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Text S1. The single Fabry-Perot resonator 

We develop an integration scheme involving higher-order resonances so as to obtain the lengths 

recipe ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ேሻ for broadband impedance matching. To begin with, the acoustic pressure 

and velocity in the composite rod with length 𝐿, can be written as 
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where u denotes the displacement velocity, 0u being its magnitude, 𝑧 ൌ 0 is defined to be the top 

surface of the Fabry-Perot (FP) resonator, and the longitudinal modulus 𝑀 ≅ 𝐸ሺ1 െ 𝑖𝜂ሻ ൌ



 

   
 
 

𝐵௪ሺ1 െ 𝑖𝜂ሻ/𝛼, with 𝛼 ൌ 5.5 in our present case. We will show in the following section that the 

loss factor 𝜂 ≅ 0.26.  

The composite material’s characteristic impedance 𝑍 is assumed to be matched to that of water, 

𝑍௪. Note that we define the material properties as 𝜌 ൌ 𝛼𝜌௪, 𝑣 ൌ 𝑣௪/𝛼 and 𝑍௪ ൌ 𝜌𝑣 ൌ 𝜌௪𝑣௪. 

The water’s density 𝜌௪ ൌ 1 g/cmଷ and sound speed 𝑣௪ ൌ 1470 m/s. 𝐸 is the Young’s modulus 

of the composite rod, 𝐵௪ is the bulk modulus of water. The surface impedance of a single FP 

resonator, let us say the nth resonator in the integrated array, is defined by 
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where the sound speed 𝑣 ൌ ඥ𝑀/𝜌. The first-order Fabry-Perot (FP) resonance occurs when the 

longitudinal length coincidences the quarter wavelength 𝐿 ൌ 𝜆/4. It should be noted that since 

M can have a small imaginary part, the relevant 𝑣 is also complex in the simulations. Only the 

real part of M is taken into account in the impedance matching considerations. 

Higher-order resonances happen when the relevant wavelength is shorter so that 𝐿 ൌ
3𝜆 4⁄ , 5𝜆 4⁄ , … , ሺ2𝑚 െ 1ሻ𝜆/4 are satisfied (𝑚  1). By using the Mittag-Leffler expansion: 
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we can alternately express Eq. (S2) as 
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where the Green function, 𝐺, is defined to be the ratio of surface displacement to the pressure 

modulation (ൌ 𝑢/െ𝑖𝜔), 𝑚 denotes the order of the FP resonance, the oscillation strength 𝜒 ൌ
2 ሺ𝛼𝜌୵𝐿ሻ⁄ , and the resonance frequency Ω ൌ 𝜋𝑣௪ ሺ2𝛼𝐿ሻ⁄ . Note that 𝛽 𝜔⁄ ≅ 𝜂 ≪ 1. From Eq. 

(S4), the surface response of a single FP resonator, i.e., the Green function, can be explicitly 
written as 
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In the vicinity of the first FP resonator (m=1), Eq. (S5) can be approximated as 
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which is the origin of Eq. (4) plotted in Fig. 1(c-d) in the main text. For this step, we have ignored 
all the higher-order FP resonances within a single resonator and the approximation is valid around 

the first-order resonance Ω, where the contributions of the higher-order terms are negligible. 



 

   
 
 

Text S2. Measurement of the loss factor 

 
Fig. S1 Measured results for the dynamic mechanical analysis. (a) The storage modulus and the loss 
modulus, plotted as functions of temperature. (b) The loss factor, plotted as a function of temperature. 
The dashed line indicates the loss factor at room temperature. 

The dynamic mechanical analysis (DMA) was carried out to characterize the loss factor of the 
composite materials. A sinusoidal stress was applied and the strain in the material is measured, 
allowing one to determine the complex modulus. The Young’s modulus of the viscoelastic 

materials is defined by 𝐸 ൌ 𝐸ᇱ െ 𝑖𝐸ᇱᇱ ൌ 𝐸ሺ1 െ 𝑖𝜂ሻ, where 𝐸ᇱ and 𝐸′′ denote the storage modulus 

and loss modulus, respectively and the loss factor 𝜂 ൌ 𝐸ᇱᇱ/𝐸′. In Fig. S1(a), the real part of the 

modulus, is noted to be slightly greater than the measured 0.37 ൈ 10ଽPa, given by the tensile test 

(carried out in room temperature) in the main text. Here, what we care about is the loss factor. Due 
to the inherent dispersive features of the relaxation mechanisms, the real and imaginary parts of 
the modulus can be a function of frequency. For simplicity, in the theoretical derivation and 

simulations, we adopt the value of 0.26 for 𝜂 [Fig. S1(b)]. In the following section, we will also 

show that, due to the unique property of integrated Fabry-Perot resonators, the absorption 
performance is not sensitive to the loss factor. 

