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ABSTRACT Force fluctuations exhibited in focal adhesions that connect a cell to its extracellular environment point to the com-
plex role of the underlying machinery that controls cell migration. To elucidate the explicit role of myosin motors in the temporal
traction force oscillations, we vary the contractility of these motors in a dynamical model based on the molecular clutch hypoth-
esis. As the contractility is lowered, effected both by changing the motor velocity and the rate of attachment/detachment, we
show analytically in an experimentally relevant parameter space, that the system goes from decaying oscillations to stable limit
cycle oscillations through a supercritical Hopf bifurcation. As a function of the motor activity and the number of clutches, the sys-
tem exhibits a rich array of dynamical states. We corroborate our analytical results with stochastic simulations of the motor-clutch
system. We obtain limit cycle oscillations in the parameter regime as predicted by our model. The frequency range of oscillations
in the average clutch and motor deformation compares well with experimental results.
SIGNIFICANCE The large variability in traction force measurements shows that it is imperative to understand the major
regulatory parameters that set the magnitude of these forces and properly characterize the cell contractile state. In
particular, these measurements in mature focal adhesions (FAs) reveal that individual FAs act autonomously, exhibiting
either stable or dynamically fluctuating traction. We show the explicit role of myosin contractility analytically in these force
fluctuations, in an experimentally relevant parameter space. With varying contractility, the system exhibits a rich array of
dynamical states and shows stable limit cycle oscillations with frequencies comparable with those observed in
experiments.
INTRODUCTION

Cellular migration plays a critical role in a host of biological
processes starting from embryonic development to the
immunological response of the cell as well as wound heal-
ing (1–6). The disruption of cellular migration can lead to
cancer metastasis and other chronic inflammatory diseases.
The process of cell migration involves the sophisticated
regulation of the machinery of the actomyosin complex,
comprising the actin filaments and the myosin motors, the
adaptor proteins, which are linked to the actin, and their sub-
sequent linking to the transmembrane proteins, which con-
nect to the cell microenvironment (7–11). Both in vitro
and in vivo experiments have provided in-depth understand-
ing of the role of each of the individual components of this
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extensive machinery as well as how they work in unison.
In vitro studies on two-dimensional substrates have pro-
vided valuable information about how cells interact with
the substrate and move on it and how cell speeds are modu-
lated depending on several mechanical and chemical cues.
Although the various components of this process are well
known, the measurement of the mechanical forces shows
significant variability at the cellular level (12–15), making
it imperative to decipher the key parameters that regulate
them.

The entire molecular assembly involved in cell migration,
called the adhesion complex, is highly dynamic with a con-
stant attachment/detachment kinetics between the various
elements linking the cytoskeleton to the extracellular ma-
trix. The combined effect of the myosin motors exerting
contractile forces and the polymerization of filamentous
actin pushing against the cell membrane drives a ‘‘retro-
grade flow’’ of actin toward the center of the cell. The ‘‘mo-
lecular clutch’’ hypothesis posits the focal adhesions (FAs)
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as mechanical clutches that act as dynamic linkages in the
transmission of forces between the actin filament and the
transmembrane proteins, converting the retrograde flow to
forward movement of the cell (16) (Fig. 1 a).

Apart from the in vitro and in vivo experimental studies,
theoretical models have been proposed, which have proved
helpful in understanding cell migration both at the cellular
and molecular scales. Earlier theoretical studies (17–29)
have predominantly looked at the response of the cell to
varying substrate rigidity and predict a biphasic relationship
between rigidity and force, i.e., forces first increase and then
decrease with rigidity. DiMilla et al. (17) combined a visco-
elastic-solid model for a cell and adhesion receptor-ligand
binding kinetics for the adhesion bonds to predict how the
movement of the cell on a rigid substrate can vary with
contractility and receptor-ligand kinetics. In certain param-
eter regimes, the cell speed was shown to be biphasic, with
the maxima decided by a balance between contractility and
adhesiveness. Using a force-based dynamic approach, Za-
man et al. (30) developed a computational model for cell
migration in three-dimensional matrices. Similar to the sit-
uation in two-dimensional substrates, a biphasic behavior
of cell speed with varying adhesivity is predicted. Trans-
membrane proteins such as integrins have been modeled
as Hookean springs with detachment rates increasing with
the load force, demonstrating that the clustering of proteins
increases with the increase of the stiffness of the substrate. A
stochastic motor-clutch model introduced by Chan and
Odde (21) was able to describe the load-and-fail character-
istic of cellular force transmission, which has been observed
experimentally in migrating cells. This model takes the
force-velocity relationship of the myosin motors into ac-
count, incorporates the load-and-fail dynamics of cellular
adhesions, and predicts an optimal stiffness of the substrate
when the force transmission is maximal, and the actin retro-
grade flow is minimal.

Recent experiments using time-lapse traction force mi-
croscopy have shown that the local forces exerted by indi-
a

FIGURE 1 (a) Schematic of the cell migration machinery showing the myosi

proteins (talin) and transmembrane proteins (integrin) form the focal adhesions

(b) Motor-clutch model showing the motors and clutches as elastic springs and a

rections. To see this figure in color, go online.
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vidual FAs vary spatiotemporally, suggestive of a repeated
tugging of the extracellular matrix/substrate (9,15). Mature
FAs exist in two states: a stable state with spatially and
temporally invariant traction and a dynamic state in which
they fluctuate indicative of a tugging mechanism on the
extracellular membrane. These force fluctuations are a
possible molecular mechanism for the cell to tightly control
cellular movement based on any environmental cues
(31,32). The physical understanding of the fluctuations
within an integrated cell migration model is an open prob-
lem. Myosin contractility is one of the ideal candidates to
give rise to these fluctuations since earlier mathematical
models have predicted that the collective activity of motors
on elastic materials can lead to spontaneous oscillations in
the activity of local contractile units (33).

