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Data Reduction and Normalization of Neutron Diffraction 

 

 ND was performed at the Nanoscale-Ordered Materials Diffractometer of the Spallation Neutron 

Source, a time-of-flight instrument. Scattering was measured in an argon-filled reentrant well for each 

sample, an empty silica capillary, and for a vanadium standard. For 83TiO2-17Nd2O3, the sample scattering 

(after subtraction of the empty capillary and argon background), 𝐼𝑠, can be related to the total scattering 

differential cross section, which is the summation of the per-atom distinct, self, inelastic, and magnetic 

scattering differential cross sections: 
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where 𝜌𝑠 is the atomic number density and 𝑉𝑠 is the sample volume. (Effects of sample absorption were 

checked and confirmed to be negligible, so all expressions here are given without absorption corrections.) 

The vanadium scattering, 𝐼𝑣, can be expressed similarly while noting the absence of magnetic scattering 

and that incoherent (i.e., self) scattering is the dominant term: 
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where 𝑏𝑣,𝑖𝑛𝑐 is vanadium’s incoherent scattering length. 

 The goal of data reduction is to isolate the sample’s distinct scattering, from which the total scattering 

structure factor can be obtained (e.g., Eqn. 15 in the main text). By defining the ratio of sample-to-vanadium 

scattering, 
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and combining with Eqns. S1-S2, the sample distinct scattering is given by: 
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Self scattering is equal to the composition-averaged square of the incoherent scattering lengths: 
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Inelastic scattering is handled by a Placzek correction1, and the paramagnetic scattering is given in terms 

of a magnetic form factor for Nd3+ 2,3. However, given the small sample sizes (e.g., 𝐼𝑅 < 0.08), it was 



difficult to fully correct the weak sample scattering using these expressions. Instead, an empirical fit using 

a pseudo-Voigt function, 𝐼𝑏𝑎𝑠𝑒, is used to account for the combination of self, inelastic, and magnetic 

scattering. Eqn. S4 can then be simplified to: 
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where 𝐴 is a lumped, sample-dependent (𝑄-independent) constant. The experimentally measured 𝐼𝑅 and 

empirically fitted 𝐼𝑏𝑎𝑠𝑒 are shown for the five ND samples in Fig. S7. 

 Finally, the normalized total scattering structure factor, 𝑆𝑁(𝑄), is given by: 
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where ⟨𝑏𝑠⟩ is the composition-average coherent scattering length of the sample. The neutron differential 

PDF is then obtained using Eqn. 12, which combined with Eqn. S7 yields: 
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where 𝛼 = 2𝐴 𝜋⟨𝑏𝑠⟩
2⁄  is a sample-dependent constant. As described in the main text for HEXRD analysis, 

𝑀(𝑄) is a Lorch modification function and the Gudrun top hat convolution was used with 𝑆𝑁(𝑄) to remove 

residual, long-wavelength background in 𝑄-space. ND total PDFs were calculated according to Eqn. 13. 

 The normalization of ND data is now equivalent to determining the appropriate value of 𝛼 for each of 

the five ND samples. This normalization was optimized by using the theoretical limiting behavior of 𝑇(𝑟) =

0 at low-𝑟 (i.e., at real-space distances shorter than any bonds). Even with the top hat convolution, some 

residual background in 𝑄-space results in oscillations at low- 𝑟, so the most robust determination of 𝛼 is 

obtained by using as large a range of 𝑟 as possible. Toward this goal, for each sample, the 𝑇(𝑟) obtained 

from HEXRD and ND were weighted so as to eliminate the first peak (from the 𝑡𝑇𝑖𝑂 partial) in an 

HEXRD/ND difference function. Because the HEXRD weighting factors are 𝑄-dependent, this difference 

must be performed in 𝑄-space prior to the Fourier transformation. Beginning with Eqns. 12-13 and dividing 

by the Ti-O weighting factor, 𝑊𝑇𝑖𝑂, of each measurement, the difference function is defined as: 
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This expression for ∆𝑋−𝑁 in principle should be zero at low-𝑟. With the Ti-O peak now eliminated, the 

value of 𝛼 (contained in the expression for 𝐷𝑁 in Eqn. S10) was determined by minimizing the sum-square 

of ∆𝑋−𝑁 over 𝑟 = 0-2.0 Å. 