 

Text S3. Integration scheme for multiple Fabry-Perot resonators 

The overall impedance is given by the parallel superposition of surface responses from all the N 
composite FP resonator rods: 
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For simplicity, in Eq. (S7) we have assumed that the neighbouring FP resonators are separated by 
very small gaps with negligible surface area facing the incident wave. The factor 1/N accounts for 
the area fraction of each resonator facing the incident wave. 

By treating the distribution of the resonance frequencies ሺΩଵ, Ωଶ, … , Ωேሻ to be continuous, the 

discretized summation in Eq. (S7) can be rewritten as an integral: 
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where the mode density 𝐷ሺΩሻ ൌ 𝑑𝑁/𝑑Ω  and the oscillation strength 𝜒ሺΩሻ ൌ 2 ሺ𝛼𝜌୵𝐿ሻ⁄ ൌ
4Ω/ሺ𝜋𝑍௪ሻ. The definition of Dirac delta function is 𝛿ሺ𝑥ሻ ൌ 𝜖 ሾ𝜋ሺ𝜖ଶ  𝑥ଶሻሿ⁄ ሺ𝜖 → 0ሻ and here we 
have the dissipation 𝛽 𝜔⁄  much smaller than unity. Therefore, we can divide Eq. (S8) into real and 
imaginary parts: 
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The principal value of the first term in Eq. (S9) can be approximately treated as zero due to its 
oscillating characteristic. For the second term, we can perform the integration by utilizing the 
property of the delta function. So, by using the definition of the oscillation strength, Eq. (S9) may 
be simplified as 
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According to our impedance matching target of 𝑍௦ሺ𝜔ሻ ൌ 𝑍௪, Eq. (S10) can be rewritten as 
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where 𝑑𝑛 ൌ 𝑑𝑁/𝑁  and 𝑛 ∈ ሾ0,1ሿ. For convenience, we denote 𝑎ሺ𝜔 ሺ2𝑚 െ 1ሻ⁄ ሻ ൌ 2Ω𝑑𝑛 𝑑Ω⁄ . 
By using this notation, Eq. (S11) becomes 
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Below the cut-off frequency (𝜔 ሺ2𝑚 െ 1ሻ⁄ ൏ Ωଵ), the mode density is zero, serving as the initial 
condition. So, we can calculate 𝑎ሺ𝜔ሻ by iterations based on the different frequency ranges and 
solve the ordinary differential equation with different 𝑎 for each 𝑚. As the first step, if 𝜔 ∈
ሾΩଵ, 3Ωଵሿ, only the first term survives due to the initial condition (i.e., 𝑎ሺ𝜔ሻ ൌ 𝑎ଵ ൌ 1). For the 
second step, if 𝜔 ∈ ሾ3Ωଵ, 5Ωଵሿ, only the first and the second terms have nonzero values. So, 
𝑎ሺ𝜔ሻ  𝑎ሺ𝜔 3⁄ ሻ 3⁄ ൌ 𝑎ଶ  𝑎ଵ 3⁄ ൌ 1 and we can solve for 𝑎ଶ ൌ 2/3. By repeating the iteration 
procedures, we can solve for 𝑎 for 𝜔 ∈ ሾሺ2𝑚 െ 1ሻΩଵ, ሺ2𝑚  1ሻΩଵሿ. The results are plotted in 
Fig. S2. 



 

   
 
 

 
Fig. S2 Iterated solution for the series coefficient 𝒂ሺ𝝎ሻ. The value of 𝑎ሺ𝜔ሻ is a constant within the 
frequency range 𝜔 ∈ ሾሺ2𝑚 െ 1ሻΩଵ, ሺ2𝑚  1ሻΩଵሿ. The solution curve shows that if 𝜔 → ∞, 𝑎ሺ𝜔ሻ → 0. 

