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1 Joint allele frequency density in the population split scenario
In the main text, we claim that under our assumptions—namely, neutrality, constant population
size, and stationarity—the modeling framework readily encompasses a simple population split sce-
nario in which two populations diverged some τsplit generations ago and the ancient individual
was sampled at τ (Fig 1b in the main text). Specifically, the split scenario is analogous to the
single population scenario (Fig 1a in the main text) in which the ancient individual is sampled
at 2τsplit − τ . We derive the form of the joint allele frequency density for the demographic split
scenario (Fig 1b in the main text) as proof.

For the scenario in Fig 1a in the main text, the joint allele frequency density at τ and the
present is f(zτ , z0) = p(zτ , z0; τ)κ(zτ ), where κ(·) is the stationary density,

κ(z) :=
1

B(a, a)
za−1(1− z)b−1 :=

π(z)

B(a, a)
. (1)

For the split scenario, we must condition on the allele frequency at the time of the split. The joint
density of a single site is then,

f(zτ , z0) =

∫ 1

zs=0
f(zτ , z0|Z(τs) = zs)κ(zs)dzs

=

∫ 1

zs=0
p(zs, zτ ; τ − τsplit)p(zs, z0; τsplit)κ(zs)dzs,

(2)

where zs is the integration variable for the allele frequency at the time of the split. We can further
simplify Equation 2 in S1 Text by twice substituting the spectral representation of the transition
density (Section 6 in S1 Text),

f(zτ , z0)

=

∫ 1

zs=0

( ∞∑
k=0

e−λk(τsplit−τ)

⟨Bk, Bk⟩π
Bk(zs)Bk(zτ )π(zτ )

)
( ∞∑

m=0

e−λmτsplit

⟨Bm, Bm⟩π
Bm(zs)Bm(z0)π(z0)

)
π(zs)

B(a, b)
dzs

=
∞∑
k=0

e−λk(2τsplit−τ)

⟨Bk, Bk⟩π
Bk(zτ )Bm(z0)

π(zτ )

B(a, b)
π(z0),

(3)

where we exchanged integration and summation. We recognize that this equation is equal to,

f(zτ , z0) = p(zτ , z0; 2τsplit − τ)
π(zτ )

B(a, b)
= p(zτ , z0; 2τsplit − τ)κ(zs). (4)

Thus, the joint density in the instance of a population split is of the same form as in the single
population scenario, but with a modified time argument: 2τsplit − τ instead of τ .

2 Power to detect a significant association in a GWA study
We follow [1] (who follow [2]) in modeling the power of a GWA study to detect a significant
association. We assume that conditional on the true effect size βℓ, and the population allele

2



frequency Zℓ (implicitly assuming Ẑℓ ≈ Zℓ) the estimated marginal effect β̂ℓ is normally distributed,

β̂ℓ|βℓ, Zℓ ∼ N
(
βℓ,

Vp
2nZℓ(1− Zℓ)

)
, (5)

where Vp is the total phenotypic variance which includes both genetic and environmental effects.
Under the null hypothesis, i.e., βℓ = 0, β̂ℓ is normally distributed with mean zero and the same
variance as Equation 5 in S1 Text. The estimated contribution of locus ℓ to the phenotypic variance,
v̂ℓ, is v̂ℓ := 2β̂2ℓZℓ(1 − Zℓ). When normalized by Vp

n , v̂ℓ is chi-squared distributed with one degree
of freedom,

v̂ℓ
Vp/n

=
2β̂2ℓZℓ(1− Zℓ)

Vp/n
∼ χ2

1. (6)

It follows that there is some threshold contribution to variance, v∗, such that the test statistic given
in Equation 6 in S1 Text is statistically significant. Specifically, fixing the significance threshold α,

v∗ = F−1(1− α) = 2
(
erf−1(1− α)

)2
, (7)

where F−1(·) is the inverse cumulative distribution function (cdf ) of a chi-squared distributed
random variable with one degree of freedom, and erf is the error function (Equation A82 in [1]).
This implies that a locus which satisfies,

2β̂2ℓZℓ(1− Zℓ)

Vp/n
> v∗, (8)

will yield a statistically significant association. Equation 8 in S1 Text further implies that if, for a
fixed Zℓ,

|β̂ℓ| >

√
v∗(Vp/n)

2Zℓ(1− Zℓ)
, or, for a fixed β̂, Zℓ(1− Zℓ) >

v∗(Vp/n)

2β̂2ℓ
, (9)

site ℓ will yield a significant association. If we substitute the true effect βℓ for β̂ℓ in Equation 9
in S1 Text, we can define these thresholds with respect to the true effect. And, for a fixed β our
condition is,

1

2
− 1

2

√
1− 2v∗(Vp/n)

β2ℓ
< Zℓ <

1

2
+

1

2

√
1− 2v∗(Vp/n)

β2ℓ
. (10)

We define,

γℓ = 1−

√
1− 2v∗(Vp/n)

β2ℓ
, and, β∗ =

√
v∗(Vp/n)

2Zℓ(1− Zℓ)
. (11)

Equation 11 in S1 Text specifies the threshold model given in Equation 3 in the main text, Dℓ ∈
[dℓ, 2n − dℓ], where Dℓ is the allele count in the GWA study and dℓ = ⌈nγℓ⌉. The distributional
assumptions in Equation 5 in S1 Text imply that the threshold model will be a good approximation
when n is large relative to Vp and the detection threshold is not too small. For example, if the allele
frequency in the GWA study was at its minimum frequency of 1

2n , then the variance of β̂ would be
proportional to Vp—which may be large.
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3 Simulation procedures
In this section, we describe how we simulated the ancient polygenic scores (i) under neutrality and
(ii) in the presence of genic selection.
Neutrality. To assess the accuracy of our theoretical results for the various statistics (introduced
in Analytical Results in the main text), we simulated realizations of the polygenic score for
ancient individuals according to our model (specified in Model and metrics in the main text).
Initialization. To initialize each realization, we sampled L population allele frequencies, Z(τ) ∈
[0, 1]L, from a Beta-distribution with parameters a = 4Nµ and b = 4Nν. As the population size
N is finite, the beta-distribution is a continuous approximation to the discrete probability mass
function governing the allele frequencies. Thus, we conduct one round of binomial sampling to
obtain frequencies in the set {0, 1

2N , . . . , 1−
1
2N , 1}.

Allele frequency evolution. Allele frequencies then evolve forward-in-time until the present (t = 0)
when the GWA study is conducted. For forward and backward mutation rates µ and ν, the
transition probability of the discrete Wright-Fisher process is,

ψµ(z) = (1− z)µ+ z(1− ν) = µ(1− 2z) + z, (12)

for an allele frequency z ∈ [0, 1], and where the second equality follows for µ = ν. Conditional on
the allele frequency at t (generations in the past), the allele frequency in the subsequent generation
is given by (t− 1),

Zℓ(t− 1)|Zℓ(t) ∼ Bin (2N,ψµ (Zℓ(t))) , (13)
until t− 1 = 0.
Genome-wide association study. To conduct the GWA study, we sample n diploid genotypes,
Xi(0) ∈ {−1, 0, 1}L, for i ∈ {1, . . . , n} conditional on the allele frequencies, Z(0). Conditional on
Z(0), each genotype is iid, Xi(0)|Z(0) ∼

∏L
ℓ=1Bin(2, Zℓ(0)). We then sample their phenotypes,

Y (0) ∈ Rn conditional on the their genotypes, according to Equation 1 in the main text. This set
of n genotypes and phenotype comprise the GWA study sample.

To estimate the effects we first compute the allele count at each site Dℓ in the study sample. If
Dℓ is within the specified interval [dℓ, 2n− dℓ], we set the effect estimate to βℓ (Equation 3 in the
main text). If Dℓ falls outside of the interval, then the effect estimate is set to 0. We then estimate
Ĉ using Equation 5 in the main text.
Sampling the ancient individual(s). We sample the genotype(s) X(τ) and phenotype(s) Y (τ) of an
ancient individual(s) conditional on the population allele frequencies Z(τ).
Computing estimates of the statistics. We compute method of moments estimators for each of
the statistics defined in Quantifying out-of-sample prediction errors in Model and metrics of
the main text. For each ancient sampling time, τ = {τ1, τ2, . . . , τT }, we conduct K simulations.
For bias(τ), mse(τ), and V̂A(τ), we compute per-locus statistics, and thus average over all L×K
independent locus trajectories for each time point. For example, the estimator of the bias is given
by,

biasℓ(τ) :=
1

KL

K∑
k=1

L∑
ℓ=1

(
X̄kℓ −Xkℓ(τ)

) (
β − β̂kℓ

)
,

where k indexes the simulation and ℓ the locus. The estimator’s (1 − α)% confidence interval is
given by,

biasℓ(τ) ∈ [biasℓ(τ)± zα/2sbiasℓ ]
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where sbiasℓ is the estimated standard deviation of biasℓ(τ) and zα/2 is the inverse cumulative
distribution function of a standard normally distributed random variable evaluated at α/2.

Our estimators for the sample correlation coefficient r2(τ) and its approximation ρ2(τ) are
computed for each replicate of L loci. For example, for the k-th replicate,

r2k :=
Cov[Ŷk(τ),Yk(τ)]

V ar[Ŷk(τ)]V ar[Yk(τ)]
=

Cov[
∑L

ℓ=1Xkℓ(τ)β̂kℓ,
∑L

ℓ=1Xkℓ(τ)βkℓ + ϵ]

V ar[
∑L

ℓ=1Xkℓ(τ)β̂kℓ]V ar[
∑L

ℓ=1Xkℓ(τ)βkℓ + ϵ]
, (14)

where Ŷk(τ) and Yk(τ) are the na-length vectors of ancient polygenic scores and phenotypes,
respectively; Xkℓ(τ) is the vector of ancient genotypes at the ℓ-th site; and ϵ is the vector of
environmental contributions to each individual’s phenotype. Our estimator r̂2 is an average of the
K realizations of r2k. To estimate ρ2(τ), we first find estimators for the covariance and variance
terms in Equation 14 in S1 Text by averaging over the K simulations. We then compute the ratio
of these quantities to compute ρ̂2(τ).
Genic selection. To investigate how positive selection influences the statistical properties of
polygenic scores, we simulated recent directional selection. The population evolves neutrally until
the onset of selection τs years in the past. The A2 allele confers a fitness advantage of s, such that
the relative fitnesses of the genotypes A1A1:A1A2:A2A2 are given by 1:(1 + s):(1 + 2s).
Initialization. To initialize each realization, we sample L population allele frequencies, Z(τ) ∈
[0, 1]L, from the stationary distribution of the neutral Wright-Fisher diffusion with recurrent mu-
tation. If the ancient sampling time τ is more recent than τs, we simulate 50 generations of neutral
evolution before the onset of selection.
Allele frequency evolution. Allele frequencies evolve neutrally until the onset of selection at τs. At
this juncture, the allele frequencies begin to evolve according to,

ψµs(z) =

[
(1− z)2 + z(1− z)(1 + s)

]
µ+

[
z(1− z)(1 + s) + z2(1 + 2s)

]
(1− µ)

w̄(z)
, (15)

where µ is the forward and backward per-locus, per-generation mutation rate, and the denominator
is the mean fitness in a population with A2 allele frequency z, up to the present day. The simulations
with selection are otherwise identical to those under neutrality.