In this paper, we theoretically explore the specific role
of myosin II activity in the molecular clutch setting
(13,34–43). Activity in myosin II is incorporated via both
by its attachment-detachment dynamics with the actin fila-
ment, and the velocity of the attached myosin motor pro-
teins (MPs). How does the variation of the activity of
these motors affect the dynamical stability of the molecular
clutch system? Furthermore, can we quantitatively estimate
the local fluctuations resulting from the spontaneous
oscillations of these local contractile units? Unlike earlier
theoretical models, we focus instead on the stability
of the MP-actin-clutch sector only and show that a
variation of the activity of myosin motors gives rise to a
multitude of dynamical states. Specifically, for a wide
range of experimentally accessible parameter space, the
system exhibits spontaneous decaying oscillations in a sta-
ble spiral region crossing into a stabilized, oscillatory re-
gion via a supercritical Hopf bifurcation (44). We also
discuss the specific nature of these oscillations and their
connection to the traction force fluctuations observed in
the experiments. We incorporate stochasticity into the
problem and show that the primary features of the model
are retained.
b

n motors and actin bundle that constitute the cytoskeletal network. Adapter

(FAs) linking the cytoskeletal network to the extracellular matrix/substrate.

n inextensible actin bundle with 5 showing the anterograde/retrograde di-



TABLE 1 Physical parameters present in the system

Parameter Symbol Values

Motor attachment rate ua 40 s–1 (47)

Motor detachment rate u0
d 350 s–1 (47)

Total number of motors Nm 100

Clutch attachment rate kon 1 s–1 (21)

Clutch detachment rate koff 0.1 s–1 (21)

Back velocity vb 0:2256 mm s�1 (47)

Stall force fs 4.96 pN (47)

Detachment force fd 2.4 pN (48)

Clutch bond rupture force Fb 6.25 pN (22)

Motor spring constant km 0.3 pN/nm (47)

Clutch spring constant kc 0.03144 pN/nm (49)

Viscous friction coefficient G 893 kB Ts/mm2 (50)

Focal adhesions and myosin contractility
METHODS

Model description

We consider a geometric arrangement consisting of a filamentous

actin bundle in the vicinity of myosin II motors and molecular clutches

(21–23). The myosin motors are rigidly fixed at one end while the other

end attaches to the F-actin bundle and induces a retrograde flow by applying

a force on the bundle. Molecular clutches have one end irreversibly attached

to a substrate while the other end engages reversibly with the F-actin bundle

and resist the retrograde flow. The force that is built up in the attached mo-

lecular clutches leads to a traction force that is balanced by the tension and

deformation in the substrate as depicted in Fig. 1 b. In our model, we

consider the motor-clutch and substrate sector as separate blocks with the

substrate deformation solely governed by the dynamical force balance in

the motor-clutch sector.

Myosin contractility and the resultant force generation is dependent on

its attachment-detachment dynamics (45,46). Myosin motors are modeled

as stretchable springs, which, due to energy consumption via the hydrolysis

of ATP, undergo attachment-detachment dynamics to/from the F-actin

bundle. One end of the spring is fixed while the other end attaches (de-

taches) to (from) the F-actin with rates ua and ud , respectively. Following

well-established theoretical approaches for molecular motors, their detach-

ment rates are considered to increase exponentially with a load force jflj as
ud ¼ u0

dexp ðjflj =fdÞ, where fd sets the force scale and u0
d is the bare

detachment rate. Extension yi of the i-th MP leads to a load force f il ¼
kmy

i, where km is the force constant. Thus the average load force on motors

is fl ¼ kmy, where y ¼ 1
nm

Pnm
i¼1y

i denotes the average extension of these

MPs. With Nm MPs available on average and nm of them attached to the

actin bundle at time t, the kinetics of the attached MPs is given by

dnm
dt

¼ uaðNm � nmÞ � u0
dnm exp

�jflj
fd

�
: (1)

In their attached state, MPs move along the filament bundle with a veloc-

ity vmðflÞ, which is dependent on the load force that it experiences, predom-

inantly toward one end of the filament. We model this behavior with the

piecewise linear force-velocity relation

vmðflÞ ¼

8>>>><
>>>>:

vu for fl%0

vu

�
1� fl

fs

�
for 0<fl%fs

vb for fl>fs

; (2)

where fs is the stall force when the MP ceases to move, vu is the intrinsic

motor velocity without load, and vb is a back velocity.

The motion of the MPs on the actin bundle induces the retrograde motion

of the actin. The clutches are also modeled as extensible elastic springs with

spring constant kc. One end of a clutch is attached to the actin bundle while

the other end is attached to an elastic substrate with stiffness ks (Fig. 1 b).

Retrograde motion of the actin bundle due to myosin contractility leads to

an extension xic in the i-th attached clutch. The substrate extension, xs, is

determined by an elastic force balance between the total force due to the

attached clutches and the spring force due to the substrate. We consider

Nc to be the total number of available clutches, nc as the number of clutches

attached at a given time, and xc ¼ 1
nc

Pnc
i¼1x

i
c as the average extension of con-

nected clutches. The dynamics of the average clutch deformation xc is

determined by a mechanical balance of forces in the over-damped limit,

G
dxc
dt

¼ � nmkmy� nckcxc; (3)

where the viscous force due to motion of clutches, designated by viscous

friction coefficient G, is balanced by the total restoring forces of both mo-
tors and clutches. Note that the negative sign in the force expression for the

clutches in the above equation is a matter of convention since xc takes nega-
tive values. Within our assumption of treating the motor-clutch sector and

substrate sector as separate blocks, the deformation of the substrate can

be independently calculated using the force balance ksxs ¼ � nmkmy�
nckcxc. This allows us to focus on the stability of the motor-clutch sector

alone.

