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ARTICLE

Enrichment analyses identify shared associations
for 25 quantitative traits in over 600,000
individuals from seven diverse ancestries

Samuel Pattillo Smith,1,2 Sahar Shahamatdar,1,2 Wei Cheng,1,2 Selena Zhang,1 Joseph Paik,1 Misa Graff,3

Christopher Haiman,4 T.C. Matise,5 Kari E. North,3 Ulrike Peters,6 Eimear Kenny,7,8,9,10

Chris Gignoux,11 Genevieve Wojcik,12 Lorin Crawford,1,13,14,16 and Sohini Ramachandran1,2,15,16,*
Summary
Since 2005, genome-wide association (GWA) datasets have been largely biased toward sampling European ancestry individuals, and

recent studies have shown that GWA results estimated from self-identified European individuals are not transferable to non-European

individuals because of various confounding challenges. Here, we demonstrate that enrichment analyses that aggregate SNP-level asso-

ciation statistics at multiple genomic scales—from genes to genomic regions and pathways—have been underutilized in the GWA era

and can generate biologically interpretable hypotheses regarding the genetic basis of complex trait architecture. We illustrate examples

of the robust associations generated by enrichment analyses while studying 25 continuous traits assayed in 566,786 individuals from

seven diverse self-identified human ancestries in the UK Biobank and the Biobank Japan as well as 44,348 admixed individuals from

the PAGE consortium including cohorts of African American, Hispanic and Latin American, Native Hawaiian, and American Indian/

Alaska Native individuals. We identify 1,000 gene-level associations that are genome-wide significant in at least two ancestry cohorts

across these 25 traits as well as highly conserved pathway associations with triglyceride levels in European, East Asian, and Native Ha-

waiian cohorts.
Introduction

Over the past two decades, funding agencies and biobanks

around the world have made enormous investments to

generate large-scale datasets of genotypes, exomes, and

whole-genome sequences from diverse human ancestries

that are merged withmedical records and quantitative trait

measurements.1–8 However, analyses of such datasets are

usually limited to the application of standard genome-

wide association (GWA) SNP-level association analyses in

which SNPs are tested one-by-one for significant associa-

tion with a phenotype9–11 (Table 1). Yet, even in the largest

available multi-ancestry biobanks, GWA analyses fail to

offer a comprehensive view of genetic trait architecture

among human ancestries.

SNP-level GWA results are difficult to interpret across

multiple human ancestries because of a litany of con-

founding variables, including (1) ascertainment bias in

genotyping,2,5 (2) varying linkage disequilibrium (LD) pat-

terns,18,19 (3) variation in allele frequencies due to

different selective pressures and unique population his-
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tories,19–23 and (4) the effect of environmental factors on

phenotypic variation.24–27 These confounders and the

observed low transferability of GWA results across ances-

tries2,28,29 have generated an important call for increasing

GWA efforts focused on populations of diverse, non-Euro-

pean ancestry individuals.

We also note, as other studies have,6,30 that the GWA

SNP-level test of association is rarely applied to non-Euro-

pean ancestry individuals.31 There are two likely explana-

tions for leaving non-European ancestry individuals out

of analyses: (1) researchers are electing to not analyze

diverse cohorts because of a lack of statistical power and

concerns over other confounding variables (recently

covered in Ben-Eghan et al.30) or (2) the analyses of non-

European cohorts yield no genome-wide significant SNP-

level associations. In either case, valuable information is

being ignored in GWA studies or going unreported in re-

sulting publications.30–32 Even when diverse ancestries

are analyzed, GWA studies usually condition on GWA re-

sults identified with European ancestry cohorts to detect

and give validity to other SNP-level associations.6 While
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Table 1. The three genomic scales and corresponding association tests used in this study

Genomic scale Association test Model of genetic trait architecture Relevant example

SNPs standard univariate genome-wide
association (GWA) test

the true mutation-level trait architecture is
the same for all individuals

many inflammatory bowel disease
mutations replicate across ancestries12

SNP-sets/genes gene-level association tests (e.g., gene-ε,13

SKAT14)
core genes are the same across all
ancestries, with potentially varying causal
SNPs

late-onset Alzheimer disease risk from
ApoE4 allele is lower in African ancestry
individuals15

Pathways/
networks

pathway enrichment and network
propagation (e.g., Hierarchical HotNet,16

RSS17)

core genes differ across ancestries but are
all in the same annotated pathway

skin pigmentation architecture in the same
pathway differs between African and
European ancestry individuals2

The models of genetic trait architecture corresponding to each genomic scale and statistical method that have been previously invoked in the literature (including
relevant examples cited in the last column). These nested genomic scales should routinely be leveraged in multi-ancestry GWA studies to generate biologically
interpretable hypotheses of trait architecture across ancestries.
this study design can also identify shared SNP-level associ-

ations in non-European ancestry cohorts that are under-

powered for applications of the standard GWA framework,

it will not identify ancestry-specific associations in non-Eu-

ropean ancestry cohorts. In our own analysis of abstracts of

publications between 2012 and 2020 with UK Biobank

data, we found that only 33 out of 166 studies (19.87%)

reported genome-wide significant associations in any

non-European ancestry cohort (Figures S1 and S2).

