

Development of lung diffusion to adulthood following extremely preterm birth

Emma Satrell^{1,2}, Hege Clemm ^{1,3}, Ola Drange Røksund ^{3,4}, Karl Ove Hufthammer ⁵, Einar Thorsen, Thomas Halvorsen ^{1,3} and Maria Vollsæter^{1,3}

¹Dept of Clinical Science, University of Bergen, Bergen, Norway. ²Dept of Pediatric and Adolescent Medicine, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway. ³Dept of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway. ⁴Faculty of Health and Social Sciences, Western Norway University of Applied Sciences, Bergen, Norway. ⁵Centre for Clinical Research, Haukeland University Hospital, Bergen, Norway.

Corresponding author: Emma Satrell (emma.satrell@uib.no)

Shareable abstract (@ERSpublications)

Pulmonary diffusing capacity following extremely preterm (EP) birth was reduced compared with term-born subjects. From mid-childhood to adulthood, development tracked in parallel in the EP and term-born groups, with preterms following lower trajectories. https://bit.ly/3ARPD7D

Cite this article as: Satrell E, Clemm H, Røksund OD, *et al.* Development of lung diffusion to adulthood following extremely preterm birth. *Eur Respir J* 2022; 59: 2004103 [DOI: 10.1183/13993003.04103-2020].

This single-page version can be shared freely online.

Copyright ©The authors 2022.

This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org

Received: 6 Nov 2020 Accepted: 21 Sept 2021

Abstract

Background Gas exchange in extremely preterm (EP) infants must take place in fetal lungs. Childhood lung diffusing capacity of the lung for carbon monoxide (D_{LCO}) is reduced; however, longitudinal development has not been investigated. We describe the growth of D_{LCO} and its subcomponents to adulthood in EP compared with term-born subjects.

Methods Two area-based cohorts born at gestational age \leq 28 weeks or birthweight \leq 1000 g in 1982–1985 (n=48) and 1991–1992 (n=35) were examined twice, at ages 18 and 25 years and 10 and 18 years, respectively, and compared with matched term-born controls. Single-breath $D_{\rm LCO}$ was measured at two oxygen pressures, with subcomponents (membrane diffusion ($D_{\rm M}$) and pulmonary capillary blood volume ($V_{\rm C}$)) calculated using the Roughton–Forster equation.

Results Age-, sex- and height-standardised transfer coefficients for carbon monoxide ($K_{\rm CO}$) and $D_{\rm LCO}$ were reduced in EP compared with term-born subjects, and remained so during puberty and early adulthood (p-values for all time-points and both cohorts ≤ 0.04), whereas alveolar volume ($V_{\rm A}$) was similar. Development occurred in parallel to term-born controls, with no signs of pubertal catch-up growth nor decline at age 25 years (p-values for lack of parallelism within cohorts 0.99, 0.65, 0.71, 0.94 and 0.44 for z- $D_{\rm LCO}$, z- $V_{\rm A}$, z- $V_{\rm CO}$, $V_{\rm A}$ and $V_{\rm C}$, respectively). Split by membrane and blood volume components, findings were less clear; however, membrane diffusion seemed most affected.

Conclusions Pulmonary diffusing capacity was reduced in EP compared with term-born subjects, and development from childhood to adulthood tracked in parallel to term-born subjects, with no signs of catchup growth nor decline at age 25 years.