The rate of mean extension of an attached MP is determined by the active

motor velocity vm on the filament and the rate of average deformation of the

attached clutches. This is given as

dy

dt
¼ vmðflÞ þ dxc

dt
: (4)

Clutches undergo attachment-detachment dynamics with rates kon and

koff , respectively. The clutch detachment rate is again assumed to be expo-

nentially increasing with the load force, koff ¼ k0off exp ð��f cl �� =FbÞ, where Fb

is the force scale for bond rupture. Similar to the MPs, the average load

force on clutches is f cl ¼ kcxc. The attachment-detachment dynamics of

the clutches gives rise to the following rate equation

dnc
dt

¼ konðNc � ncÞ � k0offnc exp

���f cl ��
Fb

�
: (5)

We present a detailed analysis of the stability of the MP-filament-clutch

system, emphasizing the effect of the activity of myosin motors both in

terms of the motor velocity and attachment/detachment kinetics. The phys-

ical parameters used in our model are described in Table 1. Choosing the

length, time, velocity, and force scales as l0 ¼ ðkbT=u0
dGÞ1=2, t ¼ 1=u0

d ,

v0 ¼ l0u
0
d , and f ¼ ðu0

dGkbTÞ1=2, respectively, Eqs. 1, 3, 4 and 5 are cast

in dimensionless form with ~u ¼ ua=u
0
d , ~vu ¼ vu=v0, ~kon ¼ kon=u

0
d ,

~koff ¼ koff=u
0
d , ~xc ¼ xc=l0, ~y ¼ y=l0, ~kc ¼ kcl0=f , ~km ¼ kml0=f , and

~f s ¼ fs=f (see supporting material: Appendix A). Attachment/detachment

dynamics is varied using a turnover ratio defined as U ¼ ua=ðua þu0
dÞ.

A dynamical modeling of the system provides us with the basic building

blocks of understanding the mechanics of motility in the absence of noise.

We proffer a linear stability analysis of the system, numerical solutions of

the differential equations, illustrate the morphologies, and characterize the

detailed dynamics.
Stochastic simulation of a motor-clutch system

We model the actin filament as a rigid string of connected s ¼ 5:5 nm seg-

ments (45,51). The i-th myosin motor can attach to an actin segment sto-

chastically with the rate ua. At the moment of attachment, the extension

of the MP, yi, is zero. Post attachment, the MP moves by a length scale s

toward the plus (minus) end of the actin filament with a velocity vm, where
Biophysical Journal 121, 1753–1764, May 3, 2022 1755
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vm is given by Eq. 2. The total extension of the attached MP, yi, is deter-

mined by the active motor velocity vm on the filament and the deformation

of the attached clutches. The MPs detach from the actin filament with a rate

ud ¼ u0
d expðkmjyij =fdÞ.

The i-th clutch undergoes attachment and detachment dynamics with

rates kon and koff ¼ k0off exp ðkc
��xic��Þ, respectively. After attachment, the

clutch deformation xic is determined from the following stochastic equation

G _xic ¼ �
Xnm
i¼ 1

kmy
i �

Xnc
i¼ 1

kcx
i
c þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2GkBT

p
hTðtÞ; (6)

as opposed to Eq. 3. Here, hTðtÞ is a Gaussian noise with ChTðtÞ¼ 0D and
ChTðtÞhTðt0ÞD ¼ dðt � t0Þ. We numerically integrate the above equation us-

ing a Euler-Maruyama scheme with time steps small enough that the prob-

ability of each event is less than one. The stochastic simulations were

performed using programs written in Fortran.
RESULTS

The steady-state solutions, i.e., the fixed points ~x0c ,~y0, n
0
m, and

n0c , of the scaled dynamical equations are obtained as ~y0 ¼
~f s=~km, n

0
m ¼ ~uNm=ð~uþexpð~f s =~f dÞÞ, and ~x0c ¼ � n0m

~f s=

n0c~kc. Thus, the extension of the clutches in steady state is
governed by the ratio of the numbers of attached motors

and attached clutches. n0c is determined by solving the tran-
scendental equation,

~kon
�
Nc � n0c

� ¼ ~koffn
0
c exp

�
n0m
~f s

n0c
~Fb

�
: (7)

This equation, as we shall see, gives rise to a saddle-node
bifurcation with two branches—one stable and another
unstable.

The stability of these fixed points is tested by studying the
time evolution of small perturbations away from the steady
state. In that vein, the dynamical equations representing the
system in terms of MP extension, clutch extension, number
of attached motors, and number of connected clutches

can be linearized in matrix form, d
dt½d~xc; d~y; dnm; dnc�T ¼

J ½d~xc; d~y; dnm; dnc�T . Eigenvalues of the 4� 4 Jacobian ma-

trix J (see supporting material: Appendix B), determine the

linear stability of the dynamical system. The eigenvalues are
calculated by solving the fourth-order characteristic polyno-
mial equation,

PðlÞ ¼ l4 þAl3 þ Bl2 þ ClþD; (8)

where A, B, C, and D are the coefficients that are given in
terms of the scaled parameters (see supporting material:
Appendix B).

The nature and properties of the eigenvalues are depen-
dent on the sign of the coefficients A, B, C, and D. We
note that A is always real positive; however, the other three
coefficients can change sign and different combinations of
those signed coefficients determine the nature of the roots
of the quartic polynomial and related dynamical phases.
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With lk (k ¼ 1.4) denoting the eigenvalues, we get the
following combination: 1) all real negative eigenvalues cor-
responding to stable nodes where a perturbation decays
exponentially with time; 2) two real negative and two real
positive—both these combinations correspond to the unsta-
ble phase with exponentially growing perturbations; 3) two
real negative and two eigenvalues with l3;4 ¼ �a5ib re-
sulting in stable spiral phase with decaying oscillations;
and 4) two real negative and two eigenvalues with
l3;4 ¼ a5ib corresponding to the unstable spiral phase
with growing oscillations. We proceed with determining
the closed-form expressions for the possible phase bound-
aries present in our system. Wolfram Mathematica (52)
was used to numerically solve the dynamical equations us-
ing Implicit Differential-Algebraic Solver (53).
Phase boundary separating saddle-node
bifurcated stable and unstable branches

The stability of the two branches arising from a saddle-node
bifurcation in Eq. 7 can be characterized by checking
the sign of its derivative. A negative/positive value will
represent a stable/unstable branch of fixed points and the
bifurcation point can be obtained by solving Eq. 7 while
simultaneously setting its derivative with respect to n0c to
zero. The derivative equation is computed below,

�~kon �
�
~koff exp

�
n0m
~f s

n0c
~Fb

�
� ~koff

n0m
~f s

n0c
~Fb

exp

�
n0m
~f s

n0c
~Fb

�	
¼ 0;