Focusing energy and resources on increasing GWA sample

sizes without intentional focus on sampling of non-Euro-

pean populations will thus likely perpetuate an already

troubling history of leaving non-European ancestry sam-

ples out of GWA analyses of large-scale biobanks such as

the UK Biobank.30 However, we note that non-European

ancestry GWA studies have—and will continue to have—

smaller sample sizes than existing and emerging Euro-

pean-ancestry GWA cohorts, limiting the precision of

effect size estimates in these studies. What has received

less attention than the need to improve GWA study design

is the potential of enrichment analyses to characterize ge-

netic trait architecture in multi-ancestry datasets while ac-

counting for variable statistical power to detect, estimate,

and replicate genetic associations among cohorts.

In this analysis, we illustrate that focusing solely on p

values from the standard GWA framework is insufficient

to capture the genetic architecture of complex traits. Spe-

cifically, we propose that expansion of association analyses

to the genomic scale of genes and pathways generates

robust and interpretable hypotheses about trait architec-

ture in multi-ancestry cohorts. We define enrichment ana-

lyses as testing whether a user-specified set of SNPs, such as

SNPs in a given gene or pathway, is enriched for trait asso-

ciations beyond what is expected by chance based on the

number of SNPs in the set and the LD structure among

SNPs in the set.13,17,33 These enrichment analyses can

2increase the power to detect associated genes through

the aggregation of SNPs of small effect (which explain

the majority of the heritability of most traits34,35). Mathie-

son36 recently highlighted the pattern of homogeneity of

direction of effect in multi-ancestry studies even when in-

dividual SNPs are not categorized as genome-wide signifi-

cant in multiple ancestries. Gene-level and pathway-level
872 The American Journal of Human Genetics 109, 871–884, May 5,
enrichment analyses can prioritize biological regions

where there is homogeneity in the direction of SNP-level

signals of association, generating biologically interpretable

hypotheses for the genetic architecture of complex traits in

multiple ancestry cohorts. Gene and pathway enrichment

analyses expand the existing opportunity for the charac-

terization of conserved genetic architecture across multiple

ancestries, or other partitions of samples in biobank data-

sets (e.g., by biological sex or age), through the identifica-

tion of biologically interpretable associations.

In this study of 25 quantitative traits and more than

600,000 diverse individuals from the UK Biobank (UKB),

BioBank Japan (BBJ), and the PAGE study data (Tables

S1–S10), we detail biological insights gained from the

application of gene and pathway level enrichment ana-

lyses to seven diverse ancestry cohorts. We perform genetic

association tests for SNPs, genes, and pathways across mul-

tiple ancestry groups with a trait of interest. We test for

significantly mutated subnetworks of genes by using

known protein-protein interaction networks and the Hier-

archical HotNet software.16 Enrichment analyses do not

require generating additional information beyond stan-

dard GWA inputs (or outputs for methods that take in

GWA summary statistics). We demonstrate that moving

beyond SNP-level associations allows for a biologically

comprehensive prioritization of shared and ancestry-spe-

cific mechanisms underlying genetic trait architecture.
Material and methods

Data overview
We performed statistical tests of association at the SNP, gene, and

pathway level for 25 quantitative traits. These analyses were per-

formed on data from seven ancestry cohorts drawn from the UK

Biobank, BioBank Japan (BBJ), and PAGE consortia (Table S3).

