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Appendix A: Dimensionless Equations

Following the physical parameter values used in our model described in the Table 1, we
proceed to turn our dynamical equations dimensionless as prescribed in the main text.
The characteristic scales for length, time, velocity and force are calculated as l0 = 1.76392
nm,ω−1

d = 0.00285714 s, v0 = 617.373 nm/s and f = 2.33854 pN.
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Appendix B: Jacobian

The Jacobian matrix (J ) is computed to obtain the linearisation about the fixed points of
the system which are calculated in the main text. The number of dynamical variables and
concerning differential equations is 4, therefore the Jacobian matrix is of the order 4× 4
and contains 16 elements as shown in Eq. (S.2).
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The elements of the Jacobian matrix, Ji j , are explicitly calculated and the full matrix is
depicted below,
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The characteristic polynomial of the Jacobian has the form mentioned in Eq. 7,

P (λ) =λ4+Aλ3+Bλ2+Cλ+D = 0 (S.4)

which is a fourth order polynomial equation, where A is trace of matrix J or –Tr[J ],
and D is determinant or Det[J ]. The coefficients are explicitly calculated as follows,
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Nature and properties of the eigenvalues are dependent on the sign of the coefficients
A, B, C and D. We explore the algebra of polynomial equations to ascertain the features of
the roots that they possess, which in turn provides us with the dynamical phases without
explicitly solving the differential equations governing the system. In the following section,
we shall detail a method to systematically determine the characteristics of algebraic roots
of a real valued polynomial equation.

Appendix C: Newton’s Rules for computing types and signs of
roots

Newton formulated a set of rules that furnishes a lower bound for the cardinality of imagi-
nary roots of a polynomial, in addition to the upper bound of positive roots, by taking into
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account the permanences and variations in an order of signs as procured from the poly-
nomial.

Given a polynomial P (x ),

P (x ) = n C 0an x n + n C 1an−1 x n−1+ n C 1an−1 x n−1+ · · ·+ n C n−1a1 x + n C 0a0 (S.9)

Simple elements are denoted as an , an−1, an−2, . . . , a1, a0. Quadratic elements are de-
noted as Qr , where Qr is defined as follows,
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Theorem 0.1 (Newton’s Incomplete Rule) Supposing that the quadratic elements for a poly-
nomial P (x )are all non-zero, the number of variations of signs in the sequenceQn ,Qn−1, . . . ,Q0

provides a lower bound for the number of imaginary roots of P (x ).

To obtain Newton’s complete rule, one has to look at the sequences of both simple and
quadratic elements,

an an−1 an−2 . . . a1 a0

Qn Qn−1 Qn−2 . . . Q1 Q0

By concentrating on associated pairs i.e.,

. . . ar+1 ar . . .

. . . Qr+1 Qr . . .

We are to look for possibilities of sign changes in the aforementioned pair by denoting
them by their permanence i.e. no changes in sign and variance i.e. changes in sign in the
following manner: a lowercase v denotes variance in sign of upper element of the pairs,
an upper-case V denotes variance in the sign of lower element of the pairs, a lower-case p
denotes permanence of sign of upper element of the pairs and an upper-case P denotes
permanence of sign of lower element of the pairs. By instating this schema, we obtain four
possible ways the signs can change in a pair — vV, vP, pV and pP.

Theorem 0.2 (Newton’s Complete Rule) Supposing a non zero simple and quadratic ele-
ments of P (x ), then the total number of double permanences, written as

∑

p P is an upper
bound of number of negative roots and total number of variance-permanences, written as
∑

v P is the upper bound of positive roots.

Corollary 1 The total number of real roots are the sum of double permanences and variance-
permanences.
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Lower Limit Coefficient Upper Limit

8.35772 A 10.2638

-2.53967 B 13.2611

-0.0142965 C 4.15717

0 D 0.0129296

Table S1: The limits on the values of coefficients A,B,C & D

Therefore total number of real roots is equal to total number of permanences in quadratic
elements i.e.
∑

P . This is an upper bound of the real roots. Thus n−
∑

P =
∑

V is the lower
bound of number of complex roots. We may now proceed with using these rules to obtain
the bounds on types of roots for a quartic polynomial with real coefficients that appears as
a characteristic polynomial for our system.