(9)

with trivial algebra, it can be easily shown that this is exactly
the same as the phase boundary equation at D ¼ 0,

n0c
~kon~Fb þ ~koff exp

�
n0m
~f s

n0c
~Fb

��
~Fbn

0
c �~f sn

0
m

� ¼ 0: (10)

The bifurcation point is then calculated and marked in
Fig. 2 with a red dot. Using Eq. 7 one can simplify Eq. 10
and attain the following,

Ncn
0
c
~Fb ¼ n0m

~f s
�
Nc � n0c

�
: (11)

Confirming the presence of an unstable branch in theD<0
region, we shift our focus on the stable branch, where D>0,
and investigate the geometric properties of the quartic poly-
nomial with the change in sign of B and C. In the region
where Nc is lower than its value at the bifurcation point,
due to the absence of fixed points of n0c the system loses sta-
bility and remains unstable regardless of vu. Therefore, this
region is marked unstable on the phase diagram in Fig. 3 a.
Furthermore, the condition B>0 remains valid throughout
the scanned parameter regime. Consequently, the properties
of coefficient C associated with the linear part of the polyno-
mial PðlÞ mostly governs the nature of the eigenvalues.
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FIGURE 2 Transcendental nature of the n0c equation leads to a saddle-

node bifurcation with distinguishable branches—solid black curve repre-

senting the stable branch and dashed black line denoting the unstable

one. The red point denotes the bifurcation point of the system. To see

this figure in color, go online.

Focal adhesions and myosin contractility
Phase boundary between (un)stable nodes and
(un)stable spiral phases

The quartic polynomial PðlÞ is bound from below as the
term l4 comes with positive sign and has got two minima
and one maximum. Sign of C controls the position of the
minimum closer to the origin as B remains positive. When
Pm, a minimum of PðlÞ occurring near the origin, with
l ¼ lm, crosses the negative l axis (positive l axis), it turns
two complex conjugate eigenvalues with negative (positive)
real parts into real negative (real positive). Therefore, Pm ¼
0 denotes a boundary between phases with either a node or a
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FIGURE 3 (a) Phase diagram depicting dynamical phases in the Nc–~vu plane:

phases are portrayed using colored regions with labels—S, stable; SS, stable spira

parts—one arising from an absence of fixed points and another from the loss of sta

obtained by solving the dynamical equations numerically near the phase bound

The range of ~vu is equivalent to 0–9 mm/s, in physical units. The phase boundary

while the boundaries between U/US and SS/S are governed by Eq. 12. (Inset)

oscillations and corresponding evolution of nm, ~y, and j~xcj are shown in panels.

in physical units. The time t ranges from 8.5 to 10 s. (b) Supercritical Hopf bifurc

vu and stable limit cycle oscillations through a supercritical Hopf bifurcation as

Solid (dashed) line denotes their stable (unstable) nature. As the limit cycle grow

from 0.4 to 0.8 mm/s and 7 to 35 nm, respectively, in physical units. To see thi
spiral (refer to Fig. 3), where C>0 (C<0) provides a suffi-
cient condition for concluding that these fixed points are sta-
ble (unstable). A necessary and sufficient condition can be
obtained by finding the equation of a second phase boundary
which can be derived from the fact that we have two degen-
erate real roots lm at the boundary. Thus comparing the co-
efficients of various powers of l with those in Eq. 8, we
obtain a closed-form equation of the stability boundary,

2AD�� 9A2BCþ 2AB3 þ 3AC2 þ 40B2C�
þD2

�
27A4 � 144A2Bþ 192ACþ 128B2

�
:

þ C2
�
4A3C�A2B2 � 18ABCþ 4B3 þ 27C2

�
¼ 16D�B4 þ 9BC2 þ 16D2

�
(12)

Phase boundary between stable spirals and
unstable spirals

An oscillation increasing in time appears in the system,
switching from decaying oscillation as the parameter values
are tuned. It is characterized by a change in complex conju-
gate eigenvalues from ð�a5ibÞ to ða5ibÞ, which is an
occurrence of a dynamical transition between stable spiral
(SS) and unstable spiral (US). The sign of the real part of
the complex conjugate roots a is opposite in either sides
of the boundary and, thereupon, a ¼ 0 is the condition of
the associated phase boundary. Following the prescription
of the previous case, we calculate the equation of the bound-
ary as,
f (
H

z)

0
14

20 1.3
0.7

8.61

6.87

12

4

5 v~u|x~c|

b

n m

phase boundaries predicted by stability analysis and the resultant dynamical

ls; US, unstable spirals; and U, unstable. The unstable region consists of two

bility due to C<0. A dashed line is used to separate them. Colored points are

aries—stable ( ); decaying oscillations ( ); and limit cycle oscillations ( ).

demarking Hopf bifurcation, i.e., between US and SS, is provided by Eq. 13,

Time evolution: at Nc ¼ 4 and ~vu ¼ 2 the system shows stable limit cycle

The ranges of j~xcj and ~y are equivalent to 0–80 and 0–53 nm, respectively,

ation: at Nc ¼ 10, the system shows decaying oscillations at higher values of

~vu is lowered. The straight line shows the fixed points in the nm� j~xcj plane.
s with decreasing ~vu, its frequency starts to reduce. Here vu and jxcj range

s figure in color, go online.
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ABC ¼ A2Dþ C2: (13)

SS to US transition is the route through which stable limit
cycle oscillation sets in the system via non-linear effects
leading to Hopf bifurcation. At the bifurcation boundary,
we can work out an expression for the frequency as fu ¼
ð2pÞ�1

ffiffiffiffiffiffiffiffiffiC=Ap
.