The number of samples included in each ancestry cohort ranged

from 574 (American Indian/Alaska Native in the PAGE study

data) to 349,411 (European in UK Biobank). The number of

SNPs tested in each ancestry ranged from 578,320 (African in

the UK Biobank) to more than 12 million (African American in

the PAGE dataset). Full enumeration of the samples studied,

including sample size, and number of SNPs for each ancestry

cohort are given in Tables S1 and S5–S10. For an extensive
2022



description of each cohort from the three biobanks that we

analyze in this study, see the supplemental information.
SNP-level GWA analyses
In the European, African, and South Asian ancestry cohorts from

the UK Biobank, we performedGWA studies for each ancestry-trait

pair in order to test whether the same SNP or SNPs are associated

with a given quantitative trait in different ancestries. SNP-level

GWA effect sizes were calculated with plink and the –glm flag.37

Age, sex, and the first twenty principal components were included

as covariates for all traits analyzed.7 Principal-component analysis

was performed with flashpca 2.038 on a set of independent

markers derived separately for each ancestry cohort with the plink

command –indep-pairwise 100 10 0.1. Using these parameters,

–indep-pairwise removes all SNPs that have a pairwise correlation

above 0.1 within a 100 SNP window and then slides forward in in-

crements of ten SNPs genome wide. In the implementation of

gene-ε, we assume pruning highly correlated SNPs still accurately

captures the association signals identified in the standard GWA

framework.14,39 Summary statistics for the 25 quantitative traits

in the Biobank Japan, as well as available ancestry-trait pairs in

the PAGE study data, were then compared with the results from

the association analyses in the UK Biobank cohorts (same traits

as listed in Table S5). In each analysis of an ancestry-trait pair, a

separate Bonferroni-corrected significance threshold was calcu-

lated with the number of SNPs tested in that particular ancestry-

trait pair. We elected to use a Bonferroni-corrected significance

threshold to be conservative (compared to, say, an often-used

GWA significance threshold of 53 10�8; see Figure 1). We label a

given SNP association as replicating among cohorts if the esti-

mated effect size of that SNP surpasses the Bonferroni-corrected

significance threshold inmore than two ancestry cohorts analyzed

here (Figure 1 and Table S11). We believe that the use of a conser-

vative significance threshold, such as the Bonferroni correction,

helps to illustrate the statistical challenges faced bymulti-ancestry

GWA studies due to very imbalanced sample sizes.

To further analyze our ability to accurately estimate GWA SNP-

level effect sizes in each ancestry cohort given the imbalanced

sample sizes of the datasets we studied, we performed theoretical

power calculations across a range of values for both effect sizes

and minor allele frequencies as described in Sham and Purcell.9

In this framework, we selected absolute value of effect sizes to be

equal to 0.1, 0.5, and 1. We then performed power calculations

for each of these when paired with a minor allele frequency of

0.01, 0.1, 0.25, and 0.5. In Figure S3, we plot the power of the stan-

dard GWA framework to detect SNP-level associations between a

genotype and a quantitative trait of interest for sample sizes for

up to 30,000 individuals by using a standard GWA significance

threshold of 53 10�8.

Because multiple cohorts we analyzed (in particular the Amer-

ican Indian/Alaska Native and Native Hawaiian ancestry cohorts)

lack power to estimate effect sizes accurately under the theoretical

model described in Sham and Purcell,9 we also implemented two-

stage GWA studies with a less stringent test of replication for SNP-

level association signals. We used the European ancestry cohort as

a discovery cohort for genome-wide significant SNP-level associa-

tions for each trait, and we used each non-European ancestry

cohort as a validation cohort.We then calculated a nominal signif-

icance threshold for each trait as 0.05 divided by the number of

significant variants for each trait in the European cohort that

were tested in at least one other cohort. The corresponding nom-
The Ame
inal significance thresholds, number of SNPs that were significant

in the European ancestry cohort, and the number of SNPs that sur-

passed the nominal significance threshold in at least one other

ancestry cohort are given in Table S12. Replication counts and pro-

portions are illustrated in Figure S4 and the ranges of significant

effect sizes for each ancestry trait-pair are shown in Table S13.

Finally, for each variant that was significant with the two-stage

nominal threshold, we performed a variant-specific power calcula-

tion by using the marginal European-ancestry effect size and each

non-European ancestry cohort’s minor allele frequency and sam-

ple size with the method outlined in Sham and Purcell.9 The

maximumpower achieved by a variant in each cohort-trait pairing

is given in Table S14 and the number of variants with greater than

90% detection power are given in Table S15.
Gene-level association tests
In order to test aggregated sets of SNP-level GWA effect sizes for

enrichment of associated mutations with a given quantitative

trait, we applied gene-ε29 to each ancestry cohort we studied for

each trait of interest, resulting in 125 sets of gene-level association

statistics (Table S3). The gene-ε method takes two summary statis-

tics as input: (1) SNP-level GWA marginal effect size estimates bb

derived with ordinary least-squares and (2) an LD matrix S empir-

ically estimated from external data (e.g., directly from GWA study

genotype data, a matrix estimated from a population with similar

genomic ancestry to that of the samples analyzed in the GWA

study). It is well-known that SNP-level effect size estimates can

be inflated as a result of various correlation structures among

genome-wide genotypes. gene-ε uses its input bb to derive regular-

ized effect size estimates through elastic net penalized regression.