The physical meaning of 𝑎 is that it can determine the mode density in the specified frequency 
range (i.e., 2Ω𝑑𝑛 𝑑Ω⁄ ൌ 𝑎). For 𝑚 ൌ 1, we have 2Ω𝑑𝑛 𝑑Ω⁄ ൌ 1 which has been derived in the 
main text with first-order approximation and the solution lnሺΩ Ωଵ⁄ ሻ ൌ 2𝑛/𝑎ଵ for 𝑛 ൏ lnሺ3ሻ /2. 
By adopting the value of 𝑎ଶ, we can continue to obtain lnሺΩ ሺ3Ωଵሻ⁄ ሻ ൌ 2ሺ𝑛 െ lnሺ3ሻ 2⁄ ሻ/𝑎ଶ. We 
can repeat the procedure and obtain the complete information of Ω as function of 𝑛 [see the red 
solid line in Fig. 3(c) in the main text]. In the practical case, we can only have a finite number of 
FP resonators, so the distribution of the resonances Ω cannot be continuous as we have assumed. 
In the present case, we choose 𝑁 ൌ 9. The resulting distribution of the discretized first-order 
resonances ሺΩଵ, Ωଶ, … , Ωேሻ is highlighted by the circles in Fig. 3(c) of the main text. In this 
manner, the length of the individual FP resonator rods can be determined as 𝐿 ൌ 𝜋𝑣୵ ሺ2𝛼Ωሻ⁄ . 

 

Text S4. Procedure for the fabrication of composite rods 

In this section, we describe how the composite FP resonator rods were fabricated. In the last 
section, we have derived the lengths for the FP resonator rods. Accordingly, we prepare hard 
molds by 3D printing (the translucent one in step 2 of Fig. S3), with the dimensions of their 
protrusions the same as the required rods. By using the hard molds, we can use mold silica gel to 
fabricate the soft molds (the pink block in step 3 of Fig. S3). 

Below are the detailed steps. (1) Uniformly mixing the original agent and curing agent for the 
mold material—silica gel. (2) Pouring the mixture into a hard mold made of acrylic. (3) After 
curing for 24 hours, the soft mold can be obtained by demolding. (4) Weighing the required 
tungsten powder. (5) Weighing the agent and the curing agent for rubber and resin, respectively. 
(6) Mixing these four polymers evenly, according to the pre-determined ratio. (7) Uniformly 
mixing the tungsten powder into the prepared polymer mixture. (8) Pouring the mixture into the 
soft mold. (9) After curing for about 12 hours, the solidified FP rods can be obtained by demolding. 
In this manner, 9 types of solid FP rod with different lengths can be obtained by reproducing 
different sizes of the soft molds. 



 

     
 
 

 
Fig. S3 Steps for fabricating the composite rods. 

 

Text S5. Oblique incidence performance and the lateral size effect 

In the main text, due to the limitation of the experiment, we only present the absorption under 
normal incidence. However, in practical situations waves impinge from all possible directions in 
the underwater environment. By using numerical simulations, we can examine the absorption in 
broader frequency range and under wider incident angles, and also deliberately tune the size of 
the lateral size of each rod. Here, we display the results in two groups. One is for the lateral size 
5 mm (used in the main text) and the other is only 1/3 of 5 mm. The simulated absorption results 
under various incident angles are presented in Fig. S4(a) and Fig. S4(b), respectively, for lateral 
sizes of 5 mm and 5/3 mm. 

It turns out that for normal incidence, the reduction of the lateral size can enhance the higher 
frequency absorption beyond 20 kHz [see the comparison between the black lines in Fig. S4(a) 
and Fig. S4(b)]. This is due to the suppression of the lateral surface modes, which are in the form 
of evanescent waves in the incident wave direction with a decreased exponential decaying length 
when the lateral size of the rods is decreased. For oblique incidence, there can be similar effects 
in improving the higher frequency absorption. As for the data in Fig. S4(a), the high absorption 
remains to be above 90%, even with an oblique incident angle of 45 degrees. Even at a very large 
angle of 75 degrees, the absorption can be more than 60% over a broad frequency range. Therefore, 
the simulation study shows that decreasing the lateral size can have merits such as broader working 
frequency range for both normal and oblique incidence. However, smaller the lateral size of the 
rods, more rods would need to be fabricated so as to reach the pre-determined size of 0.92 m by 
0.92 m. This is the reason why we chose 5 mm so as to strike a balance between the heavy 



 

  
 
 

workload and the performance. For larger-scale applications, automated machine production in 
the future can certainly adopt the smaller lateral sizes. It should also be noted that composite 
material’s high index of refraction can mean that even for oblique incidence, the refracted wave 
inside the composite is largely longitudinal. 