 

 

  



Neutron Diffraction First Order Difference Functions 

 

 For the purpose of explanation, the Ti first order difference will be described, though the same 

methodology applies for the Nd first order difference. The total PDF for a neutron diffraction (ND) sample 

can be expressed as a summation of the atomic partial pair correlations, 𝑡𝑖𝑗, as given in Eqn. 14. Because 

the weighting factors, 𝑊𝑖𝑗, are 𝑄-independent for ND, Eqns. 2 and 14 can be rearranged to give: 

 

〈𝑏〉2𝑇(𝑟) = ∑(2 − 𝛿𝑖𝑗)𝑐𝑖𝑐𝑗𝑏𝑖𝑏𝑗𝑡𝑖𝑗
𝑖,𝑗≥𝑖

 (S11) 

 

For a pair of samples that are identical in composition except for substitution of Ti isotopes, all terms in the 

summation of Eqn. S11 not containing 𝑖 or 𝑗 = Ti will be equivalent between samples. Thus, the difference 

function has only atomic-pairs containing Ti: 

 

〈𝑏〉1
2𝑇1 − 〈𝑏〉2

2𝑇2 = 𝑐𝑇𝑖
2 (𝑏𝑇𝑖,1

2 − 𝑏𝑇𝑖,2
2 )𝑡𝑇𝑖𝑇𝑖 + 2𝑐𝑇𝑖𝑐𝑁𝑑(𝑏𝑇𝑖,1 − 𝑏𝑇𝑖,2)𝑏𝑁𝑑𝑡𝑇𝑖𝑁𝑑 

+2𝑐𝑇𝑖𝑐𝑂(𝑏𝑇𝑖,1 − 𝑏𝑇𝑖,2)𝑏𝑂𝑡𝑇𝑖𝑂 
(S12) 

 

where “1” and “2” subscripts represent the 46Ti-natNd and 48Ti-natNd samples, respectively. Since we are 

most interested in using the difference function to investigate Ti-O coordination, the pertinent function is 

defined as: 

 

∆𝑇𝑖(𝑟) =
〈𝑏〉1

2𝑇1 − 〈𝑏〉2
2𝑇2

2𝑐𝑇𝑖𝑐𝑂(𝑏𝑇𝑖,1 − 𝑏𝑇𝑖,2)𝑏𝑂

= 𝑡𝑇𝑖𝑂 +
𝑐𝑇𝑖(𝑏𝑇𝑖,1

2 − 𝑏𝑇𝑖,2
2 )𝑡𝑇𝑖𝑇𝑖 + 2𝑐𝑁𝑑(𝑏𝑇𝑖,1 − 𝑏𝑇𝑖,2)𝑏𝑁𝑑𝑡𝑇𝑖𝑁𝑑

2𝑐𝑂(𝑏𝑇𝑖,1 − 𝑏𝑇𝑖,2)𝑏𝑂

 

(S13) 

 

for which the first peak will correspond to the unweighted partial 𝑡𝑇𝑖𝑂.  

 For a given atomic partial pair correlation, 𝑡𝑖𝑗, the average coordination number is given by: 
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where the integral bounds are selected to bracket the peak in the PDF. Since the 𝑡𝑇𝑖𝑇𝑖 and 𝑡𝑇𝑖𝑁𝑑 correlations 

do not overlap with the first peak of 𝑡𝑇𝑖𝑂, the function ∆𝑇𝑖 can be used to integrate the first peak and obtain 

the Ti-O coordination: 

 

𝑛𝑇𝑖𝑂 = ∫ 𝑐𝑂∆𝑇𝑖(𝑟)𝑟𝑑𝑟

2.61
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The same process was used to obtain the function ∆𝑁𝑑(𝑟) from the natTi-144Nd and natTi-145Nd samples, and 

𝑛𝑁𝑑𝑂 was determined according to Eqn. S15 and integrating over 𝑟 = 2.00-3.40 Å. Fig. 4 provides a plot of 

∆𝑇𝑖(𝑟) and ∆𝑁𝑑(𝑟). 