Force fluctuations: Regulatory pathway via Hopf
bifurcation

To quantify the explicit effect of myosin activity, we present
a phase diagram in ~vu and Nc plane that illustrates the
different dynamical behaviors of the motor-clutch system
(Fig. 3 a). As observed earlier, Nc controls the saddle-
node bifurcation and vu regulates the activity of the myosin
motors, providing an apt parameter space for the model
mechanics. Earlier experimental studies (54–56) have estab-
lished myosin force-velocity relations and ensemble mea-
surements with unloaded motor velocities. We used the
broad range of 0–10 mm/s for vu in our study. These predic-
tions are evaluated by the numerical solutions of the differ-
ential equations over the entire parameter space. The phase
boundaries predicted by the linear stability analysis are
exact. At high motor velocities, the system is in a stable
state. As the motor velocity is reduced, the system moves
into a stable spiral state as seen by the inward spiraling
curve in the nm � xc phase plane (Fig. 3 b). With sufficient
number of clutches available, as ~vu is lowered, the oscilla-
tions in the stable spiral region take gradually increasing
amount of time to decay and cross into a stabilized, oscilla-
tory region via a supercritical Hopf bifurcation. This indi-
cates a limit cycle around an unstable fixed point in the
nm � xc plane. The temporal oscillations of the clutch and
motor deformations in the US regime are shown in Fig. 3
a (inset). At sufficiently low motor velocities, ~vu, the system
moves from a region of instability to US on increasing Nc.

The physical understanding of the stability mechanism in
the motor-clutch system is achieved via two balancing acts:
stalling of motors with a particular extension given by
~km~y0 ¼ ~f s and the force balance n0m

~f s ¼ n0c
~kcð� ~x0cÞ. The

modalities of this mechanism are corroborated by the nu-
merical solutions of the dynamical equations across a range
of active velocities in Fig. 4. At high ATP concentrations,
motor velocities (vu) are high (Fig. 4 a), leading to large ex-
tensions and hence stalling of motors is quickly established.
The clutch extension attains the overall force balance condi-
tion and the system becomes stable. With higher number of
clutches, stability is attained at higher ~vu. At low ATP con-
centrations (Fig. 4, b and c), with slower moving motors, the
forces exerted by motors on the actin filaments result in slow
retrograde movement of the filament, which in turn reduces
motor deformation ~y and increases clutch extension ~xc.
Reduction in ~y results in an increase in the number of motors
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(nm) with time, resulting in further retrograde movement of
the actin filament. Leftward movement of the filament is
stopped when nm reaches its maximum, whereas ~xc and nc
are at their near maximum and minimum, respectively.
Beyond this point, slow motor velocity results in detach-
ment of motors and the stored energy in the deformed clutch
sector ensures the anterograde movement of the filament.
Motor detachment continues, and the filament moves toward
less and less clutch deformation until it reaches a minimum.
~y attains maximum and the motor attachment rate takes over
its detachment rate as nm becomes minimum. The cycle con-
tinues. At very low ATP concentrations, with the motor ve-
locities (vu) very small (Fig. 4 d), the deformation ~y
continues to go down with the retrograde movement of the
actin filament. However, after reaching force balance, the
extremely slow movement of the motors means that the
motor extension beyond the point is never realized. The
clutches on the other hand are at their highest extension
and, with no relief, fail completely, which leads to
instability.

In Fig. 5, we vary myosin turnover, U, by tuning the
attachment rates of myosin. This provides another experi-
mentally tunable mechanism of changing myosin contrac-
tility. The phase diagram shows that, with increasing U,
the phase boundaries between the unstable (U)–US and
US–SS shifts toward larger ~vu and Nc, and the area enclosed
between them expands. This signifies that the MPs that have
a higher tendency to attach will also result in more persistent
limit cycles over larger areas in the parameter space.

Examining our system with tunable total motor/clutch
numbers allows us to probe the dynamic behavior under
another important experimentally viable parameter space.
Linear stability analysis in this space leads to the same array
of dynamic phases seen before.We also test the robustness of
predicted phase boundaries by incorporating numerical solu-
tions to the differential equations shown in Fig. 6 a. Time evo-
lutions of motor and clutch extensions at two points of
interests on the phase diagram are portrayed in the accompa-
nying plots in Fig. 6 b. We indeed find that, for a given value
of the motor velocity, there is a minimum number of motors
and clutches required to observe the oscillations.
Simulation output validates the motor-clutch
model

To check our results, we first consider the special case
where all clutches are attached permanently i.e., koff ¼ 0.
To present a comparison between the theoretical model
and the numerical simulations, we first present the results
from the dynamical equations. We now have three coupled
differential equations in the number of attached motors
(nm), the average deformation of a clutch (xc) and the
average deformation of a molecular motor (y). We obtain
the steady-state solution of the coupled scaled differential
equations as ~y0 ¼ ~f s=~km, n0m ¼ ~uNm=ð~uþexp ð~f s =~f dÞÞ,
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and ~x0c ¼ � n0m
~f s=Nc~kc. The transcendental equation in n

0
c is

now replaced by the constant Nc, as all the clutches are now
bound. We perform a linear stability analysis by studying
the time evolution of small perturbations away from the
steady state. This leads to a third-order characteristic poly-
nomial equation in the eigenvalues l as P0ðlÞ ¼ l3þ
A0l2 þ B0lþ C0, where A’, B’, and C are the new coeffi-
cients given in terms of scaled parameters (see supporting
material: Appendix D for details).

The coefficients determine the dynamical behavior of the
system, which has four different phases characterized by the
different combinations of the three eigenvalues: 1) all three
eigenvalues real negative that result in stable nodes; 2) one
negative and two real positive giving rise to a linearly unsta-
ble phase; 3) one real negative and two complex conjugate
with negative real part, characterizing a stable spiral phase
with decaying oscillations; and 4) one real negative and
two complex conjugate roots with positive real part charac-
terizing an US phase with oscillations of growing amplitude.
We can determine the different phase boundaries analyti-
cally as before. However, to show the comparison with nu-
merical simulations that incorporate stochasticity as
described above we concentrate on the phase boundary be-
tween the SS and US phases. The condition for the phase
boundary is C0 � A0B0 ¼ 0. Using numerical simulations
we show how the growing amplitudes of the oscillations
in the US phase are stabilized by non-linearities into stable
limit cycle oscillations.
Biophysical Journal 121, 1753–1764, May 3, 2022 1759
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In Fig. 7 a, we present the phase diagram of the system in
the ~v0 � ~fd plane. As we can observe, there are four phases,
with two being of particular interest: 1) corresponding to the
stable spiral phase SS characterized by decaying oscilla-
tions, and 2) corresponding to the unstable spiral phase
US characterized by stable limit cycle oscillations. We
also plot the phase boundary as obtained from our analytical
estimates, which shows reasonable agreement with the sim-
ulations. In the inset of Fig. 7 a, we show the dynamical
behavior of the scaled clutch deformation ~xc and the scaled
motor extension ~y in the stable limit cycle phase. The slow
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extension and the rapid decay of the clutch deformation is
reminiscent of the rapid detachment of MPs. The parametric
plot in Fig. 7 b, shows a stable limit cycle as expected. The
spread in the trajectories underlines the stochastic nature of
the simulations.

