true segment information input and ground

truth. On the far left of the figure, we show the ground truth information of G2, which includes

the phylogenetic tree and the subclonal CNA genotype matrix. For each dataset, from left to right,

we display the phylogenetic tree reconstructed by BiTSC2 with true segment information as input,

the CNA subclonal genotype matrix (the horizontal axis represents the subclone, the vertical axis

represents the locus), the heatmap of the corresponding relationship between true subclones and

estimated subclones (the shade of the color indicates the number of cells overlapped by the true

subclones and the estimated subclones, where the darker the color indicates the more overlapped

cells, and the lighter the color indicates the less overlapping cells. ES stands for ”estimated sub-

clone”, TS stands for ”true subclone”) and the mapping of true copy number and estimated copy

number. Beside replicates 1, 3 and 5, which have 87.5%, 85.7% and 89.2% of true positives when

the true copy number is 3, all other replicates have near or equal to 100% true positive rate. The

accuracies of the recovered cell CNA genotypes for each datasets are 98.2%, 100%, 97.8%, 99.8%,

98.4%, 99.8%, 99.8%, 99.8%, 99.6% and 100%, respectively, with a mean of 99.32%.
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Figure S10: The estimation of phase indictor g by BiTSC2 with true segment

information as input for dataset G2.
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Fig. S10. The estimation of phase indictor g by BiTSC2 with true segment information as input

for dataset G2.
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Figure S11: Comparison of performance on G1 and G2 for scSNV genotype

recovery, subclone assignment and tree reconstruction among BiTSC2 with locus

specific segments as input, RobustClone and BEAM.
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Fig. S11. Comparison of performance on G1 and G2 for scSNV genotype recovery, subclone

assignment and tree reconstruction among BiTSC2 with locus specific segments as input, Robust-

Clone and BEAM. (A) The violin plot of the algorithms for error rate of recovered scSNV genotype

matrix, ARI of subclone assignment and MP3 similarity on G1 dataset. (B) The violin plot of

the algorithms for error rate of recovered scSNV genotype matrix, ARI of subclone assignment and

MP3 similarity on G2 dataset.
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Figure S12: Comparison of overall performance on G3-G7 for scSNV genotype

recovery, subclone assignment and tree reconstruction among BiTSC2 with real

segment information as input, RobustClone and BEAM.
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Fig. S12. Comparison of overall performance on G3-G7 for scSNV genotype recovery, subclone

assignment and tree reconstruction among BiTSC2 with real segment information as input, Ro-

bustClone and BEAM.
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Figure S13: Comparison of detail performance on G3-G7 for scSNV genotype

recovery, subclone assignment and tree reconstruction among BiTSC2 with locus

specific segments as input, RobustClone and BEAM.
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Fig. S13. Comparison of detail performance on G3-G7 for scSNV genotype recovery, subclone

assignment and tree reconstruction among BiTSC2 with locus specific segments as input, Robust-

Clone and BEAM.
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Figure S14: Comparison of overall performance on G3-G7 for scSNV genotype

recovery, subclone assignment and tree reconstruction among BiTSC2 with locus

specific segments as input, RobustClone and BEAM.
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Fig. S14. Comparison of overall performance on G3-G7 for scSNV genotype recovery, subclone

assignment and tree reconstruction among BiTSC2 with locus specific segments as input, Robust-

Clone and BEAM.
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Figure S15: The BIC of metastatic colorectal cancer data calculated in Model

selection step.
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Fig. S15. The BIC of metastatic colorectal cancer data calculated in Model selection step.
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Figure S16: The phylogeny tree inferred by SCITE and SCARLET on the dataset

from a Metastatic Colorectal Cancer Patient.

A B C

Fig. S16. The phylogeny tree inferred by SCITE and SCARLET on the dataset from a Metastatic

Colorectal Cancer Patient. (A)The phylogeny tree inferred by SCITE in Leung et al. (2017), where

two distinct branches of metastatic cells suggest polyclonal seeding of liver metastasis. (B) The

phylogeny tree inferred by SCARLET with all metastatic cells contained in a single branch, which

suggests monoclonal seeding of the liver metastasis. (C) The phylogeny tree inferred by BiTSC2 in

Figure 5A suggests monoclonal seeding of the liver metastasis. Figure AB are adapted from Satas

et al. (2020).
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Figure S17: The BIC of ERBC dataset calculated in model selection step.
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Fig. S17. The BIC of ERBC dataset calculated in model selection step.
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Figure S18: The missing rate ρ estimated by BiTSC2 on the datasets from G5

groups.
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Fig. S18. The missing rate ρ estimated by BiTSC2 with real segmentation as input (A) and with

locus specific segments as input (B) on the datasets from G5 groups.
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Figure S19: The ground truth where SNV randomly occurs on chromosomes.
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Fig. S19. The ground truth where SNV randomly occurs on chromosomes. (A) The ground truth

where SNVs randomly and uniformly occurs on all genomic regions. (B) The ground truth where

SNVs are randomly and sparsely distributed within each CNA segment.
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Figure S20: The tree inferred by SCARLET and BiTSC2 for the toy model in

Figure 1A.
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Fig. S20. The tree inferred by SCARLET and BiTSC2 for the toy model in Figure 1A.
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Supplementary Tables

Table S1: The definitions of all parameters and examples of main parameters in

Figure 1A.