  



Estimating Uncertainty in Atomic Coordination Numbers 

 

 Five sources of uncertainty were evaluated during the calculation of atomic coordination numbers: 

diffraction measurement uncertainty, samples’ composition uncertainty, 145Nd scattering length, sample 

density, and ND normalization.  

 The measurement uncertainty arises from counting statistics (i.e., Poisson noise), which was propagated 

through the data reduction to obtain 𝑆(𝑄) and through the Fourier transform to obtain the PDFs4,5. The 

contribution of measurement uncertainty was small relative to effects of density and ND normalization, and 

thus was not considered in the final analysis. 

 Uncertainty in the samples’ chemical compositions leads to uncertainty in the composition-average 

scattering lengths: 〈𝑏〉 for ND or 〈𝑓〉 for HEXRD. Based on the energy dispersive spectroscopy reported in 

the main text, the samples’ compositions were off-nominal by 1.2 mol. % Nd2O3. Assuming this value 

provides an upper bound for the uncertainty among different samples, the compositional variation leads to 

1-2% changes in 〈𝑏〉2 or 〈𝑓〉2, which contributes less uncertainty to the final analysis than the effects of 

density and ND normalization. Thus, compositional uncertainty was not considered in the final analysis.  

 The coherent neutron scattering length for 145Nd has never been directly measured, and the value 

provided by Sears (𝑏 = 14(2) fm)6 was deduced from the scattering lengths known for natNd and some of 

the Nd isotopes at the time, assuming that 143Nd and 145Nd would have the same scattering length. To probe 

the effect of this uncertainty, ND difference functions and EPSR were carried out using 𝑏 = 14 ± 2 fm for 
145Nd. The uncertainty propagated to the results (e.g., coordination numbers) was smaller than that arising 

from density and ND normalization, so it was not considered further. Given the scattering length uncertainty 

of 2/14 ≈ 14%, this at first seems surprising. However, because Nd has the lowest atomic concentration in 

the glass, the Nd-containing weighting factors are already quite small, which explains the small effect of 
145Nd scattering length uncertainty. 

 HEXRD was identified as the most reliable method for estimating density, as discussed in the main 

text. Density and its uncertainty were defined as the weighted mean and standard deviation of values 

extracted from HEXRD measurements of the six samples. This uncertainty was propagated through the 

analysis (e.g., ND difference functions and EPSR) to obtain the corresponding uncertainty in atomic 

coordination numbers. 

 For the ND normalization procedure described earlier in the SI, the HEXRD/ND difference function 

(Eqn. S10) was calculated with each of the six HEXRD measurements, yielding six values for the 

normalization constant, 𝛼, for each sample. The effect of ND normalization uncertainty on atomic 

coordination numbers was determined by considering the extreme cases of different possible 𝛼 values. For 

example, the Ti ND difference function was first calculated using the mean values of 𝛼 for 46Ti-natNd and 
48Ti-natNd (resulting in 𝑛𝑇𝑖𝑂 = 5.43).  Then the ND difference was recalculated using the maximum 𝛼 for 
46Ti-natNd and the minimum 𝛼 for 48Ti-natNd (resulting in 𝑛𝑇𝑖𝑂 = 5.42), and recalculated once more using 

the minimum 𝛼 for 46Ti-natNd and the maximum 𝛼 for 48Ti-natNd (𝑛𝑇𝑖𝑂 = 5.48). This approach yielded the 

full range of coordination numbers that might result from the ND normalization uncertainty. 

 ND normalization depends on the sample density, so the overall uncertainty in coordination number 

was defined as the maximum of the two contributions (density and ND normalization). For 𝑛𝑇𝑖𝑂, the density 

effect was larger (uncertainty of ± 0.15 in ND difference calculation), and for 𝑛𝑁𝑑𝑂 the ND normalization 

effect was larger (uncertainty of ± 0.35 in ND difference calculation). 