Having established the simulation model, we advanced to
verify the results for the situation where the clutches are free
to attach/detach to/from the actin filament. In Fig. 8 a, we
show the phase diagram obtained using the equations as
described in methods. As before, we see the five different
phases with the different phase boundaries. In Fig. 8 b, we
show a comparison of the limit cycle oscillations between
the theoretical calculations and numerical simulations
incorporating stochasticity arising from different sour-
ces—attachment/detachment of MPs and clutches to/from
the actin filament, stochastic extension of attached clutches
and MPs, and finally the Gaussian noise. As we can observe,
we do recover stable limit cycle oscillations in the given
parameter regime as predicted by our theoretical study.
DISCUSSION

The variability of cell traction force measurements suggests
that a mere readout of these forces may not be optimal in un-
derstanding the processes that regulate force generation and
subsequent transmission (12–15). It also points to the possi-
bility that a large part of the mechanical work due to acto-
myosin contractility is dissipated. Therefore there is a
need to discern the role of individual parameters in deci-
phering the mechanisms that regulate force generation. In
this work, we have established the explicit role of myosin
activity in generating rich dynamics within individual focal
adhesion complexes, focusing our attention on a subset of
the force regulation machinery involving the MPs and
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clutches while ignoring the substrate elasticity. While appli-
cable over a broad experimentally relevant parameter space,
our model reproduces stick-slip type behavior at lower
active velocities and successfully demonstrates self-sustain-
ing oscillations known to occur within FAs (15,31). Stochas-
tic simulations of the system validate the existence of
dynamical phases predicted by our model.

The coupled ordinary differential equations capture a
coarse-grained picture of the biomechanical processes at
play and act as a modular mechanism of traction force gen-
eration that can be joined together to devise complex acto-
myosin networks which partake in durotaxis. Force
fluctuations within FAs and concurrent oscillations in stress
fibers (molecular motors) have been observed in experi-
~ v u

Nc

1000

100

10

1

0 15 30 45

a

S

SS

US

U

FIGURE 8 (a) Phase diagram depicting dynamical phases in the Nc � ~vu plan

Convention wise, colored regions with labels indicate—S, stable; SS, stable spira

used to separate the two unstable regions discussed previously. Stochastic simu

decaying oscillations ( ), and limit cycle oscillations ( ). (b) Comparison of lim

the differential equations and the stochastic simulations. In physical units, xc ra
mental setups. Earlier theoretical models predicted the
spontaneous directed motions of MPs (57) and subsequently
a stick-slip type dynamics with the motor-clutch paradigm
(21,23). These models either assumed that the forces exerted
by the stress fibers on FAs are constant (19,21) or did not
take the roles of myosin contractility and attachment-
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duces a rich array of dynamical phases for a wide range of
biologically relevant parameters, not directly accessible
from these earlier models.

Furthermore, an in vitro experimental setup by Plaçais
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micron-sized bead optically trapped while its other end in-
teracts with myosin motors attached to a glass substrate.
The system shows spontaneous oscillations for a set of pa-
rameters, such as the density of motors and the stiffness of
the optical trap. This experiment directly corresponds to
the special case of the permanently bound clutch that
we have discussed in Fig. 7, the nc bound clutches giving
rise to an effective elastic loading as discussed in the
experiment.

Our choice to focus on the role of myosin stems from
experimental evidence of its role in the specific context of
force fluctuations in individual FAs and in regulating migra-
tion and mechanosensing (31,40,59). Our attempt to recog-
nize the key components that considerably influence the
force fluctuations in FAs has resulted in a significant model
simplification over that of Wu et al. (31) without sacrificing
experimentally accessible parameters and results. The
explicit role of myosin II in traction peak oscillations,
emerges as a natural consequence of the interaction between
the motor and clutch sectors of the cellular migration ma-
chinery. In Fig. 9 a, we have plotted the frequencies and
amplitude of limit cycle oscillations for a small number of
clutches at intermediate MP velocity in physical units for
the parameter values chosen in our study. With myosin II
motor velocity varying in the range of 0.5–2 mm/s, the oscil-
lations in the average MP and clutch deformations vary in
the range of 1� 10 Hz, which is an order of magnitude
higher than the typical oscillation frequencies in individual
FAs observed experimentally. However, the myosin detach-
ment rates (ud) that we considered in our study serve as an
upper bound. The mechanochemical cycle in myosin II mo-
tors broadly consists of ATP hydrolysis followed by actin-
binding, subsequent ADP release, and finally myosin
detachment. Reduction in the ADP release rate or lower
44
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ATP concentrations significantly affects the bare detach-
ment rate of myosin (60). In Fig. 9 b we look at the change
in the oscillation frequency for varying dissociation rates
and for different values of the active velocity (all expressed
in real units). We observe that the frequency for all values of
the active velocity increases with increasing dissociation
rate. There is a large range of dissociation rates and
active velocities for which the frequency is in the range
0� 1 Hz, consistent with experimental and microscopic
modeling results (31). In Fig. 9 c, we provide an example
of an oscillation in the clutch extension at experimentally
observed values.