A quartic polynomial P4(x ) has the following form,

P4(x ) =
4C 0a4 x 4+ 4C 1a3 x 3+ 4C 2a2 x 2+ 4C 3a1 x + 4C 4a0

= a4 x 4+4a3 x 3+6a2 x 2+4a1 x +a0 (S.12)

Comparing it with the quartic polynomial of the form x 4+Ax 3+Bx 2+Cx+D, as used in
the main text, the simple elements are calculated to be a4 = 1, a3 =A/4, a2 = B/6, a1 = C/4
and finally a0 = D. Similarly, the quadratic elements are Q4 = 1,Q3 = A2/16− B/6,Q2 =
B2/36−AC/16,Q1 = C2/16−BD/6 and Q0 =D2.

It is possible to numerically show that any quartic polynomial will have at most 14 dif-
ferent combinations of roots. Our system has two constraints on the characteristic poly-
nomial due to the fact that two of the coefficients, A and D are entirely positive inside the
relevant parametric space, thus leaving only 4 possible combinations of signs for B and C,
as we shall observe. The coefficients of the characteristic polynomial have the following
limits in the parametric space,

We proceed with finding the bounds on cardinality of different types of roots for our
system by calculating the simple and quadratic elements as described earlier with different
combinations of coefficients under the bounds laid down in Table S1.

CASE I Both B and C are positive

The simple elements do not have a change in sign which prohibits roots with
positive R part. Σv P being zero throughout confirms this.

a + + + + + Σp P is 4, either 2 (–) R roots & 2 C roots with (–) R part,
or 4 (–) R rootsQ + + + + +

a + + + + +
Σp P is 2, 2 (–) R roots & 2 C roots with (–) R part

Q + + + – +

a + + + + +
Σp P is 2, 2 (–) R roots & 2 C roots with (–) R part

Q + + – + +
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a + + + + +
Σp P is 2, 2 (–) R roots & 2 C roots with (–) R part

Q + + – – +

CASE II B is positive but C is negative

a + + + – +
Σp P =Σv P = 2, maximum 2 (+) and 2 (–) R roots

Q + + + + +

a + + + – + Σp P is 2, and Σv P is 0, i.e. maximum 2 (–) R roots but
no (+) R rootsQ + + + – +

CASE III B is negative but C is positive

a + + – + +
Σp P =Σv P = 2, maximum 2 (+) and 2 (–) R roots

Q + + + + +

a + + – + + Σp P is 2, and Σv P is 0, i.e. maximum 2 (–) R roots but
no (+) R rootsQ + + – + +

CASE IV Both B and C are negative

a + + – – +
Σp P =Σv P = 2, maximum 2 (+) and 2 (–) R roots

Q + + + + +

We proceed to collate various possible combinations of roots, as predicted by Newton’s
rules of signs, in Table S2.

From Table S2, we can conclude, with λ j s, where j = 1, ..., 4, denoting four eigenvalues,
miscellany of positive and negative B, and C lead to the following combination of eigen-
values: (i) λ1,2,3,4 all are real negative, (ii) λ1,2 real negative and λ3,4 real positive, (iii) λ1,2

real negative and λ3,4 = −α ± iβ , and (iv) λ1,2 real negative and λ3,4 = α ± iβ . α and β
are real positive numbers. Case (i) corresponds to linearly stable (s) phase where a per-
turbation decays exponentially with time and the system returns to its fixed point. Case
(ii) is characterized by exponentially growing perturbations in time and called unstable (u)
phases. Instability in our system is established when all the clutches are detached from the
actin filament and it is is freely pulled by the molecular motors. Stable spiral (ss) or oscil-
lation decaying with time is the characteristic property of case (iii), which reaches stable
(s) phase at long time scale. Growing oscillation in time is a hallmark of unstable spiral
(us) that originates from the presence of positive real part of the complex eigenvalues as
indicated in (iv). Going beyond the ambit of linear stability and numerically solving the
coupled non-linear equations, presents the unstable spiral phase as a precursor of stable
oscillation in the system, as shown in Fig. 3.
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Signs of Coefficients Types of Roots

B C λ1 λ2 λ3 λ4

+ +
−R −R −R −R
−R −R −R(C) −R(C)

+ − −R −R +R +R
−R −R +R(C) +R(C)

− +
−R −R +R +R
−R −R +R(C) +R(C)

− − −R −R +R +R
−R −R +R(C) +R(C)

Table S2: Possible roots (λi ) resulting from various combination of signs of B and C. R de-
notes real roots and R(C) refers to real parts of complex roots.

Appendix D: Coefficients for the case where the clutches are
always bound to the filament

The coefficients A′,B′ and C′ are given as follows:
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