gene-ε uses the LD matrix S to test each gene for enrichment of

SNP-level associations beyond what is expected by chance (given

the number of SNPs in the gene and the LD among them), thereby

identifying genes that are enriched formutations associatedwith a

trait of interest.13,14,17,33,40,41

In practice, gene-ε and other enrichment analyses14,41,42 can be

applied to any user-specified set of genomic regions, such as regu-

latory elements, intergenic regions, or gene sets. These gene-level

enrichment analyses enable identification of traits in which ge-

netic architecture may be heterogeneous among individuals at

the SNP level across individuals by increasing sensitivity to iden-

tify interacting mutations of moderate effect on a given trait.

Applying gene-ε in multiple ancestry cohorts allows researchers

to further test whether genes associated (i.e., enriched for SNP-

level associations signals given the LDmatrix) with a trait of inter-

est are the same, or vary, across ancestries. gene-ε takes as input a

list of boundaries for all regions to be tested for enrichment of as-

sociations. In our study, we applied gene-ε to all genes and tran-

scriptional elements defined in Gusev et al.43 for human genome

build 19.

In our gene-level analysis, SNP arrays included both genotyped

and high-confidence imputed SNPs (information score R 0.8) for

each ancestry-trait pair. To compute the LDmatrix, we first pruned

highly linked SNPs so that the number of SNPs included for any

chromosome was less than 35,000 SNPs—the computational limit

of gene-ε due to the size of the LDmatrix—by using the plink com-

mand –indep-pairwise 100 10 0.5. For the UK Biobank European,

South Asian, and African ancestry cohorts, we then derived empir-

ical LD estimates between each pair of SNPs for each chromosome

in each cohort by using plink flag –r square applied to the empir-

ical genotype and high-confidence imputed data. We then used
rican Journal of Human Genetics 109, 871–884, May 5, 2022 873



A

C

B

D

Figure 1. Less stringent significance
thresholds lead to a decrease in the pro-
portion of replicated SNP-level associa-
tions and an increase in the proportion
of gene-level associations among ances-
tries for each of the 25 traits analyzed
(A) Proportion of all SNP-level Bonferroni-
corrected genome-wide significant associa-
tions in any ancestry that replicate in at
least one other ancestry is shown on the
x axis (see Table S11 for ancestry-trait-spe-
cific Bonferroni-corrected p value thresh-
olds). On the y axis, we show the propor-
tion of significant gene-level associations
that were replicated for a given phenotype
in at least two ancestries (see Table S16 for
Bonferroni-corrected significance thresh-
olds for each ancestry-trait pair). The black
stars on the x- and y-axes represent the
mean proportion of replicates in SNP and
gene analyses, respectively. C-reactive pro-
tein (CRP) contains the greatest propor-
tion of replicated SNP-level associations
of any of the phenotypes.
(B) The x axis indicates the proportion of
SNP-level associations that surpass a nom-
inal threshold of p value < 10�5 in at least
one ancestry cohort that replicate in at
least one other ancestry cohort. The y
axis indicates the proportion of gene-level
associations that surpass a nominal
threshold of p value < 10�3 in at least
one ancestry cohort and replicate in at
least one other ancestry cohort. Nominal
p value thresholds tend to decrease the

proportion of replicated SNP-level associations and tend to increase the proportion of replicated gene-level associations. The number
of unique SNPs and genes that replicated in each cohort is given in Figure S18.
(C) The x axis indicates the proportion of SNP-level associations that surpass a nominal threshold of p value < 10�3 in at least one
ancestry cohort that replicate in at least one other ancestry cohort. The y axis indicates the proportion of gene-level associations that
surpass a nominal threshold of p value < 10�2 in at least one ancestry cohort and replicate in at least one other ancestry cohort. The
number of unique SNPs and genes that replicated in each cohort is given in Figure S19.
(D) The x axis represents the proportion of variants that were significant in the European and at least one non-European ancestry cohort
with an alternative significant threshold defined as 0.05 divided by the number of significant European variant associations. The y axis is
the corresponding proportion of genes that were significant in at least one non-European ancestry cohort with the same threshold calcu-
lation for genes. Note that the axes in (D) are different from one another and the axes of the other panels. As shown in panels (B), (C),
and (D) nominal p value thresholds tend to decrease the proportion of replicated SNP-level associations and tend to increase the pro-
portion of replicated gene-level associations. Expansion of three letter trait codes are given in Table S2 and a version of this plot with
all trait names displayed as text is shown in Figure S17. Figure S17 shows the same set of plots with all traits represented as text.
the ancestry-specific SNP arrays to calculate 23,603 gene-level as-

sociation statistics for the European ancestry cohort, 23,671

gene-level association statistics for the South Asian ancestry

cohort, and 23,575 gene-level association statistics for the African

ancestry cohort.