It is worthwhile to discuss the effect of introducing mod-
ifications in our model based on experimental observations.
Both myosin and multiple components of the adhesion
clutch (e.g., integrins, talin, and vinculin) have been shown
to display catch-bond behavior, i.e., an increase in bond life-
time with increasing load for a specific range of force
(61,62). For example, force applied to integrins has been
shown to increase bond lifetimes by nearly an order of
magnitude. Recent experiments have also suggested a
direction-dependent catch-bond behavior in the binding of
vinculin (63), which is a component of both cadherin and in-
tegrin-based adhesion complexes, to actin filaments. Myosin
II isoforms have also shown catch-bond behavior, with the
detachment rates of myosin varying accordingly (45,64).
These results emphasize the need to incorporate catch
bond in the detachment rates of both motor and clutch.
Although we do not expect the mechanosensitivity of force
generation to be affected by the catch-bond kinetics, we do
expect the oscillation frequencies to be sensitive to such
behavior. The presence of an external force or a substrate
could change the timescales of attachment/detachment of
motor and clutch proteins.
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Substantially more critical is the effect of MP activity on
the substrate deformation, both by varying myosin velocity
and attachment/detachment dynamics. Most theoretical
studies which focus on force transmission in clutch models
where substrate rigidity is tuned, show a biphasic relation-
ship between substrate rigidity and force. This is understood
in terms of a loading rate, which is the speed at which forces
in the clutches build when they are engaged and is directly
controlled by the rigidity of the substrate (8). Experimental
observations suggest that force transmission is maximized
for a specific value of rigidity or loading rate. Inhibiting
myosin would lead to a decrease in the loading rate and
therefore would require a higher rigidity of the substrate
to reach the optimal value. Thus, although myosin inhibition
leads to a reduction in myosin contractility, force transmis-
sion is enhanced for a range of rigidity. This counterintuitive
result has been shown experimentally (16) using myosin in-
hibitor blebbistatin. Our model allows us to tune the myosin
activity specifically via the myosin detachment rate and ve-
locity, therefore providing a direct route to verify this coun-
terintuitive result and predict an experimentally tunable
parameter range to probe the mechanosensitivity of the mo-
lecular clutch.
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Appendix A: Dimensionless Equations

Following the physical parameter values used in our model described in the Table 1, we
proceed to turn our dynamical equations dimensionless as prescribed in the main text.
The characteristic scales for length, time, velocity and force are calculated as l0 = 1.76392
nm,ω−1

d = 0.00285714 s, v0 = 617.373 nm/s and f = 2.33854 pN.

d nm

dτ
= ω̃(Nm −nm )−nm exp

�

κ̃m ỹ

f̃d

�

d x̃c
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= k̃on(Nc −nc )− k̃offnc exp

�

−κ̃c x̃c

F̃b

�

(S.1)

Appendix B: Jacobian

The Jacobian matrix (J ) is computed to obtain the linearisation about the fixed points of
the system which are calculated in the main text. The number of dynamical variables and
concerning differential equations is 4, therefore the Jacobian matrix is of the order 4× 4
and contains 16 elements as shown in Eq. (S.2).

d

dτ







x̃c

ỹ
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(S.2)

The elements of the Jacobian matrix, Ji j , are explicitly calculated and the full matrix is
depicted below,
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κ̃m

f̃s
−n 0

m κ̃m − f̃s

0 0 −n 0
m
κ̃m

f̃d
exp
�

f̃s

f̃d

�

−ω̃−exp
�

f̃s

f̃d

�















(S.3)

The characteristic polynomial of the Jacobian has the form mentioned in Eq. 7,

P (λ) =λ4+Aλ3+Bλ2+Cλ+D = 0 (S.4)

which is a fourth order polynomial equation, where A is trace of matrix J or –Tr[J ],
and D is determinant or Det[J ]. The coefficients are explicitly calculated as follows,

A = k̃on+ k̃off exp

�

n 0
m f̃s

n 0
c F̃b

�

+n 0
c κ̃c + ṽu
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(S.8)

Nature and properties of the eigenvalues are dependent on the sign of the coefficients
A, B, C and D. We explore the algebra of polynomial equations to ascertain the features of
the roots that they possess, which in turn provides us with the dynamical phases without
explicitly solving the differential equations governing the system. In the following section,
we shall detail a method to systematically determine the characteristics of algebraic roots
of a real valued polynomial equation.

Appendix C: Newton’s Rules for computing types and signs of
roots

Newton formulated a set of rules that furnishes a lower bound for the cardinality of imagi-
nary roots of a polynomial, in addition to the upper bound of positive roots, by taking into
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account the permanences and variations in an order of signs as procured from the poly-
nomial.

Given a polynomial P (x ),

P (x ) = n C 0an x n + n C 1an−1 x n−1+ n C 1an−1 x n−1+ · · ·+ n C n−1a1 x + n C 0a0 (S.9)

Simple elements are denoted as an , an−1, an−2, . . . , a1, a0. Quadratic elements are de-
noted as Qr , where Qr is defined as follows,

For P (x ) =
n
∑

i=0

pn−i x n−i , Qr =
p 2

r

(n C r )
2 −

pr+1
n C r+1

pr−1
n C r−1

(S.10)

=
1

(n C r )
2

�

p 2
r −

n C r
n C r+1

n C r
n C r−1

(pr+1)(pr−1)

�

=
1

(n C r )
2

�

p 2
r −

n !
r !(n−r )!

n !
(r+1)!(n−r−1)!

n !
r !(n−r )!

n !
(r−1)!(n−r+1)!

(pr+1)(pr−1)

�

Finally, Qr =
1

(n C r )
2

�

p 2
r −

r +1

n − r

n − r +1

r
(pr+1)(pr−1)
�

(S.11)

Theorem 0.1 (Newton’s Incomplete Rule) Supposing that the quadratic elements for a poly-
nomial P (x )are all non-zero, the number of variations of signs in the sequenceQn ,Qn−1, . . . ,Q0

provides a lower bound for the number of imaginary roots of P (x ).

To obtain Newton’s complete rule, one has to look at the sequences of both simple and
quadratic elements,

an an−1 an−2 . . . a1 a0

Qn Qn−1 Qn−2 . . . Q1 Q0

By concentrating on associated pairs i.e.,

. . . ar+1 ar . . .

. . . Qr+1 Qr . . .

We are to look for possibilities of sign changes in the aforementioned pair by denoting
them by their permanence i.e. no changes in sign and variance i.e. changes in sign in the
following manner: a lowercase v denotes variance in sign of upper element of the pairs,
an upper-case V denotes variance in the sign of lower element of the pairs, a lower-case p
denotes permanence of sign of upper element of the pairs and an upper-case P denotes
permanence of sign of lower element of the pairs. By instating this schema, we obtain four
possible ways the signs can change in a pair — vV, vP, pV and pP.