4 Alternative prediction models

In the main text, we introduced a simple threshold model for the effect estimates (Equation 3 in
the main text). Here, we first consider a more realistic model in which the effect estimate β̂ℓ is the
maximum-likelihood estimate (MLE) of βℓ (in Section 4.1 in S1 Text). We give expressions for the
first two moments of β̂ℓ conditional on the contemporary allele frequencies Zℓ under each model. In
doing so, we illustrate the additional challenges posed by the MLE model, and why we ultimately
opted to pursue the simpler threshold model. We next relate the threshold model to the best linear
unbiased predictor, or BLUP (e.g., [3,4]; Section 4.2 in S1 Text). In doing so, we provide a brief
exposition of BLUP following [4].
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4.1 Moments of the maximum-likelihood and threshold models
Maximum-likelihood threshold model. We define the MLE threshold model,

β̂ℓ :=


Cov[Xℓ,Y ]
V ar[X] =

∑n
i=1(Yi−Ȳ )(Xiℓ−X̄ℓ)∑n

i=1 (Xiℓ−X̄ℓ)
2 if Dℓ ∈ [dℓ, 2n− dℓ]

0 else,
(16)

where each genotype, phenotype pair (Xi, Yi) for i ∈ {1, . . . , n} is associated with an individual in
the GWA study; Cov[·, ·] and V ar[·] are the sample covariance and variance, respectively; and, as
before, X̄ℓ and Ȳ are the average genotype at the ℓ-th locus and phenotype in the GWA sample.
First moment of β̂. For both models, it can be shown that,

E
[
β̂ℓ|Zℓ, βℓ

]
= βℓ℘(Zℓ, 2n, dℓ), (17)

where Zℓ is the contemporary population allele frequency; and

℘(zℓ, 2n, dℓ) =

2n−dℓ∑
i=dℓ

(
2n

i

)
ziℓ(1− zℓ)

2n−i (18)

is the probability that the allele count in the GWA study falls at or above the threshold dℓ. Thus,
when the site is segregating at a sufficiently high frequency in the GWA study sample, the estimator
is unbiased. Unconditionally, for an allele count threshold dℓ, E[β̂ℓ|βℓ] = βℓ(1−2P (dℓ)), where P (dℓ)

is the cdf of a beta-binomial random variable and is defined in Equation 42 in S1 Text.
Second moment of β̂. The two models yield different second moments.
Simple threshold model. It can be shown that under the simpler model,

E
[
β̂2ℓ |Z, βℓ

]
= β2ℓ℘(Zℓ, 2n, dℓ). (19)

As Equation 19 in S1 Text only involves the allele frequency of site ℓ, it is not influenced by variation
at other sites in L. And, unconditionally, E[β̂2ℓ |βℓ] = β2ℓ

(
1− 2P (dℓ)

)
.

MLE model. It can be shown that under the MLE model,

E
[
β̂2ℓ |Z(0)

]
≈

β2ℓ +∑
ℓ′ ̸=ℓ

β2ℓ′
Zℓ′(1− Zℓ′)

nZℓ(1− Zℓ)
+

σ2e
2nZℓ(1− Zℓ)

℘(Zℓ, 2n, dℓ), (20)

where the sum is over all loci ℓ′ ∈ L such that ℓ′ ̸= ℓ. The approximation is due to approximating the
expectation of a ratio with the ratio of expectations, and as such, comes with all of the corresponding
dangers of such an approximation. In addition, we can see from Equation 20 in S1 Text that the
second moment of β̂ℓ depends on the allele frequencies at all other loci in L. While were able to
compute the metrics under this approximate MLE model, we concluded that its reliance on strict
assumptions about the genetic architecture (via the second moment) obscured the effects of allelic
turnover. In addition, a threshold model arises naturally as the large n limit of the MLE model
which is, up to a sample size factor, equivalent to Equation 5 in S1 Text when the allele frequency
Zℓ is not too small.

6



4.2 A comparison to the Best Linear Unbiased Predictor
A brief overview of BLUP. We follow the Supporting Information of de los Campos et al. [4]
in introducing BLUP. However, we use notation consistent with the notation of our investigation.

The model underlying BLUP is of the form,

Ỹ = X̃β + ϵ, (21)

where for a GWA study consisting of n individuals, Ỹ ∈ Rn is a vector of centered and scaled
phenotypes, β ∈ RL′ is a vector of marker effects, and X̃ ∈ Rn×L′ is a centered and scaled matrix
of the genotypes at all L′ segregating sites in the genome (potentially above some minimum allele
frequency), with the iℓ-th element X̃iℓ = Xiℓ−X̄ℓ√

2Ẑℓ(1−Ẑℓ)
, where Xiℓ ∈ {−1, 0, 1} is the individual’s

genotype, and X̄ℓ and Ẑℓ are the average genotype and estimated allele frequency in the GWA
study sample. (Note that centering and scaling of the genotypes and phenotypes is not necessary
to the formulation of BLUP [4].) The marker effects are assumed iid, βℓ ∼ N (0, σ2β), where σ2β is
the prior variance of the marker effects. Similarly, the residuals are assumed iid with ϵi ∼ N (0, σ2e),
where σ2e is the prior residual variance. Under this model, the effect estimates and phenotypes
follow a multivariate normal distribution,[

β|X̃
Ỹ |X̃

]
∼MVN

(
0,

[
IL′σ2β X̃Tσ2β

X̃σ2β X̃X̃
T
σ2β + Inσ

2
e

])
, (22)

such that,
E[β̂|Ỹ , X̃] = (1/L′)X̃T [G+ In(σ

2
ϵ /(L

′σ2β)]Ỹ (23)

with G = (1/L′)X̃X̃T . And thus,

E[β̂ℓ|Ỹ , X̃] = (1/L′)X̃T
ℓ [G+ In(σ

2
ϵ /(L

′σ2β)]Ỹ . (24)

Relating the MLE estimate. When we compare Equation 24 in S1 Text to the MLE estimate
(for centered and scaled genotypes and phenotypes), i.e.,

β̂ℓ = X̃T
ℓ Ỹ , (25)

we see that they are analogous up to the bracketed expression in Equation 24 in S1 Text. This
term, G+ In(σ

2
ϵ /L

′σ2β), models the relationship between individuals in the GWA study and affects
the effect estimates of all loci. If the relationship matrix G were the identity, than the bracketed
term would simply scale the effect estimates by a factor σ2ϵ /σ2β. However, in the likely instance that
G deviates from the identity, the primary contribution to the per-locus effect estimate is still given
by the covariance between the genotype of locus ℓ and the phenotype, i.e., by Equation 25 in S1
Text. Thus, the MLE of the effect size is closely related to the effect estimate derived from BLUP,
at least when the variance components are known.
A dense trait architecture. When the trait architecture is dense, a large number of segregating
sites each impart a small effect on the trait (see [5] for the limiting behavior, referred to as the
infinitesimal model). In this setting, BLUP—which allows all loci to have non-zero effects—will
likely yield predictions with higher accuracy than the “prune and threshold” model—which assumes
only one “causal” site within a given genomic window. As noted in the Discussion, our assumption
of linkage equilibrium between loci necessarily breaks down under a dense architecture, and the
allele frequency trajectories cannot be modeled independently. (As before, we assume that all loci
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are evolving neutrally in a constant size population.) In addition, the marginal effect estimate for a
given locus will absorb the effects of its neighbors in proportion to the LD between these loci (e.g.,
see Equation A87 of [1]). Genome-wide association study and prediction methods that model LD
between loci, e.g. [6], aim to reduce to the effects of the latter.

Let d be the allele frequency threshold at which point a locus is considered “segregating” in the
GWA study, e.g. d = 1. (Though, standard quality control pipelines may impose a threshold d > 1
to remove very low frequency sites that are more susceptible to false positives.) The above two
LD-induced complications aside, we can loosely approximate the BLUP model by using d as the
allele frequency threshold for all loci irrespective of their effect sizes. Accuracy under the BLUP
can then be roughly approximated as,

ρ2(τ) ≈
1

2a+1

∑L′

ℓ′=1 β
2
ℓ [a(1− 2P (d)) + 2e−(2a+1)τP

(d)
3 ]

a
2a+1

∑L′

ℓ′=1 β
2
ℓ + σ2e

=
1

2a+1 [a(1− 2P (d)) + 2e−(2a+1)τP
(d)
3 ]

a
2a+1 + σ2e′′

,

(26)

where σ2e′′ = σ2e/(
∑

ℓ′ β
2
ℓ′), and the sum is over all segregating sites ℓ′ ∈ {1, . . . , L′}. As the threshold

d does not depend on the per-locus effect, we can factor the sum of the squared effect sizes to arrive
at the second line of Equation 26 in S1 Text. Relative accuracy readily follows from Equation 26
in S1 Text,

ρ2(τ)/ρ2(0) ≈ a(1− 2P (d)) + 2e−(2a+1)τP
(d)
3

a(1− 2P (d)) + 2P
(d)
3

. (27)

We can compare these expressions with those derived in Section 7.4 in S1 Text. (i) As before,
relative accuracy does not depend on the effect sizes, and will cohere with our previous results for
dℓ′ = d for all ℓ′. When the mutation rate is small, most sites are fixed for either the A1 or A2

allele. Thus, many sites will evade detection even when d ≤ 10, and both accuracy and relative
accuracy will decay substantially over time. In addition, relative accuracy appears insensitive to the
threshold d (see insets in Fig 3 in the main text), thus relative accuracy, given in Equation 27 in S1
Text, will likely behave similarly under BLUP. And (ii), while Equation 26 in S1 Text removes the
relationship between an effect size βℓ′ and its threshold dℓ′ , we still expect it to behave qualitatively
similar to our previous results. Though, as d ≤ dℓ′ for all ℓ′ under our previous parameterization
(see Section 2 in S1 Text), BLUP will achieve higher accuracy than the threshold model.