 

Fig. S4 Oblique incidence performance. (a) Results for the 5 mm lateral rod size. (b) Results for the 
lateral size of 5/3 mm. 

 

Text S6. Performance under the hydrostatic pressure 

An ideal hydroacoustic absorber should be able to maintain its performance even in the presence 
of a certain hydrostatic pressure. We use simulations to explore the possibility of acoustic 
absorption under the hydrostatic pressure with a water depth of 𝐻 ൌ 500 m, which means the 
upper surface of the absorber is under the pressure 𝑝 ൌ 𝜌𝑔𝐻 ൌ 5 ൈ 10Pa (𝑔 ൌ 10 m/sଶ). In 
the relevant simulation, we considered the deformation of the absorber. In particular, the four sides 
around the rods will bulge and the length of the rods will be slightly decreased [see the inset in 
Fig. S5]. In simulation, we have taken nonlinearity caused by the deformation into consideration, 
by enabling ‘nonlinearity’ option in COMSOL Multiphysics. Also, we can evaluate the 
displacement of the sides and the outcome value is around 15 μm, which is smaller than the 
predesigned air gap width (50 μm). The actual situation should be that the rods may have some 
point contacts, since the side surfaces cannot be atomically smooth, but this will not dramatically 
affect the longitudinal modes. 

As long as the air gaps exist and be well sealed inside the sample, the longitudinal modulus should 
be close to the Young’s modulus, which is the premise of our absorption mechanism. In fact, it is 
well-known that the air bubbles dispersed in the fluid can significantly change their 
compressibility characteristics. In contrast to air-bubble-based absorbers, where the bubble 
deformation can be very significant under large hydrostatic pressure so that the original absorption 
modes may deviate from the pre-designed ones, for our integrated Fabry-Perot absorber the 
hydrostatic pressure can only have very limited effect on its absorption performance. This is 



 

  
 
 

evident from the comparison between the dashed grey line and red line in Fig. S5. Although only 
experiments can fully verify the performance under high water pressure, in principle, our design 
is theoretically self-consistent and can be a potential candidate for mitigating the performance-
degrading problem under elevated pressure. 

 
Fig. S5 Absorption spectra with and without the hydrostatic pressure. The inset figure on the left 
gives an enlarged view showing the deformation effect of the composite rods. The two figures on the 
right show, with color, the magnitude of the displacement caused by pressure (blue is zero and red is 
the maximum). 

 

Text S7. Tunability of the absorption band 

 
Fig. S6 Absorption spectra under different scaling factor 𝜸. 

A useful feature of our work is that the modes can be designed by only varying the length of the 
rods. In the present work we have fixed the initial resonance frequency to be around 3.5 kHz. In 
this section, we show that the absorbing bands can be easily tuned, by introducing a scaling factor 
to the original length recipe ሺ𝐿ଵ, 𝐿ଶ, … , 𝐿ଽሻ . Namely, the updated lengths should be 
ሺ𝛾𝐿ଵ, 𝛾𝐿ଶ, … , 𝛾𝐿ଽሻ and the lateral dimensions remain unchanged. In this manner, we can change 
the lower cut-off frequency of the absorption spectrum from 𝑓ଵ to 𝑓ଵ/𝛾. In other words, we use 
more thickness for lower frequency absorption performance by lengthening original averaged 

length from �̅� to be 𝛾�̅�. In Fig. S6, the simulation results show that the absorption bands are 
shifted down to 2 kHz and 1 kHz with 𝛾 ൌ 2 and 4, respectively, without losing the absorption 
performance at higher frequencies. If the target frequency range or the allowed thickness are 
changed, in the present sample design we only have to simply scale the length of the FP resonator 
rods.  
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