Theorem 0.2 (Newton’s Complete Rule) Supposing a non zero simple and quadratic ele-
ments of P (x ), then the total number of double permanences, written as

∑

p P is an upper
bound of number of negative roots and total number of variance-permanences, written as
∑

v P is the upper bound of positive roots.

Corollary 1 The total number of real roots are the sum of double permanences and variance-
permanences.
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Lower Limit Coefficient Upper Limit

8.35772 A 10.2638

-2.53967 B 13.2611

-0.0142965 C 4.15717

0 D 0.0129296

Table S1: The limits on the values of coefficients A,B,C & D

Therefore total number of real roots is equal to total number of permanences in quadratic
elements i.e.
∑

P . This is an upper bound of the real roots. Thus n−
∑

P =
∑

V is the lower
bound of number of complex roots. We may now proceed with using these rules to obtain
the bounds on types of roots for a quartic polynomial with real coefficients that appears as
a characteristic polynomial for our system.

A quartic polynomial P4(x ) has the following form,

P4(x ) =
4C 0a4 x 4+ 4C 1a3 x 3+ 4C 2a2 x 2+ 4C 3a1 x + 4C 4a0

= a4 x 4+4a3 x 3+6a2 x 2+4a1 x +a0 (S.12)

Comparing it with the quartic polynomial of the form x 4+Ax 3+Bx 2+Cx+D, as used in
the main text, the simple elements are calculated to be a4 = 1, a3 =A/4, a2 = B/6, a1 = C/4
and finally a0 = D. Similarly, the quadratic elements are Q4 = 1,Q3 = A2/16− B/6,Q2 =
B2/36−AC/16,Q1 = C2/16−BD/6 and Q0 =D2.

It is possible to numerically show that any quartic polynomial will have at most 14 dif-
ferent combinations of roots. Our system has two constraints on the characteristic poly-
nomial due to the fact that two of the coefficients, A and D are entirely positive inside the
relevant parametric space, thus leaving only 4 possible combinations of signs for B and C,
as we shall observe. The coefficients of the characteristic polynomial have the following
limits in the parametric space,

We proceed with finding the bounds on cardinality of different types of roots for our
system by calculating the simple and quadratic elements as described earlier with different
combinations of coefficients under the bounds laid down in Table S1.

CASE I Both B and C are positive

The simple elements do not have a change in sign which prohibits roots with
positive R part. Σv P being zero throughout confirms this.

a + + + + + Σp P is 4, either 2 (–) R roots & 2 C roots with (–) R part,
or 4 (–) R rootsQ + + + + +

a + + + + +
Σp P is 2, 2 (–) R roots & 2 C roots with (–) R part

Q + + + – +

a + + + + +
Σp P is 2, 2 (–) R roots & 2 C roots with (–) R part

Q + + – + +
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a + + + + +
Σp P is 2, 2 (–) R roots & 2 C roots with (–) R part

Q + + – – +

CASE II B is positive but C is negative

a + + + – +
Σp P =Σv P = 2, maximum 2 (+) and 2 (–) R roots

Q + + + + +

a + + + – + Σp P is 2, and Σv P is 0, i.e. maximum 2 (–) R roots but
no (+) R rootsQ + + + – +

CASE III B is negative but C is positive

a + + – + +
Σp P =Σv P = 2, maximum 2 (+) and 2 (–) R roots

Q + + + + +

a + + – + + Σp P is 2, and Σv P is 0, i.e. maximum 2 (–) R roots but
no (+) R rootsQ + + – + +

CASE IV Both B and C are negative

a + + – – +
Σp P =Σv P = 2, maximum 2 (+) and 2 (–) R roots

Q + + + + +

We proceed to collate various possible combinations of roots, as predicted by Newton’s
rules of signs, in Table S2.

From Table S2, we can conclude, with λ j s, where j = 1, ..., 4, denoting four eigenvalues,
miscellany of positive and negative B, and C lead to the following combination of eigen-
values: (i) λ1,2,3,4 all are real negative, (ii) λ1,2 real negative and λ3,4 real positive, (iii) λ1,2

real negative and λ3,4 = −α ± iβ , and (iv) λ1,2 real negative and λ3,4 = α ± iβ . α and β
are real positive numbers. Case (i) corresponds to linearly stable (s) phase where a per-
turbation decays exponentially with time and the system returns to its fixed point. Case
(ii) is characterized by exponentially growing perturbations in time and called unstable (u)
phases. Instability in our system is established when all the clutches are detached from the
actin filament and it is is freely pulled by the molecular motors. Stable spiral (ss) or oscil-
lation decaying with time is the characteristic property of case (iii), which reaches stable
(s) phase at long time scale. Growing oscillation in time is a hallmark of unstable spiral
(us) that originates from the presence of positive real part of the complex eigenvalues as
indicated in (iv). Going beyond the ambit of linear stability and numerically solving the
coupled non-linear equations, presents the unstable spiral phase as a precursor of stable
oscillation in the system, as shown in Fig. 3.
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Signs of Coefficients Types of Roots

B C λ1 λ2 λ3 λ4

+ +
−R −R −R −R
−R −R −R(C) −R(C)

+ − −R −R +R +R
−R −R +R(C) +R(C)

− +
−R −R +R +R
−R −R +R(C) +R(C)

− − −R −R +R +R
−R −R +R(C) +R(C)

Table S2: Possible roots (λi ) resulting from various combination of signs of B and C. R de-
notes real roots and R(C) refers to real parts of complex roots.

Appendix D: Coefficients for the case where the clutches are
always bound to the filament

The coefficients A′,B′ and C′ are given as follows:

A′ = ω̃+exp

�

f̃s

f̃d

�

+
1

ε2

�

Nc κ̃c +n 0
m κ̃m

�

+
ṽu κ̃m

f̃s

(S.13)

B′ =
ṽu κ̃m Nc κ̃c

f̃sε2
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ω̃+exp
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���
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+
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n 0
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f̃s n 0
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(S.14)

C′ =
ṽu κ̃m Nc κ̃c

f̃sε2

�

ω̃+exp

�

f̃s

f̃d

��

(S.15)
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