Simply setting dℓ′ = d = 1 for all ℓ′ ∈ {1, . . . , L′} to model BLUP does not, however, capture
an important way in which BLUP deviates from the “prune and threshold” model. While not
captured explicitly in our threshold model, the standard error of the effect estimate β̂ℓ′ for locus
ℓ′ depends on both the magnitude of its true effect and the allele frequency. In particular, all else
being equal, a variant at low frequency will have a larger standard error (and thus larger p-value)
compared to a variant at moderate frequency with the same effect. We justify ignoring noise in the
effect estimates in our modeling of the “prune and threshold” approach as variants exceeding the
p-value threshold must either be at intermediate frequency and/or of large effect. Thus, this effect
should be mitigated by the fact that standard errors of loci with non-zero effects in the polygenic
score are necessarily small relative to the estimated effect size.

In contrast, BLUP allows all variants to have non-zero effects, implying that low frequency
variants will have systematically larger standard errors relative to moderate frequency variants. As
low frequency variants shift towards higher frequencies in the ancient population, these variants
will disproportionately—relative to their frequencies in the ancient population—contribute to the
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noisiness of BLUP. Similarly, as moderate frequency variants shift towards lower frequencies in the
ancient population, they will contribute disproportionately less to the prediction noise. Future work
may precisely quantify the confluence of allelic turnover and effect estimate uncertainty induced
by the BLUP model (and perhaps under the “prune and threshold” model as well). In addition, a
more rigorous analysis would necessarily take into account LD between loci.

5 Polygenic scores from centered and scaled GWAS data
In the main text, we chose not to center and scale the genotypes and phenotypes of sampled
individuals when conducting the GWA study. In this section, we show that our conclusions are
robust to this choice. Our calculations also demonstrate that procedures convenient for statistical
analysis, namely scaling, prove inconvenient when evolutionary processes are taken into account.
Centering and scaling. We center and scale to unit variance the phenotypes and genotypes in
the GWA study,

Ỹi =
Yi − Ȳ

sY
and X̃iℓ =

Xiℓ − X̄ℓ

sℓ
, (28)

where sY and sℓ are the sample standard deviations of the phenotypes and genotypes at locus ℓ,
respectively. In this case, the marginal effect estimate of locus ℓ will be,

β̃ℓ =
Cov[X̃ℓ, Ỹ ]

V ar[X̃ℓ]
=

1

n

n∑
i=1

(X̃iℓ − 0)(Ỹi − 0) =
1

nsℓsY

n∑
i=1

(Xiℓ − X̄ℓ)(Yi − Ȳ ) =
sℓβ̂ℓ
sY

. (29)

Thus, with normalized genotypes and phenotypes, the effect estimate is scaled by a factor sℓ
sY

, but
is otherwise unaltered.

The polygenic score in the transformed case Ŷ ∗, ignoring any intercept term (which would be
0), is,

Ŷ ∗
i =

L∑
ℓ=1

β̃ℓX̃iℓ =
1

sY

L∑
ℓ=1

β̂ℓ(Xiℓ − X̄ℓ). (30)

With centering and scaling, the polygenic score is a genetic prediction less the average genetic
prediction in the GWA study sample, both scaled by a factor of sY .
Bias. We can compute the bias of the rescaled polygenic score as,

E
[
sY Ŷ

∗
i − (Yi − Ȳ )

]
=

L∑
ℓ=1

E
[
β̂ℓXiℓ

]
−

L∑
ℓ=1

E
[
β̂ℓX̄ℓ

]
− µ−

L∑
ℓ=1

[βℓXiℓ] + E
[
Ȳ
]

=

L∑
ℓ=1

E
[(
β̂ℓ − βℓ

)
Xiℓ

]
+

L∑
ℓ=1

E
[
β̂ℓX̄ℓ

]
− µ+ µ+

L∑
ℓ=1

βℓX̄ℓ

=
L∑

ℓ=1

E
[(
β̂ℓ − βℓ

) (
Xiℓ − X̄ℓ

)]
.

(31)

Equation 31 in S1 Text shows that when we center and scale the data, we arrive at the same result.
(One must rescale either Ỹi or Yi − Ȳ by sY or its inverse, respectively, to put the polygenic score
and the phenotype on the same scale. The former is more mathematically convenient.)

9



Mean-squared error. The proof for the mse is almost identical to that for the bias. We thereby
omit it.
Additive genetic variance. If the effect estimates β̃ are used instead of β̂, one must rescale
the estimate of heterozygosity from the ancient sample by that estimated in the GWA study (see
Equation 1 of Supplementary Note 1 of Wang et al. [7] for a related procedure),

ṼA(τ) = 2
L∑

ℓ=1

E
[
β̃2ℓ

(
1

s2ℓ

)
Ẑℓ(τ)

(
1− Ẑℓ(τ)

)]
= 2

L∑
ℓ=1

E

[(
1

sY

)2

β̂2ℓ Ẑℓ(τ)
(
1− Ẑℓ(τ)

)]
. (32)

This formulation is less convenient because it has random quantities in both the numerator and
the denominator. Given that the units in which Y is measured are arbitrary, we forewent coping
with the additional complexity imposed by this scaling.
Correlation coefficient. By similar arguments, one can show that the sample correlation coeffi-
cient is not influenced by centering and scaling.

6 Spectral representation of the transition density
Because the spectral representation of the transition density of an allele frequency is so central to
our work, we provide a concise exposition here. For a lengthier treatment, we refer the reader to
[8] and [9].

We represent the Wright-Fisher diffusion by its backward generator, L . Introducing the quan-
tities a = 4Nµ and b = 4Nν for the population scaled mutation rates, L is given by,

L f(z) =
1

2
z(1− z)

∂2

∂z2
{f(z)}+ 1

2
[a(1− z)− bz]

∂

∂z
{f(z)}, (33)

where z is frequency of the A2 allele, and f is a twice continuously differentiable bounded function
on [0, 1] [8].

The transition density of the Wright-Fisher diffusion, p(z, z′; t), specifies the likelihood of tran-
sitioning from allele frequency z to z′ in a time interval [t, 0]. The spectral representation expresses
the transition density as an infinite sum,

p(z, z′; t) =
∞∑
j=0

cj(z
′)e−λjtRj(z), (34)

where, for j = 0, 1, 2, . . . , cj(·) is a constant factor that depends on the initial condition, defined
below in Equation 36 in S1 Text; λj is the eigenvalue that corresponds to eigenfunction Rj(·); and
Rj(·) is the j-th eigenfunction. The function, π(·), is the stationary measure and ⟨·, ·⟩π is the inner
product with respect to this measure, defined in Equation 37 in S1 Text. In the neutral, recurrent
mutation model, the stationary measure π(·) is given by,

π(z) = za−1(1− z)b−1, (35)

where a and b are the population-scaled mutation rates defined in Equation 33 in S1 Text. Notice
that Equation 35 in S1 Text is equivalent to the unnormalized density of a beta-distributed random
variable with shape parameters a and b. When normalized to integrate to one, π(·) is the stationary
density κ(·), first defined in Equation 1 in S1 Text. When the initial condition is a point mass at
the initial allele frequency, z, the factor cj(z′) is,

cj(z
′) =

Rj(z
′)π(z′)

⟨Rj , Rj⟩π
, (36)
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where ⟨Rj , Rj⟩π is the inner product of Rj(·) with itself. We also refer to an inner product of the
form ⟨Rj , Rj⟩π as the squared norm of the j-th eigenfunction. More generally, we define the inner
product of two arbitrary functions, f(·) and g(·) with respect to the stationary measure as,

⟨f, g⟩π :=

∫ 1

y=0
f(y)g(y)π(y)dy. (37)

The inner product of two eigenfunctions, Rj and Rk, is then a special case of Equation 37 in S1
Text, with

⟨Rj , Rk⟩π =

{
∆j(a, b) for k = j,

0 else,
(38)

where,
∆j(a, b) =

Γ(j + a)Γ(j + b)

(2j + a+ b− 1)Γ(j + a+ b− 1)Γ(j + 1)
, (39)

and Γ(z) =
∫∞
0 xz−1e−xdx for z ∈ R. Our work involves many inner products of the form, ⟨Rj , Pk⟩π,

where Pk(·) is a polynomial of degree k.
In the neutral recurrent mutation model, the eigenfunctions of the Wright-Fisher diffusion are

Jacobi polynomials [8]. The Jacobi polynomials are polynomials of increasing order coincident with
their indices, j = 0, 1, 2, . . . , and obey a three-term recurrence relation,

zRj(z) =
(j + a− 1)(j + b− 1)

(2j + a+ b− 1)(2j + a+ b− 2)
Rj−1(z)

+

[
1

2
− b2 − a2 − 2(b− a)

2(2j + a+ b)(2j + a+ b− 2)

]
Rj(z)

+
(j + 1)(j + a+ b− 1)

(2j + a+ b)(2j + a+ b− 1)
Rj+1(z).

(40)

For j = 0,
zR0(z) =

a

a+ b
R0(z) +

1

a+ b
R1(z), (41)

with R0(z) ≡ 1.
In our work we will exploit two properties of the Jacobi polynomials: (i) the orthogonality of

the eigenfunctions, i.e., Equation 38 in S1 Text, and (ii) the fact that a Jacobi polynomial of degree
j is orthogonal to all lower order polynomials (of degree k, k < j).