Table S1: The definitions of all parameters and examples of main parameters in Figure 1A. Assume

that the input matrixes consist of N cells measured at M loci and there exist K latent subclones

in the cells drawn for sequencing (K � N).

Parameters Definitions Value in Figure 1A 

The parameter of the categorical distribution.

Parameters Definitions Value in Figure 1A 

�

The parameter of Gamma distribution. �

The dispersion parameter of Negative Binomial distribution. �

The dispersion parameter of Beta-Binomial distribution. �

The zero-inflation parameter of zero-inflated negative binomial (ZINB) 
distribution, i.e., missing rate.

�

Sequencing error rate. �

Allelic dropout rate. �

�

Prior probability for a segment with no CNA. �

The given hyperparameters of Beta distribution. �

The somatic point mutation rate. �

CNA origin matrix with dimensions of . 
For the -th row of ,  indicates the CNA at locus  arises in 
subclone  and gains (or losses if  is negative)  normal or mutant copies.

M × 2
m Lo L o

m = (k , v) m
k v v

Z = (
0 1 0 1 1
0 1 0 0 1
0 0 0 0 1)

"

Zo = (
2 1
2 1
0 0)

CNA subclone genotypes matrix with dimensions of .
The element at the -th row and -th column of , , represents the total 
number of copies at the -th locus of the -th subclone. 

M × K
i j L Lij

i j

Z

γ

Subclone assignment vector with length . 
For the -th element of ,  indicates the cell  is from subclone . 

N
n C Cn = k n k

L

θ

α , β

SNV subclone genotypes matrix with dimensions of . 
The element at the -th row and -th column of , , represents the number 
of mutant copies at the -th locus of the -th subclone. 

M × K
i j Z Zij

i j

Lo = (
3 −1
4 −1
5 1 )

ϕ

s

g g = (0, 1, 0)

ϕ = ( 5
17 , 2

17 , 3
17 , 4

17 , 3
17 )

ψ

Parameters vector with length .

 and 

K

θk ∼ Gamma(γ,1), ϕk = θk /
K

∑
i=1

θi

C

Clone tree vector with length . 
For the -th element of  ,  indicates the parent of subclone  is 
subclone . 

K
i " "i = k i
k

" = (0, 1, 1, 2, 2)

Zo

ε

μ

w

π

L = (
2 2 1 2 2
2 2 2 1 2
2 2 2 2 3)

�C = (1, 2, 1, 1, 4, 5, 4, 4,
1, 5, 1, 4, 3, 2, 5, 3, 3)

ζ

SNV origin matrix with dimensions of . 
For the -th row of ,  indicates mutation at locus  occurs 
from subclone  and gains  mutant copies. 

M × 2
m Zo Z o

m = (k , v) m
k v

Lo

Sequencing depth vector with length .N

ρ

Phase indicator vector with length . 
For the -th element of ,  indicates CNA happened on the mutant 
allele at locus , and  otherwise. 

M
m g gm = 1

m gm = 0
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Parameters Definitions Value in Figure 1A 

The parameter of the categorical distribution.

Parameters Definitions Value in Figure 1A 

-

The parameter of Gamma distribution. -

The dispersion parameter of Negative Binomial distribution. -

The dispersion parameter of Beta-Binomial distribution. -

The zero-inflation parameter of zero-inflated negative binomial (ZINB) 
distribution, i.e., missing rate.

-

Sequencing error rate. -

Allelic dropout rate. -

-

Prior probability for a segment with no CNA. -

The given hyperparameters of Beta distribution. -

The somatic point mutation rate. -

CNA origin matrix with dimensions of . 
For the -th row of ,  indicates the CNA at locus  arises in 
subclone  and gains (or losses if  is negative)  normal or mutant copies.

M × 2
m Lo L o

m = (k , v) m
k v v

Z = (
0 1 0 1 1
0 1 0 0 1
0 0 0 0 1)

α , β

Z

γ

θ

L

Phase indicator vector with length . 
For the -th element of , indicates CNA happened on the mutant 
allele at locus , and  otherwise. 

M
m g gm = 1

m gm = 0

Lo = (
3 −1
4 −1
5 1 )

ϕ

s

g g = (0, 1, 0)

ϕ = ( 5
17 , 2

17 , 3
17 , 4

17 , 3
17 )

ψ

SNV subclone genotypes matrix with dimensions of . 