  



 

Atomic-Pair Partial Structure Factors from Weights Matrix Inversion 

 The solution to Eqn. 3 is obtained by inverting the weights matrix, which must be completed for each 

discrete 𝑄 value of the structure factors because the weighting factors for HEXRD are 𝑄-dependent. To 

provide an example of the relative magnitudes of terms in the inverted matrix, the solution to Eqn. 3 for 𝑄 

= 0 is: 
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The partial structure factors (Fig. S3) and partial PDFs (Fig. S4) were calculated using the fully 𝑄-

dependent solution to Eqn. 3. The partial 𝑠𝑇𝑖𝑇𝑖 also corresponds to the Ti second order neutron difference 

function, which is a linear combination of the 46Ti-natNd (𝑆1), 48Ti-natNd (𝑆2), and nullTi-natNd (𝑆5) ND 

structure factors. 

 

  



 
Figure S1. HEXRD (a) structure factors and (b) differential PDFs for all six samples of 83TiO2-17Nd2O3. 

Curves are vertically offset for ease of viewing. Dashed black line indicates the initial slope given by −4𝜋𝜌. 

 

 
Figure S2. Determination of sample density from one sample’s HEXRD differential PDF. Top: Gaussian 

functions were fit to the first two peaks in 𝐷(𝑟). Bottom: after subtracting the fitted peaks, the sample 

density, 𝜌, was determined by minimizing the sum-square difference between 𝐷(𝑟) and −4𝜋𝜌𝑟 over 0-1.4 

Å. 

 



 
Figure S3. Partial structure factors obtained from the solution to Eqn. 3 and Eqn. S16. Uncertainty arising 

from the experimental measurements is shown in light shading. Dashed black curves show partials from 

EPSR. Mean values are given for the modified weighting factors, 𝑊𝑖𝑗
′ . 

 



 
Figure S4. Partial PDFs obtained from the solution to Eqn. 3 and Eqn. S16, i.e., after the Fourier transform 

of partial structure factors shown in Fig. S3 with a 𝑄𝑚𝑎𝑥 of 12 Å-1. Uncertainty arising from the 

experimental measurements is shown in light shading. Dashed black curves show partials from EPSR (also 

using a 𝑄𝑚𝑎𝑥 of 12 Å-1). Mean values are given for the modified weighting factors, 𝑊𝑖𝑗
′ . 

 



 
Figure S5. Distributions of O-Ti-O bond angles from EPSR, calculated separately for Ti-O4, Ti-O5, and 

Ti-O6 species. Curves are vertically offset for clarity. 

 

 
Figure S6. Comparison of (a) the structure factor and (b) the differential PDF for the natTi-144Nd sample 

before and after the top hat convolution7 in Gudrun8. The top hat convolution alters only the nonphysical 

oscillations at low-𝑟 in the PDF. Dashed black line indicates the initial slope given by −4𝜋𝜌. 

 



 
Figure S7. The ratio of ND sample scattering to scattering of the vanadium standard (blue curve, 𝐼𝑅 in Eqn. 

S6), and the empirically fitted baseline (dashed green, 𝐼𝑏𝑎𝑠𝑒 in Eqn. S6) that includes self, inelastic, and 

Nd3+ paramagnetic scattering. 

 

 

Table S1. Samples’ number of glass beads, total mass, volume measured by gas pycnometry, and density 

calculated from pycnometry. Volume uncertainties each indicate the standard deviation of at least 16 

measurements. Systematic measurement errors arising from the very small sample volumes likely explain 

the variation in calculated densities across samples. 

 
46Ti-natNd 48Ti-natNd natTi-144Nd natTi-145Nd nullTi-natNd Mean 

Beads (#) 7 8 6 9 10  

Mass (mg) 67.4(1) 82.1(1) 62.5(1) 93.4(1) 114.3(1)  

Volume (mm3) 13.98(71) 16.65(71) 15.20(78) 22.52(66) 24.22(75)  

Density (g cm-3) 4.82(25) 4.93(21) 4.11(21) 4.15(12) 4.72(15) 4.55(39) 

 



 

Table S2. Scattering lengths and normalized Faber-Ziman weighting factors, 𝑊𝑖𝑗 , for the 83TiO2-17Nd2O3 

glasses with different isotopic substitution. Percentage weighting factors, 𝑊𝑖𝑗
′ , are defined in Eqn. 4. 