7 Detailed derivations of the metrics
We provide detailed derivations of the metrics used to characterize ancient polygenic scores. For
all but bias(τ), we restrict ourselves to equal detection thresholds, although our framework readily
accommodates asymmetric detection thresholds. In order to represent the metrics succinctly, we
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introduce several variables:

P (d) :=

d−1∑
i=0

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)

P
(d)
1 :=

d−1∑
i=0

(
i− n

n

)2(2n
i

)
B(a+ i, a+ 2n− i)

B(a, a)

P
(d)
2 :=

d−1∑
i=0

(
(i− n)2

n(a+ n)

)(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)
=

(
n

a+ n

)
P d
1

P
(d)
3 :=

d−1∑
i=0

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)

(
(2a+ 1)i(i− 2n) + an(2n− 1)

(2a+ 2n+ 1)(a+ n)

)

P
(d)
4 :=

d−1∑
i=0

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)
i.

(42)

The sums of the variables defined in Equation 42 in S1 Text for d = 2n+ 1 are,

S = a+ 1, S1 =
a+ n

(1 + 2a)n
, S2 =

1

2a+ 1
, S3 = 0, S4 = n. (43)

respectively, and with S3 provided for completeness. The pervasive beta functions in Equation 42
in S1 Text are a consequence of the sampling polynomial implicit in the threshold model (see
Equation 3 in the main text and Equation 17 in S1 Text). For example, P (d) is the cdf of a
beta-binomial random variable parameterized by the number of chromosomes in the GWA study
sample 2n and the mutation rate a. As we state in the main text, P{β̂ = β} = 1 − 2P (d) when
the detection thresholds are both equal to d. The second variable, P (d)

1 arises from moments of the
form E[X̄β̂2], the expectation of the product of the mean genotype in the GWA study sample and
the effect estimate. The factor (i − n)/n relates the mean genotype X̄ to the allele count D, i.e.,
X̄ = (D − n)/n. The remaining terms are less immediately interpretable; their rational is implicit
in the derivations presented below and the moments provided in Section 13 in S1 Text.

7.1 A form of the polygenic score bias for arbitrary thresholds
The bias of a polygenic score for an individual sampled at time τ in the past and a GWA study
conducted at present is,

bias(τ) = E
[
Ŷ (τ)− Y (τ)

]
= E

[
Ĉ
]
− C +

L∑
ℓ=1

E
[
Xℓ(τ)(β̂ℓ − βℓ)

]
+ E [ϵ(τ)]

=

L∑
ℓ=1

βℓE
[
X̄ℓ

]
− E

[
X̄ℓβ̂ℓ

]
+ E

[
Xℓ(τ)β̂ℓ

]
− βℓE [Xℓ(τ)] .

(44)
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Further simplification of Equation 44 in S1 Text yields Equation 11 in the main text. Using the
moments derived in Section 13 in S1 Text, we can simplify Equation 11 in the main text,

biasℓ(τ) = βℓ

2n−dℓ2∑
i=dℓ1

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)

(
e−aτ

(
i− n

a+ n

)
− i− n

n

)

= βℓ

(
e−aτ

(
1

a+ n

)
− 1

n

)[
n
(
P (dℓ1) − P (dℓ2)

)
−
(
P

(dℓ1)
4 − P

(dℓ2)
4

)]
≈ βℓ

(
e−aτ − 1

) [(
P (dℓ1) − P (dℓ2)

)
− 1

n

(
P

(dℓ1)
4 − P

(dℓ2)
4

)]
,

(45)

where the last line follows for a ≪ n. As stated in Bias of Analytical Results in the main text,
for equal mutation rates and symmetric detection thresholds, bias(τ) is 0 for all τ .

In Fig S1a in S1 Text, we plot biasℓ(τ) in the presence of detection asymmetry for a larger
range of mutation rates than presented in the main text, a ∈ {10−4, 10−3, 10−2, 1}. In addition,
we vary the GWA study sample size over three orders of magnitude, n = {104, 105, 106}. While
the mutation rate a = 1 is not biologically plausible—this extreme illustrates features of our model
that further illuminate, by contrast, the small mutation rate regime. For example, when a = 1
the probability of detecting a locus as significant depends heavily on the GWA study sample size
n (Fig S1c in S1 Text). Specifically, for a = 1, P (dℓ) = dℓ

2n increases linearly with dℓ. In contrast,
for a ≪ 1 and modest n, this probability is insensitive to n (Fig S1b in S1 Text). Specifically,
P (dℓ) ≈ 0.5 for all values of n and dℓ as most of the allele frequencies are very close to, or equal to
zero or one, and thus will always elude detection in GWA studies with finite sample sizes. In other
words, once n is large enough, varying dℓ yields diminishing returns.

In Fig S1a in S1 Text, we set dℓ1 = 1 and dℓ2 = n for each sample size to illustrate the
effects of an extreme imbalance. For dℓ2 = n, positive effect alleles cannot be detected, while
dℓ1 = 1 implies that a negative effect allele will be detected as long as it is segregating in the GWA
study sample. As dℓ1 < dℓ2, sites where the trait-decreasing allele is at a higher frequency in the
GWA study (Dℓ < n) will be detected more often than sites where the trait-increasing allele is
at a higher frequency (Dℓ > n). This implies that sites where the majority of individuals in the
GWA study possess negative effect alleles are more likely to have non-zero effects in the genetic
prediction. At the same time, the majority of sites contributing to the estimated intercept Ĉ will
have X̄ℓ > 0, and thus, in expectation, Ĉ ≥ 0. Thus, at τ = 0, the excess positive contributions to
the estimated intercept are tempered by the excess negative contributions to the genetic prediction.
As τ increases, biasℓ(τ) becomes more positive (Fig S1a in S1 Text). This is because the estimated
intercept Ĉ is constant, whereas, the expected value of the genetic prediction approaches zero with
increasing τ . The latter follows from the fact that as τ increases, the genotype of the ancient sample
Xℓ(τ) becomes independent of the average genotype in the GWA study X̄ℓ, and its expected value
approaches zero. Thus, in the large τ limit, bias(τ) = E[Ĉ], which is positive for d1 < d2.
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Fig S1. Asymmetry in the detection threshold. In (A), we plot biasℓ(τ) for several mutation rates,
a ∈ {10−4, 10−3, 10−2, 1} (color) and across three GWA study sizes, n ∈ {103, 104, 105} (shape). We set the
detection thresholds to d1 = 1 and d2 = n. In (B) and (C), we plot 2P (d) as a function of n and the detection
threshold d for a = 10−3 (blue) and a = 1 (gray), respectively.

Approximating the increase of biasℓ(τ), given in Equation 45 in S1 Text, for small a and large
n,

biasℓ(τ) ≈ biasℓ(0) + βℓaτ
(
P (dℓ1) − P (dℓ2)

)
, (46)

gives us additional insight into these results. In Equation 46 in S1 Text, biasℓ(0) is an exact
expression for the biasℓ(τ) evaluated at τ = 0; and P (dℓi) is the probability that the allele count in
the GWA study, Dℓ, is less than dℓi for i = 1, 2 (Equation 42 in S1 Text). Under our assumptions,
P (dℓi) is the cumulative distribution function (cdf ) of a beta-binomial random variable with 2n trials,
parameterized by the mutation rate a. At τ = 0, the focal individual is an independent sample from
the GWA study population. Thus, the intercept term captures contributes to biasℓ(τ) exclusively
due to finite sampling. For τ > 0, allelic turnover induces changes in the frequencies of sites not
detected in the GWA study (ℓ such that β̂ℓ = 0), which may contribute to the phenotypic variation
of ancient individuals. Thus, the linear term captures additional bias due to finite sampling and
allelic turnover.

We conclude that increases in biasℓ(τ) with τ depend primarily on the difference in the detec-
tion probabilities for trait-increasing and decreasing alleles, i.e., P (dℓ1) − P (dℓ2). For small a, this
difference is small relative to the (square root of the) additive genetic variance VA due to the fact
that the detection probability is insensitive to the threshold dℓ. However, differences in sample
size are apparent when the mutation rate is small—with larger sample sizes yielding a larger bias
(Fig S1a in S1 Text). This sample size dependency is due to the fact that increased power to detect
low frequency alleles with larger n results in a larger difference between the one-sided detection
probabilities. As a approaches one, the effects of sample size diminish (in log scale). For a = 1,
the difference in one-sided detection probabilities is P (1) −P (n) = n−1

2n , which will be close to 1
2 for

modest values of n. In addition, for large a, biasℓ(τ) is non-negligible relative to (the square root
of) E[VA].
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7.2 Mean-squared error
Substituting the definitions of Ŷ (τ) and Y (τ), we can simplify the expression for the mean-squared
error (mse),

mse(τ) = E
[(
Ŷ (τ)− Y (τ)

)2]
= E

((Ĉ − C) +
L∑

ℓ=1

Xℓ(β̂ℓ − βℓ)− ϵ(τ)

)2


= E

( L∑
ℓ=1

(Xℓ(τ)− X̄ℓ)(β̂ℓ − βℓ) + (ϵ̄− ϵ(τ))

)2


=
L∑

ℓ=1

E
[
(Xℓ(τ)− X̄ℓ)

2(β̂ℓ − βℓ)
2
]
+ E

[
(ϵ̄− ϵ(τ))2

]
,

(47)

where the cross-terms in Equation 47 in S1 Text cancel due to independence between the environ-
mental noise, which has mean 0, and the genotypes. The error term simplifies,

E
[
(ϵ̄− ϵ(τ))2

]
= E

[
ϵ̄2 − 2ϵ̄ϵ(τ) + (ϵ(τ))2

]
=

(
n− 1

n

)
σ2e . (48)

When σ2e = 0, the mse reduces to,

mseℓ(τ) = E
[
X2

ℓ (τ)β̂
2
ℓ

]
− 2βℓE

[
X2

ℓ (τ)β̂ℓ

]
+ β2ℓE

[
X2

ℓ (τ)
]

− 2
(
E
[
Xℓ(τ)X̄ℓβ̂

2
ℓ

]
− 2βℓE

[
Xℓ(τ)X̄ℓβ̂ℓ

]
+ β2ℓE

[
Xℓ(τ)X̄ℓ

])
+ E

[
X̄2

ℓ β̂
2
ℓ

]
− 2βℓE

[
X̄2

ℓ β̂ℓ

]
+ β2ℓE

[
X̄2

ℓ

]
.