For the element at the -th row and -th column of ,  represent the 
number of mutant copies at the -th locus of the -th subclone. 

M × K
i j Z Zij

i j

Subclone assignment vector with length . 
For the -th element of ,  indicates the cell  is from subclone . 

N
n C Cn = k n k

Clone tree vector with length . 
For the -th element of  ,  indicates the parent of subclone  is . 

K
i 𝒯 𝒯i = k i k

Parameters vector with length .


 and 

K

θk ∼ Gamma(γ,1), ϕk = θk /
K

∑
i=1

θi

C

CNA subclone genotypes matrix with dimensions of .

For the element at the -th row and -th column of ,  represents the total 
number of copies at the -th locus of the -th subclone. 

M × K
i j L Lij
i j

Zo

π

ε

μ

w

𝒯

L = (
2 2 1 2 2
2 2 2 1 2
2 2 2 2 3)

𝒯 = (0, 1, 1, 2, 2)


C = (1, 2, 1, 1, 4, 5, 4, 4,
1, 5, 1, 4, 3, 2, 5, 3, 3)

ζ

Lo

Sequencing depth vector with length .N

SNV origin matrix with dimensions of . 
For the -th row of ,  indicates mutation at locus  occurs 
from subclone  and gains  mutant copies. 

M × 2
m Zo Z o

m = (k , v) m
k v

ρ

Zo = (
2 1
2 1
0 0)
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Table S2: The setting of simulation parameters for comparison data.

Table S2: The setting of simulation parameters for comparison data.

change factor control factors

G3
n ψ ρ m K µ

100 200 500 3 0.2 100 4 0.1

G4
ψ n ρ m K µ

3 5 100 100 0.2 100 4 0.1

G5
ρ n ψ m K µ

0.1 0.2 0.3 100 3 100 4 0.1

G6
m n ψ ρ K µ

50 100 200 100 3 0.2 4 0.1

G7
K n ψ ρ m µ

3 5 8 100 3 0.2 100 0.1
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Table S3: Prior distribution parameters setting of BiTSC2 for simulations G1-

G7.

Table S3: Prior distribution parameters setting of BiTSC2 for simulations G1-G7.

Parameters Value

Maximum possible mutant copies (Ms) 1

Maximum possible total copies (Mc) 4

Dirichlet prior parameter of φ (γ) 1.5

Beta prior parameter of π (α, β) (10000,1)

the standard deviation of the Normal distribution used to propose a new w and s 18

the shape parameter of the prior Gamma distribution of w and s 11

the rate parameter of the prior Gamma distribution of w and s 0.1

prior parameter of Zo (ζ) 0.01

Table S4: MCMC sampling parameters setting of BiTSC2 for simulations G1-G7.

Table S4: MCMC sampling parameters setting of BiTSC2 for simulations G1-G7.

Parameters Value

Number of chains 5

Temperature increment (∆T ) 0.35

Sample size for posterior inference 500

Burn-in sample size 500

Sample size for tuning adaptive parameter 500

Interval to perform chain swap 30

Probability of tree slice sampling 0.15

Probability of tree Metropolis-Hastings sampling 0.85
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Table S5: Prior distribution parameters setting of BiTSC2 for metastatic col-

orectal cancer dataset.

Table S5: Prior distribution parameters setting of BiTSC2 for metastatic colorectal cancer dataset.

Parameters Value

Maximum possible mutant copies (Ms) 1

Maximum possible total copies (Mc) 10

Dirichlet prior parameter of φ (γ) 1.5

Beta prior parameter of π (α, β) (10000,1)

the standard deviation of the Normal distribution used to propose a new w and s 18

the shape parameter of the prior Gamma distribution of w and s 11

the rate parameter of the prior Gamma distribution of w and s 0.1

prior parameter of Zo (ζ) 0.01

Table S6: MCMC sampling parameters setting of BiTSC2 for real datasets.

Table S6: MCMC sampling parameters setting of BiTSC2 for real datasets.

Parameters Value

Number of chains 5

Temperature increment (∆T ) 0.35

Sample size for posterior inference 1000

Burn-in sample size 1000

Sample size for tuning adaptive parameter 1000

Interval to perform chain swap 30

Probability of tree slice sampling 0.15

Probability of tree Metropolis-Hastings sampling 0.85
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Table S7: Prior distribution parameters setting of BiTSC2 for breast cancer

dataset.

Table S7: Prior distribution parameters setting of BiTSC2 for breast cancer dataset.

Parameters Value

Maximum possible mutant copies (Ms) 1

Maximum possible total copies (Mc) 10

Dirichlet prior parameter of φ (γ) 1.5

Beta prior parameter of π (α, β) (100,1)

the standard deviation of the Normal distribution used to propose a new w and s 18

the shape parameter of the prior Gamma distribution of w and s 11

the rate parameter of the prior Gamma distribution of w and s 0.1

prior parameter of Zo (ζ) 0.01
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