 
46Ti-natNd 

ND 

48Ti-natNd 

ND 

natTi-144Nd 

ND 

natTi-145Nd 

ND 

nullTi-natNd 

ND 

natTi-natNd 

HEXRD 
Mean 

𝑏𝑇𝑖 (fm) 4.669 -5.692 -3.438 -3.438 0.000 22*  

𝑏𝑁𝑑 (fm) 7.690 7.690 2.914 13.434 7.690 60*  

𝑏𝑂 (fm) 5.803 5.803 5.803 5.803 5.803 8*  

〈𝑏〉2 (fm2) 32.64 9.85 10.32 18.35 20.73 281.3*  

𝑊𝑇𝑖𝑇𝑖  0.0412 0.2031 0.0707 0.0398 0.0000 0.1062  

𝑊𝑇𝑖𝑁𝑑  0.0557 -0.2248 -0.0491 -0.1274 0.0000 0.2374  

𝑊𝑇𝑖𝑂  0.2680 -1.0828 -0.6242 -0.3511 0.0000 0.2020  

𝑊𝑁𝑑𝑁𝑑  0.0188 0.0622 0.0085 0.1019 0.0296 0.1326  

𝑊𝑁𝑑𝑂  0.1808 0.5992 0.2168 0.5620 0.2847 0.2257  

𝑊𝑂𝑂  0.4355 1.4430 1.3773 0.7747 0.6857 0.0960  

𝑊𝑇𝑖𝑇𝑖
′   4.1 5.6 3.0 2.0 0.0 10.6 4.2 

𝑊𝑇𝑖𝑁𝑑
′   5.6 6.2 2.1 6.5 0.0 23.7 7.4 

𝑊𝑇𝑖𝑂
′   26.8 30.0 26.6 17.9 0.0 20.2 20.2 

𝑊𝑁𝑑𝑁𝑑
′   1.9 1.7 0.4 5.2 3.0 13.3 4.2 

𝑊𝑁𝑑𝑂
′   18.1 16.6 9.2 28.7 28.5 22.6 20.6 

𝑊𝑂𝑂
′   43.5 39.9 58.7 39.6 68.6 9.6 43.3 

* The natural abundance sample was used for HEXRD, for which the 𝑄-dependent atomic form factors, 

𝑓(𝑄), are used instead of the coherent neutron scattering length, 𝑏, to calculate the weighting factors. Form 

factors and weighting factors for HEXRD listed here are for 𝑄 = 0 Å-1. 

Atomic fractional concentrations are 𝑐𝑁𝑑 = 0.1018, 𝑐𝑇𝑖 = 0.2485, 𝑐𝑂 = 0.6497. Scattering lengths for pure 

isotopes are taken from Sears6, and the elemental scattering lengths shown here are calculated using 

certificates of analysis for the isotope-enriched powders. 

 

Table S3. Chemical purity and isotopic enrichment of starting powders for glass synthesis. 

Powder Purity (%) Enrichment (%) 

natTiO2 99.99 -- 

46TiO2 98.05 97.0 

48TiO2 98.98 96.2 

natNd2O3 99.999 -- 

144Nd2O3 99.99 98.7 

145Nd2O3 > 98 91.7 

 

  



 

Table S4. Parameters for starting atomic potentials in EPSR. 

Ion Charge (e) 𝜺 (kJ mol-1) 𝝈 (Å) Mass (amu) Ref. 

Ti4+ +2 2.23 1.6 47.88 9 

Nd3+ +1.5 1.5 2.8 144.24 -- 

O2- -1 0.92 3.0 16.00 9 

 

 

Structure factor data for the five ND and one X-ray measurements are provided as text file attachments in 

the Supplementary Information: 

 SoQ_ND_46Ti_natNd.dat 

 SoQ_ND_48Ti_natNd.dat 

 SoQ_ND_natTi_144Nd.dat 

 SoQ_ND_natTi_145Nd.dat 

 SoQ_ND_nullTi_natNd.dat 

 SoQ_Xray.dat 
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