(49)

For equal detection thresholds dℓ1 = dℓ2 = dℓ, and with substitution of the variables defined in
Equation 42 in S1 Text, Equation 49 in S1 Text reduces to,

mse(τ) = 2

L∑
ℓ=1

β2ℓ

[(
a+ 1

2a+ 1

)
P (dℓ) + P

(dℓ)
1 − 2e−aτP

(dℓ)
2 +

(
1

2a+ 1

)
e−(2a+1)τP

(dℓ)
3

]
, (50)

where dℓ = ⌈nγℓ⌉. The change in mse(τ) is due to the difference between the two exponential terms
in Equation 50 in S1 Text. From Equation 50 in S1 Text, we derive the derivative of mse(τ),

dmse(τ)

dτ
= 2

L∑
ℓ=1

β2ℓ

[
2aP

(dℓ)
2 e−aτ − P

(dℓ)
3 e−(2a+1)τ

]
, (51)

which, for small a and τ , is,

dmse(τ)

dτ
≈ 2

L∑
ℓ=1

β2ℓ

[
2aP

(dℓ)
2 − P

(dℓ)
3 e−τ

]
≈ 2a

L∑
ℓ=1

β2ℓP
(dℓ)
(
2− e−τ

)
. (52)
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7.3 Expected additive genetic variance
We solve for V̂A(τ) in an ancient sample of size na and a GWA study sample of size n. Considering
a single locus ℓ and conditioning on the ancient and contemporary allele frequencies,

V̂Aℓ(τ) = 2E
[
E
[
β̂2ℓ Ẑℓ(τ)(1− Ẑℓ(τ))|Zℓ, Zℓ(τ)

]]
= 2E

[
E
[
Ẑℓ(τ)(1− Ẑℓ(τ))|Zℓ(τ)

]
E
[
β̂2ℓ |Zℓ

]]
= 2

(
2na − 1

2na

)
β2ℓE [Zℓ(τ)(1− Zℓ(τ))℘(Zℓ, dℓ, n)] ,

(53)

where ℘(Zℓ, 2n, dℓ) is the Binomial sampling probability defined in Equation 18 in S1 Text. Sub-
stituting the spectral representation of the tdf yields,

V̂Aℓ(τ) = β2ℓ

(
2na − 1

2na

)(
1

2a+ 1

)[
a(1− 2P (dℓ)) + 2e−(2a+1)τP

(dℓ)
3

]
. (54)

To compare V̂A across parameter regimes, we normalize by the expected population additive genetic
variance E[VA]. At stationarity and for mutation rate a,

E [VAℓ(τ)] = 2β2ℓ

∫
zτ

zτ (1− zτ )κ(zτ )dzτ =

(
a

2a+ 1

)
β2ℓ , (55)

where κ(·) is the stationary density given in Equation 1 in S1 Text.
For small a, V̂A(τ) will change at rate,

dE[V̂A(τ)]
dτ

≈ −2

(
2na − 1

2na

)
e−τ

L∑
ℓ=1

β2ℓP
(dℓ)
3 ≈ −2

(
2na − 1

2na

)
e−τa

L∑
i=1

β2ℓP
(dℓ), (56)

where the right hand expression follows from the approximation P
(dℓ)
3 ≈ aP (dℓ) (Section 9 in S1

Text).

7.4 Approximate sample correlation coefficient
In this subsection, we (i) describe the two approximation steps implicit in our definition of ρ2(τ)
given in Equation 10 in the main text; (ii) derive an explicit form for ρ2(τ); and (iii) derive the
approximate decay of relative accuracy ρ2(τ)/ρ2(0).
(i) A practitioner is often interested in the accuracy of their predictor with respect to a particular
sample. This sample correlation coefficient (for na ancient individuals from τ) is defined as,

r(τ) :=
Cov[Ŷ (τ),Y (τ)]√
V ar[Ŷ ]V ar[Y ]

=

∑na
i=1(Ŷi(τ)−

¯̂
Y (τ))(Yi(τ)− Ȳ (τ))√∑na

i=1(Ŷi(τ)−
¯̂
Y (τ))2

√∑na
i=1(Yi(τ)− Ȳ (τ))2

, (57)

where Cov[·, ·] and V ar[·] are the sample covariance and variance operators, respectively; and
Ŷ (τ),Y (τ) ∈ Rna are the na-dimensional vectors of polygenic scores and phenotypes with sample
means ¯̂

Y (τ) and Ȳ (τ), respectively. Ultimately, we will approximate the expectation of the squared
sample correlation coefficient r2(τ) with a ratio of expectations,

E
[
r2(τ)

]
≈

E
[
Cov[Ŷ (τ),Y (τ)]

]2
E[V ar[Ŷ (τ)]]E [V ar[Y (τ)]]

, (58)
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which we defined as ρ2(τ) in Equation 10 in the main text. To arrive at this approximation, we
must first approximate the expectation of the ratio in Equation 57 in S1 Text as the ratio of
expectations. Second, we must pull the expectation inside the square roots in the denominator.
A full investigation of the validity of these steps in general is beyond the scope of the present
study. Rather, we validate these approximation steps by simulations of a few parameter regimes of
particular interest.

After these two approximation steps, we compute the quantity in Equation 58 in S1 Text exactly
under our framework. We take each element of Equation 58 in S1 Text in turn.
(ii) When we plug in our modeling assumptions, the numerator of Equation 57 in S1 Text becomes

Cov[Ŷ (τ),Y (τ)] =

na∑
i=1

∑
ℓ,ℓ′

β̂ℓβℓ′(Xiℓ(τ)− X̄ℓ(τ))(Xiℓ′(τ)− X̄ℓ′(τ)) + Cov[Ŷ (τ), ϵ], (59)

due to the linearity of the covariance operator, with ϵ ∈ Rn
a as the vector of environmental effects.

In expectation, assuming iid loci with equal effects β and iid ancient samples,

E
[
Cov[Ŷ (τ),Y (τ)]

]
=

1

na

na∑
i=1

L∑
ℓ=1

βℓE
[
β̂ℓ(Xiℓ(τ)− X̄ℓ(τ))

2
]
= LβE

[
β̂(Xi(τ)− X̄(τ))2

]
. (60)

Similarly,
E
[
V ar[Ŷ (τ)]

]
= LE

[
β̂2(Xi(τ)− X̄(τ))2

]
, (61)

which, under our simple threshold model is equal to the expectation of the covariance given in
Equation 60 in S1 Text. Finally,

E [V ar[Y (τ)]] = Lβ2E
[
(X(τ)− X̄(τ))2

]
+

(
na − 1

na

)
σ2e . (62)

All together, our approximation for r2(τ) reduces to,

E
[
r2
]
≈

LβE
[
β̂(X(τ)− X̄(τ))2

]
Lβ2E

[
(X(τ)− X̄(τ))2

]
+
(
na−1
na

)
σ2e

=
E
[
β̂(X(τ)− X̄(τ))2

]
/β

E
[
(X(τ)− X̄(τ))2

]
+
(
na−1
na

)
σ2e′

, (63)

where σ2e′ = σ2e/(Lβ
2). All that remains is to solve for the expectations in the numerator and

denominator of Equation 63 in S1 Text. The first involves both the GWA study and ancient
sample times,

E
[
β̂(X(τ)− X̄(τ))2

]
= E

[
E
[
β̂(X(τ)− X̄(τ))2|Z(0), Z(τ)

]]
= βE

[
℘(Z(0))E

[
(X(τ)− X̄(τ))2|Z(τ)

]]
= 2β

(
na − 1

na

)
E [℘(Z(0))Z(τ)(1− Z(τ))] ,

(64)

which we recognize as closely related to the expected estimated additive genetic variance, V̂A(τ),
with ℘(Z(0)) defined in Equation 18 in S1 Text. The expectation in the denominator is,

E
[
β̂(X(τ)− X̄(τ))2

]
= 2

(
na − 1

na

)
E [Z(τ)(1− Z(τ))] =

(
na − 1

na

)(
a

2a+ 1

)
, (65)
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which is equal to the E[VA] at stationarity normalized by the squared true effect β2 and multiplied
by the na-dependent factor to account for ancient sample size. We then see that our approximation
to the expectation of r2(τ) is insensitive to the ancient sample size and equal to,

E
[
r2(τ)

]
≈ ρ2(τ) :=

2E [℘(Z(0))Z(τ)(1− Z(τ))]
a

2a+1 + σ2e′
=

(
2na

2na − 1

)
V̂Aℓ(τ)/β

2

a
2a+1 + σ2e′

, (66)

where the ancient sample size dependent factor in the rightmost expression cancels with its inverse
in V̂Aℓ(τ). Thus, the sample correlation coefficient is proportional to the estimated additive genetic
variance, and its derivative is given by,

dE
[
r2(τ)

]
dτ

≈ d

dτ

(
2na

2na − 1

)
V̂Aℓ(τ)/β

2

a
2a+1 + σ2e′

≈

(
1

a
2a+1 + σ2e′

)(
2

2a+ 1

)
(−(2a+ 1))e−(2a+1)τP

(d)
3

≈
(

1

a+ σ2e′

)
2e−τP

(d)
3 ≈

(
a

a+ σ2e′

)
2e−τP (d),

(67)

where the last line follows for a ≪ 1, as e−(2a+1)τ ≈ e−τ and P
(d)
3 ≈ aP (d) (Equation 81 in S1

Text).
(iii) We show that for small mutation rates, relative accuracy decays at a rate that is independent
of the mutation rate a and detection threshold d. For iid loci,

ρ2(τ)/ρ2(0) =
a(1− 2P (d)) + 2e−(2a+1)τP

(d)
3

a(1− 2P (d)) + 2P
(d)
3

≈ 2e−τP
(d)
3

2P
(d)
3

= e−τ , (68)

where, we have claimed that a(1 − 2P (d)) ≈ 0 for all d ∈ {1, . . . , n}, and that 2a + 1 ≈ 1. If we
relax the iid assumption, we have,

ρ2(τ)/ρ2(0) =

∑L
ℓ=1 β

2
ℓ

[
a(1− 2P (dℓ)) + 2e−(2a+1)τP

(dℓ)
3

]
∑L

ℓ=1 β
2
ℓ

[
a(1− 2P (dℓ)) + 2P

(dℓ)
3

] , (69)

which could be computed for a given distribution of βℓ. For a ≪ 1, the a(1 − 2P (dℓ)) terms in
Equation 69 in S1 Text may be negligible, yielding the same result as Equation 68 in S1 Text,
which implies that relative accuracy is insensitive to distributional assumptions on β for small a.
However, more rigorous theoretical and simulation-based work is required to assess the accuracy of
this claim.

8 Expected accuracy in the UK Biobank
Our theory characterizes ancient polygenic scores in a highly idealized setting. Namely, the pop-
ulation size is constant, allele frequencies evolve neutrally at stationarity, and the estimation of
effects coheres with a simple threshold model. In addition, we provide statistics parameterized by
a single fixed effect size (although see Section 7.4 in S1 Text where we begin to relax this assump-
tion). In practice, many of these assumptions are likely violated. For example, human populations
have undergone numerous population size changes, including both bottlenecks and expansions, as
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well as admixture events [10]. In addition, many human traits are thought to be under some form
of selection, which necessarily alters the allele frequency dynamics of causal loci and neutral loci
nearby (e.g., [11–13]). And, confounding factors like population structure may still complicate in-
terpretation of the results of GWA studies [14,15]. Lastly, causal effect sizes of complex traits, e.g.
height, vary across loci. This distribution of effects is difficult to characterize, likely with significant
mass near zero (e.g., see [16]).

In this section, we tackle the last of these complications: that effect sizes are different at each
locus, while still retaining the other simplifying assumptions. We model the variation among effect
sizes by assuming that each effect is random and iid, i.e., independent and drawn from the same
probability distribution. We do not attempt to estimate this distribution from the UK Biobank
summary statistics, as for example in [16–18]. Instead, we consider several parameterizations of the
causal effect size distribution, all with ample mass near zero, including a distribution previously
estimated from GWA study summary statistics in [18].

Using the UK Biobank summary statistics, we estimate the relationship between the minimum
allele frequency required to detect a single nucleotide polymorphism (SNP) with an effect size β as
significant under a particular significance threshold α. In essence, we are replacing our theoretical
parameterization of the per-locus detection threshold dℓ (Equation 11 in S1 Text) with one derived
from data. Then, assuming the population is at equilibrium, we compute the approximate decay in
accuracy, as measured by ρ2(τ) in Equation 10 in the main text, for each of the causal distributions
and arbitrary ancient sampling times.
Causal effect size distributions. As the causal effect size distribution for human height is
unknown, we consider several potential distributions (Fig S2 in S1 Text). Namely, we model the
absolute values of the effect sizes |β| as (i) exponential random variables with rate λ ∈ {10, 100, 500},
referred to as fexp(·;λ); (ii) Gamma distributed random variables with shape parameter λ ∈
{10−3, 0.5} and scale parameter equal to one, referred to as fγ(·;λ); and (iii) a mixture of folded
normal distributions estimated from GWA study summary statistics in [18],

fmix(b) = 0.9 · N ∗(b; 0, 1.5439 · 10−5) + 0.1 · N ∗(b; 0, 2.021 · 10−4), (70)

for some effect size b, where N ∗(b; 0, σ2) denotes the likelihood of effect size b under a folded normal
distribution with mean zero and variance σ2. In all cases, we discretize these distributions over a
set β of 5000 linearly spaced values in the range [10−4, 0.1]. In doing so, we are excluding very
large effect mutations—such mutations would be more likely to substantially deviate from neutral
dynamics—and mutations with effects indistinguishable from zero.
Estimating the relationship between effect size and the detection threshold. We use
the height summary statistics to estimate a function relating effect size to the allele frequency
detection threshold, denoted by gα(·). The function gα(b) specifies the minimum allele frequency
required to detect an effect of size b as non-zero under a given significance threshold α. Here, we
use α = 10−8 to account for the multiple testing burden imposed by conducting approximately
12 million association tests. We compute the minimum effect size detected as significant (p-value
≤ α) among SNPs within 250 non-overlapping, log-spaced allele frequency bins, and subsequently
interpolate between these minima to specify gα(·) over the continuous interval [10−3, 0.5]. Finally,
we “smooth” this function by forcing it to be non-increasing.
Computing the accuracy metrics. An effect size distribution (described above) coupled with
our equilibrium assumption specifies the expected additive genetic variance, VA. For a population-
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Fig S2. Effect size distribution. In (A), we plot the six causal distributions described above. The dashed
vertical line here, and in (B) and (C), indicates the minimum effect size that can be detected, as specified
by gα(·) of (B). In (B), we find the minimum allele frequency gα(β) required to detect an effect of size β
using the significance threshold α = 10−8 and a set of 273,671 SNPs with p-values ≤ α. And, in (C), we plot
the relationship between a SNP’s effect size and its contribution to the expected additive genetic variance
VAb (dotted lines) or the estimated additive genetic variance at the time of the GWA study V̂Ab(0) (solid
lines) for each of the causal distributions. Both values are normalized by the squared effect size β2 and the
expected genetic variance at stationarity, a/(2a+ 1).

scaled mutation rate of a,
E[VA] =

∑
b∈β

(
a

2a+ 1

)
b2f·(b), (71)

where the sum is over all discretized effect sizes b in the set of effect sizes β; a/(2a + 1) is the
expected genetic variance at stationarity (Section 13 in S1 Text); and f·(·) is one of the effect size
distributions described above. We can then compute the approximate sample correlation coefficient
ρ2(τ). In particular, following Equation 19 in the main text and ignoring the ancient sample size
dependent factor in the GWA study,

ρ2(0) =
V̂A(0)

VA + σ2e
=

∑
b∈β V̂Ab(0)f·(b)∑

b∈β
(

a
2a+1

)
b2f·(b) + σ2e

, (72)

and following Equation 54 in S1 Text,

V̂Ab(0) = E
[
2β̂2Z(0)(1− Z(0))|β = b

]
= b2

(
1

2a+ 1

)[
a(1− 2P (db)) + 2P

(db)
3

]
, (73)

where db = ⌈2ngα(b)⌉ is the allele count threshold derived from the function gα(·), and with P (·)

and P
(·)
3 defined in Equation 42 in S1 Text. Importantly, the denominator of Equation 72 in S1

Text includes non-zero contributions from SNPs that may not achieve genome-wide significance
(unequivocally those SNPs with effect sizes to the left of the dashed lines in Fig S2 in S1 Text).

When narrow-sense heritability h2 = 0.5, the environmental variance σ2e is equal to VA. For an
arbitrary ancient sampling time τ ,

ρ2(τ) =

∑
b∈β V̂Ab(τ)f·(b)

2
∑

b∈β
(

a
2a+1

)
b2f·(b)

=

∑
b∈β
[
a(1− 2P (db)) + 2e−(2a+1)τP

(db)
3

]
b2f·(b)

2a
∑

b∈β b
2f·(b)

, (74)

where db, defined in Equation 73 in S1 Text, is the empirically estimated allele count threshold
corresponding to an effect of size b. We compute Equation 74 in S1 Text for each of the six effect size
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Fig S3. Accuracy and relative accuracy. In (A), we plot the approximate sample correlation coefficient,
or polygenic score accuracy ρ2(τ), as a function of ancient sampling time τ . We assume the effect size
distributions described above and associated allele frequency thresholds (Fig S2 in S1 Text), as well as
narrow-sense heritability h2 = 0.5. Relative accuracy is similarly plotted in (B). Note the difference in y-axis
limits between panels.

distributions. While not shown, we can similarly compute the other accuracy metrics (normalized
by VA as we do not know the number of causal sites L).

Not unexpectedly, Fig S3 in S1 Text shows that the shape of the causal distribution influences
accuracy. However, relative accuracy is indistinguishable across the different distributions. Thus,
as observed in Polygenic score accuracy in Analytical Results of the main text (and speculated
on in Section 7.4 in S1 Text), relative accuracy appears insensitive to assumptions on the effect
size distribution.

It is important to note that several of these distributions yield predicted accuracies for contem-
porary samples that overestimate the observed prediction accuracy for height in the UK Biobank
sample, for example, estimated to be 0.193 in [7]. This discrepancy suggests that these distribu-
tions may not be good approximations to reality. Though, we note that fmix(·), the distribution
estimated in [18], yields the best approximation to observed prediction accuracy in the present day
sample.

Nonetheless, many of our simplifying assumptions caution against overinterpretation of these
results. In particular, our assumption of neutrality implies that alleles are iid irrespective of the
magnitudes of their effects; loci may also not be at stationarity. Indeed, large effect alleles are
likely to be more deleterious and thus subject to stronger selection relative to small effect alleles
[11,19,20]. Nonetheless, the application of our theory in this context provides insight into the
relationship between the causal effect size distribution and prediction accuracy. Furthermore, we
provide some preliminary evidence that relative accuracy may be more robust to violations of at
least some of our assumptions.

9 Deriving approximations to the metrics
In the main text, we present several approximations for the initial rate of increase or decrease of the
metrics. Here, we show how we arrived at these approximations from the exact forms given in the
previous sections. For a given metric, we first compute a first order Taylor series expansion (in τ).
We then find the intercept, i.e., the value of the statistic at zero, and the slope. We subsequently
make use of the following approximations: (i) P (d)

1 ≈ P (d); (ii) P (d)
2 ≈ P (d); and (iii) P (d)

3 ≈ aP (d).
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Approximate metrics. For the bias, this approach yields,

biasℓ(τ) ≈ βℓ

[
(1− aτ)

(
1

a+ n

)
− 1

n

] [
n
(
P (dℓ1) − P (dℓ2)

)
+
(
P

(dℓ2)
4 − P

(dℓ1)
4

)]
≈ biasℓ(0) + βℓ · aτ

(
P (dℓ1) − P (dℓ2)

)
,

(75)

where the last line follows from (i) using the approximations noted in the prelude; (ii) ignoring the
P

(dℓi)
4 terms in the slope (which are order O( 1n)); (iii) and 1

a+n ≈ 1
n . Using the same approach,

mseℓ(τ) with equal thresholds dℓ, becomes,

mseℓ(τ) ≈ 2β2ℓ

[( a+ 1

2a+ 1

)
P (dℓ) + P

(dℓ)
1 − 2P

(dℓ)
2 +

(
1

2a+ 1

)
P

(dℓ)
3 + 2aτP

(dℓ)
2 − τP

(dℓ)
3

]
≈ mseℓ(0) + 2β2ℓ aτP

(dℓ).

(76)

And, we can approximate V̂A(τ) as,

V̂Aℓ(τ) ≈
(
2na − 1

2na

)
β2ℓ

(
1

2a+ 1

)[(
a(1− 2P (dℓ)

)
+
(
2 (1− (2a+ 1)τ)P

(dℓ)
3

)]
≈ V̂Aℓ(0)− 2

(
2na − 1

2na

)
β2ℓ aP

(dℓ)τ.

(77)

The approximation for the accuracy ρ2(τ) follows immediately from Equation 77 in S1 Text.
In Figs S4a and S4d in S1 Text, we plot the approximate rate of change 2aP (d), for low and high

detection thresholds. In addition, in Fig S5 in S1 Text, we compare our exact theoretical results
to their approximations over a short time scale of τ ∈ [0.2, 0]. We observe that the approximation
fares better for smaller values of d, as well as, for larger n. Below, we show how some of the steps
in our approximations are adversely affected by large d and small n.

Approximation error. We quantify the error incurred in the approximation P
(d)
1 ≈ P

(d)
3 and

P
(d)
2 ≈ P

(d)
3 . To do so, we first express P (d)

1 and P (d)
2 as functions of P (d)

3 . We refer to the i-th term
in quantities specified in Equation 42 in S1 Text as P i

· , dropping the superscript d for succinctness.

P i
1 =

(
i− n

n

)2(2n
i

)
B(a+ i, a+ 2n− i)

B(a, a)
=

(
i− n

n

)2

P i =

(
i

n

)2

P i − 2

(
in

n2

)
+ P i. (78)

Thus,

P
(d)
1 = P (d) +

1

n2

d−1∑
i=0

i2P i − 2

n

d−1∑
i=0

iP i. (79)

Note that the summations in Equation 79 in S1 Text are the second and first moments of a beta-
binomial random variable truncated at d − 1, respectively. As long as the two summations are
O(n) and O(1), respectively, the error of the approximation will be smaller than O( 1n) as both
summations are non-negative. We can repeat the same procedure for P (d)

2 ,

P
(d)
2 =

(
n

a+ n

)
P (d) +

1

n(a+ n)

d−1∑
i=0

i2P i −
(

2

a+ n

) d−1∑
i=0

iP i ≈ P
(d)
1 , (80)

where the approximation is valid for a ≪ n, and in this regime, our analysis in the previous
paragraph also applies to P (d)

2 .
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Fig S4. Approximations to the mean-squared error and expected estimated additive genetic
variance. In (A), we plot 2aP (d) normalized by E[VA] = β2( a

2a+1 ) across a range of mutation rates a ∈
{10−4, . . . , 1} and GWA study sample sizes n, for a small detection threshold. Here, d is either 132 or 133,
corresponding to a squared effect size of β2 = 0.25, when the significance threshold is α = 10−8 and the
phenotypic variance Vp = 1. In (B) and (C), we plot the initial mseℓ(τ) and V̂Aℓ(τ) (both normalized by the
true VA) for small d. In (D-F), we repeat plots (A-C), except with a higher detection threshold, respectively.
The smaller effect size of β2 = 0.01 yields thresholds in the range d ∈ {3209, . . . , 4142}, in order of increasing
sample size. Note that in contrast to the other pairs of plots, (C) and (F) do not share a scale.

Finally, we consider the approximation P
(d)
3 ≈ aP (d),

P i
3 = P i

(
(2a+ 1)i(i− 2n) + an(2n− 1)

(2a+ 2n+ 1)(a+ n)

)
+ aP i − aP i

= aP i + P i

(
(2a+ 1)i(i− 2n) + an(2n− 1)− a(2a+ 2n+ 1)(a+ n)

(2a+ 2n+ 1)(a+ n)

)
= aP i + P i

(
(2a+ 1)i(i− 2n)− a(2a2 + 4an+ a+ 2n)

(2a+ 2n+ 1)(a+ n)

)
= aP i + P i

(
(2a+ 1)i(i− 2n)− a(2a+ 1)(a+ 2n)

(2a+ 2n+ 1)(a+ n)

)
= aP i + (2a+ 1)P i

(
i(i− 2n)− a(a+ 2n)

(2a+ 2n+ 1)(a+ n)

)
.

(81)

Thus,

P
(d)
3 = aP (d)− (2a+ 1)

(2a+ 2n+ 1)(a+ n)

[
a(a+ 2n)(d− 1)P (d) +

d−1∑
i=0

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)
i(2n− i)

]
,

(82)
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Fig S5. Approximations for the per locus contributions to the mean-squared error and esti-
mated additive genetic variance across sample sizes, mutation rates, and detection thresholds.
This plot is identical to Fig 2 in the main text except that we (i) include our approximations to the two
statistics, Equation 15 in the main text and Equation 17 in the main text, and (ii) plot our results over a
short time frame, τ ∈ [0.2, 0]. In (A), the approximations are depicted as colored, dotted lines corresponding
to each mutation rate and sample size pair. In (B), the approximations are denoted by the same markers
and opacity as their blue counterparts. And, in (C), the approximations are provided in black, with line
pattern indicating the threshold d.

And,

|P (d)
3 − aP (d)| ≈ a(d− 1)

n
P (d) +

d−1∑
i=0

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)

(
i

n
− i2

2n2

)
(83)

where the approximation follows for a ≪ 1 and a ≪ n. Thus, P (dℓ)
3 ≈ aP (dℓ) will be a very good

approximation when d ≪ n, but should also hold for modest d as long n is reasonably large. It is
possible that when the mutational target is very large, e.g., O(n), that approximation errors may
be non-negligible for large enough d. However, large d implies a small β, thereby tempering any
approximation errors in practice. An additional benefit of expressing P (d)

1 , P (d)
2 , and P (d)

3 in terms
of P (d) is that we can now take advantage of efficient coding of the beta-binomial probability mass
function in the Python module scipy to compute analytical results for larger values of d.
Computations for large n and d. For large n, computing the terms in Equation 42 in S1 Text,
excluding P (d) (which we compute using scipy), becomes computationally prohibitive. However,
for large n, we can approximate these quantities as follows. Defining z = d

2n and the incomplete
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beta function as Iz(x, y) = 1
B(x,y)

∫ z
0 z

x−1(1− z)y−1dz,

P
(d)
1 ≈

(
1

n2

)
Iz(a+ 2, a)−

(
2

n

)
Iz(a+ 1, a) + P (d)

P
(d)
2 ≈ 1

a+ n

(
1

n
Iz(a+ 2, a)− 2Iz(a+ 1, a) + nP (d)

)
P

(d)
3 ≈ an(2n− 1)

(2a+ 2n+ 1)(a+ n)
P (d) +

(
2a+ 1

(2a+ 2n+ 1)(a+ n)

)
(Iz(a+ 2, a)− 2Iz(a+ 1, a)) .

(84)

These expressions allow us to compute the metrics for a much larger range of n and d values.

10 Polygenic score bias for recent genic selection
We provide evidence for the claim made in Simulation results for recent directional selection
of the main text that, “biasℓ(τ) will reach an equilibrium value that depends approximately on the
asymmetry of the detection thresholds at the present day, which in turn, depends on both the
timing and strength of selection”. We treat the simplest case of a detection threshold d = 1, i.e.,
β̂ = β if the locus is segregating in the GWA study sample. The time-varying distribution of the
allele frequency is ft(·), and necessarily depends on the timing and strength of selection. For t > τs,
the time of the onset of selection, ft(z) ∝ za−1(1− z)a−1. For t ≤ τs, ft(z) will be skewed toward
one and proportional to ∝ eσzza−1(1 − z)a−1, where σ = 4Ns is the population-scaled selection
coefficient. For a larger τs, ft(z) for t ≤ τs will have more time to shift toward the stationary
distribution under selection.

From Equation 11 in the main text, we have that biasℓ(τ), omitting the locus subscript is,

bias(τ) = E
[
(X̄ −X(τ))(β − β̂)

]
= βE

[
(X̄ −X(τ))|β̂ = 0

]
P{β̂ = 0}

= β
(
E
[
X̄|β̂ = 0

]
− E

[
X(τ)|β̂ = 0

])
P{β̂ = 0}

= β
(
−P{X̄ = −1|β̂ = 0}+ P{X̄ = +1|β̂ = 0} − E

[
X(τ)|β̂ = 0

])
P{β̂ = 0}.

(85)

For large τ , E
[
X(τ)|β̂ = 0

]
→ 0, such that,

bias(τ) → β
(
P{X̄ = +1|β̂ = 0} − P{X̄ = −1|β̂ = 0}

)
P{β̂ = 0}, (86)

which shows that the bias(τ) will equilibrate at some value that depends on the difference between
the + and − detection thresholds as well as the probability that β̂ = 0. This difference, in turn,
depends on the time of the onset of selection and the selection coefficient (relative to the mutation
rate) itself.

11 Fixation index and prediction accuracy
The complexity of human population history implies that an ancient sampling time of t years does
not readily translate to a coalescent time of τ = t/2N . As a result, it may be difficult to apply
our theoretical results in practice. In lieu of an estimated ancient sampling time τ , we instead seek
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Fig S6. Polygenic score accuracy as a function of FST. We reproduce Fig 3 in the main text with
accuracy and relative accuracy as functions of FST instead of ancient sampling time τ .

to uncover the relationship between FST and our various metrics, which may, with some caveats,
be more robust to demographic changes. And importantly, FST is readily measurable from ancient
genotypic data.

FST is defined as the relative difference between within sample and across sample heterozygosity
[21],

FST =
z̄(1− z̄)− z(1− z)

z̄(1− z̄)
, (87)

where z̄ = 1
2 [z(0) + z(τ)] is the average of the allele frequencies in the contemporary and ancient

populations, and z(1− z) = 1
2 [z(0)(1−z(0))+z(τ)(1−z(τ))]. We can approximate the expectation

of FST by a ratio of expectations and solve under the assumptions of the recurrent mutation model
and neutrality,

E[FST] =
E[z̄(1− z̄)]− E[z(1− z)]

E[z̄(1− z̄)]
=

a+1
2(2a+1) −

1
4

(
1 + 1

2a+1e
−aτ
)

1−
[

a+1
2(2a+1) +

1
4

(
1 + 1

2a+1e
−aτ
)] . (88)

We include derivations of the constituent expectations for completeness,

E[z̄(1− z̄)] =
1

2
E[z(0) + z(τ)]− 1

2
E[(z(0) + z(τ))2]

=
1

2
− 1

2

(
a+ 1

2(2a+ 1)
+

1

4
+ e−aτ 1

4(2a+ 1)

)
.

(89)

And,

E[z(1− z)] =
1

2
E[z(0)(1− z(0)) + z(τ)(1− z(τ))]

=
1

2
− a+ 1

2(2a+ 1)
.

(90)

Using the results from Equation 88 in S1 Text, in Fig S6 in S1 Text, we reproduce Fig 3 in the main
text with an x-axis of pairwise FST between the focal population and the GWA study population
instead of ancient sampling time.
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12 Comparison to the results of Wang et al. 2020
In Polygenic score accuracy of Analytical Results in the main text, we found that relative
accuracy was fairly insensitive to many of the model parameters. This allows us to more readily
compare our theoretical results with those of Wang et al. 2020, who also generated predictions for
accuracy decay in out-of-sample predictions in humans. In Fig S7 in S1 Text, we plot our neutral
theory (n = 350,000, d = 1,000, and a = 10−3) as a function of pairwise divergence,as measured
by FST (see Section 11 in S1 Text). Alongside, we plot Wang et al.’s predictions for accuracy
reductions in individuals of South Asian (sas), East Asian (eas), and African (afr) ancestries in
the UK Biobank relative to a sample of individuals of European (eur) ancestry as a function of
observed FST with eur. In addition, we plot the reductions in accuracy in each ancestry group that
were observed in the data set.

0.0000.0250.0500.0750.1000.1250.1500.1750.200
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Fig S7. Relative polygenic score accuracy. We compare our theoretical results (dashed line; n =
350, 000, d = 1000, and a = 10−3) for relative accuracy reductions to those of Wang et al. [7] for height
in individuals of non-European ancestry. Each ancestry group, South Asian (sas), East Asian (eas), and
African (afr) is distinguished by color. The x’s demarcate Wang et al.’s predictions, while the circles denote
the observed accuracy reductions; error bars are 95% confidence intervals. Theoretical values of FST are
computed according to Equation 88 in S1 Text; observed values for each ancestry group are from [7].

In contrast to our theory, Wang et al. take into account the combined effects of (observed)
differences in LD and allele frequencies between ancestry groups. Thus, since our theory only
accounts for allele frequency changes, it is not surprising that we underestimate the accuracy
reductions observed in individuals of African ancestry. Surprisingly, our predictions exceed or
approximate those of Wang et al. for sas and eas ancestries—which all underestimate the observed
accuracy reductions.

Altogether, these results suggest that accurately predicting out-of-sample accuracy reductions
will require more complex modeling of the underlying demographic processes and environmental
factors contributing to phenotypic variation. In short, the relationship between FST and prediction
accuracy is not simple.
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13 Necessary moments, under neutrality and at stationarity
We provide analytic expressions for the moments which constitute the various metrics under the as-
sumption of equal mutation rates. In addition, we provide simplified expressions when the detection
thresholds are equal.

Moments of the population allele frequency and genotype. Because the population is at
stationarity, these moments are time-invariant. They require integration over the stationary density
of the population allele frequency, which is beta-distributed, and in (b) require integration over the
Hardy-Weinberg sampling process.
a. Moments of the population allele frequency:

E [Zℓ] =
1
2 , E

[
Z2
ℓ

]
= a+1

2(2a+1) , and E [Zℓ(1− Zℓ)] =
a

2(2a+1) .
b. Moments of a genotype:

E [Xiℓ] = 0 and thus V [Xiℓ(t)] = E
[
X2

iℓ(t)
]
= a+1

2a+1 .

Moments specific to the GWA study. These moments require integration over the station-
ary density of the population allele frequency and the sampling probabilities for a sample of n
individuals.
a. Moments of the mean genotype in the GWA study sample:

E
[
X̄ℓ

]
= 0 and E

[
X̄2

ℓ

]
= 1

n

(
a+n
2a+1

)
.

b. Product of the mean genotype in the GWA study sample and the effect estimate:

E
[
X̄ℓβ̂ℓ

]
= E

[
E
[
X̄ℓβ̂ℓ|X̄ℓ

]]
= βℓE

[
X̄ℓ1{X̄ℓ∈(γ−1,1−γ)}

]
= βℓ

2n−dℓ2∑
i=dℓ1

(
i− n

n

)(
2n

i

)
E
[
Zi
ℓ (1− Zℓ)

2n−i
]

= βℓ

2n−dℓ2∑
i=dℓ1

(
i− n

n

)(
2n

i

)
B(a+ i, b+ 2n− i)

B(a, b)
.

(91)

And, for dℓ1 = dℓ2,
E
[
X̄ℓβ̂ℓ

]
= 0. (92)

And,

E
[
X̄2

ℓ β̂ℓ

]
= 2βℓ

n−dℓ2∑
i=dℓ1

(
i− n

n

)2(2n
i

)
B(a+ i, a+ 2n− i)

B(a, a)
(93)

For dℓ1 = dℓ2 = dℓ,

E
[
X̄2

ℓ β̂ℓ

]
= βℓ

(
a+ n

n(2a+ 1)
− 2

dℓ−1∑
i=0

(
i− n

n

)2(2n
i

)
B(a+ i, a+ 2n− i)

B(a, a)

)

= βℓ

(
a+ n

n(2a+ 1)
− 2P

(dℓ)
1

)
.

(94)

Under our simple threshold model, the corresponding second moment of β̂ℓ is equal to the previous
expression multiplied by βℓ.
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c. First moment of the mean phenotype in the GWA study sample: E
[
Ȳ
]
= 0.

d. First moment of the estimated intercept term:

E
[
Ĉ
]
= E

[
Ȳ
]
−

L∑
ℓ=1

E
[
X̄ℓβ̂ℓ

]
= C −

L∑
ℓ=1

βℓ

2n−dℓ2∑
i=dℓ1

(
i− n

n

)(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)
, (95)

which, for equal detection thresholds equals 0.

Moments involving both the ancient and contemporary genotypes. These moments in-
volve quantities from two time points: the ancient sampling time τ and the GWA study at the
present. To compute these moments, we use the spectral representation of the tdf (Section 6 in S1
Text).
a. Product of the first moments of the ancient and contemporary mean genotype:

E
[
Xℓ(τ)X̄ℓ(0)

]
=

1

n

n∑
i=1

E [E [Xℓ(τ)Xiℓ(0)|Zℓ(0), Zℓ(τ)]]

= E [(2Zℓ − 1)(2Zℓ(τ)− 1)]

=
1

B(a, b)

1∑
k=0

e−λkτ

⟨Bk, Bk⟩π
⟨2z − 1, Bk⟩2π

= e−aτ

(
1

2a+ 1

)
.

(96)

b. Product of the moments of the ancient and contemporary mean genotypes, and the effect estimate:

E
[
X̄ℓβ̂ℓXℓ(τ)

]
=

2n−dℓ2∑
i=dℓ1

(
i− n

n

)(
2n

i

) 1∑
k=0

e−λkτ

⟨Bk, Bk⟩π
⟨2z − 1, Bk⟩π⟨zi(1− z)2n−i, Bk⟩π

= e−aτβℓ

2n−dℓ∑
i=dℓ

(
(i− n)2

n(a+ n)

)(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)
.

(97)

For equal detection thresholds, dℓ, and using the variables defined in Equation 42 in S1 Text, we
have,

E
[
X̄ℓβ̂ℓXℓ(τ)

]
= βℓe

−aτ

(
1

2a+ 1
− 2P

(dℓ)
2

)
. (98)

The corresponding second moment of β̂ℓ is equal to the previous expression multiplied by βℓ.

Moments involving the ancient (but not contemporary) genotype. These moments involve
the ancient genotype Xℓ(τ) and the contemporary effect estimate β̂ℓ, but not the contemporary
genotypes.
a. Product of the first moments of the ancient genotype and the effect estimate:

E
[
Xℓ(τ)β̂ℓ

]
=

1

B(a, a)

2n−dℓ2∑
i=dℓ1

(
2n

i

) 1∑
k=0

e−λkτ

⟨Bk, Bk⟩π
⟨zi(1− z)2n−i, Bk⟩π⟨2z − 1, Bk⟩π

= e−aτ
2n−dℓ2∑
i=dℓ1

(
2n

i

)(
B(a+ i, a+ 2n− i)

B(a, a)

)(
i− n

a+ n

)
= 0,

(99)

29



for equal thresholds dℓ1 = dℓ2. This result is due to the fact that, in Equation 99 in S1 Text, the
i-th term is equal to the (2n− i)-th term (and the n-th term is 0).
b. Product of the second moments of the ancient genotype and first moment of the effect estimate:

E
[
X2

ℓ (τ)β̂ℓ

]
=

βℓ
B(a, b)

2n−d∑
i=d

(
2n

i

) 2∑
k=0

e−λkτ

⟨Bk, Bk⟩π
⟨1− 2z + 2z2, Bk⟩π⟨zi(1− z)2n−i, Bk⟩π

=
βℓ

2a+ 1

2n−d∑
i=d

(
2n

i

)
B(a+ i, a+ 2n− i)

B(a, a)

×

[
(a+ 1) + e−(2a+1)τ

(
(2a+ 1)i(i− 2n) + an(2n− 1)

(2a+ 2n+ 1)(a+ n)

)]
.

(100)

For equal detection thresholds dℓ, and Using the terms defined in Equation 42 in S1 Text, we can
express Equation 100 in S1 Text more succinctly,

E
[
X2

ℓ (τ)β̂ℓ

]
=

βℓ
2a+ 1

[
(a+ 1)(1− 2P (dℓ))− 2e−(2a+1)τP

(dℓ)
3

]
. (101)

The moment E
[
X2

ℓ (τ)β̂
2
ℓ

]
is equal to the previous expression multiplied by βℓ.
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