To calculate gene-level association statistics with Biobank Japan

summary statistics, we first found the intersection between SNPs

included in the analysis of each trait and SNPs included in the

1000 Genomes Project phase 3 data for the sample of 93 individ-

uals from the Japanese in Tokyo (JPT) population. Note, this inter-

section was different among some traits, as the genotype data in

the Biobank Japan were from different studies, which in turn

used different genotyping arrays. We then pruned highly linked

markers for each trait separately by using the plink flag –indep-

pairwise 100 10 X where X was determined by finding the highest

possible value that led to the inclusion of less than 35,000 SNPs on

each chromosome for the trait. Because of the increased density of

SNPs with effect size estimates for height, X was set to prune more

conservatively at X¼ 0.15. For all other traits, X was set to 0.5. The
874 The American Journal of Human Genetics 109, 871–884, May 5,
number of regions for which a gene-ε gene-level association statis-

tic was calculated for each trait is given in Table S5.

GWA summary statistics for the five cohorts in the PAGE study

data were used as input to gene-ε for each available ancestry-trait

combination. The array of markers for each ancestry cohort in

the PAGE study data was pruned with plink flag –indep-pairwise

100 10 X. X was set to the maximum value in each ancestry that

ensured no chromosome contained more than 35,000 markers:

X was set to 0.05 for the African American cohort, 0.08 for the His-

panic and Latin American and American Indian and Alaska Native

(AIAN) cohorts, and 0.25 for the Native Hawaiian cohorts. Finally,

for each ancestry-trait combination, genes that passed the Bonfer-

roni-corrected p value (p ¼ 0.05/number of genes tested) were

labeled as ‘‘significant’’ throughout this study (see Table S16 for

specific thresholds).

We used LD estimates from reference panels for the ancestry co-

horts where genotype data was unavailable (BioBank Japan and

PAGE datasets). As discussed in other papers proposing enrich-

ment analyses,17,44 the discordance between GWA summary
2022
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Figure 2. C-reactive protein is an exceptional trait where standard GWA analyses may be sufficient to identify shared genetic archi-
tecture among ancestry cohorts
(A) Manhattan plot for SNP-level associations with C-reactive protein levels. Ancestry-specific Bonferroni-corrected significance thresh-
olds are shown with dashed horizontal gray lines and listed in Table S11. Note that the scale of the� log10-transformed p values on the y
axis is different for each ancestry for clarity.

(legend continued on next page)
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statistics estimated from a large cohort and LD estimates from a

small reference panel may lead to increased false discovery rate

and power in the application of gene-ε. Finally, we additionally

show that gene-ε detects a large proportion of the same significant

genes in the European ancestry cohort with a more stringent r2

threshold of 0.1 (see Table S17).

Pathway analysis and network propagation using

Hierarchical HotNet
We tested for significantly mutated subnetworks of genes in each

ancestry-trait pair by using the method Hierarchical HotNet.16

Briefly, Hierarchical HotNet uses hierarchical clustering of scores

(such as gene-level association statistics41 or mutations in cancer ge-

nomes16,45) propagated on a protein-protein interaction network

that are enriched for trait associations beyond what is expected by

chance. The method enables identification of strongly connected

components in the network, which are interpretable as subnet-

works of interacting genes enriched for mutations associated with

a trait of interest. Unlike using annotated gene lists,46 network prop-

agation of association statistics enables identifying novel gene sets

underwriting complex traits as well as crosstalk between annotated

pathways. We identified subnetworks of interacting genes enriched

for associations with each trait of interest by using network propa-

gation of gene-ε gene-level association statistics as input to

Hierarchical HotNet.16 In this study, these gene scores were set

to � log10-transformed p values of gene-ε gene-level association

test statistics (see also Nakka et al.41,47). For each ancestry-trait com-

bination, we assigned p values of 1 to genes with p values greater

than 0.1 tomake the resulting networks both sparse andmore inter-

pretable (again see Nakka et al.41,47). In addition, ancestry-trait pairs

in which less than 25 genes produced gene-ε p values less than 0.1

were discarded as there were an insufficient number of gene-level

statistics to populate the protein-protein interaction networks.

We used three protein-protein interaction networks: Reacto-

meFI 2016,48 iRefIndex 15.0,49 and HINTþHI.50,51 For the Reacto-

meFI 2016 interaction network, interactions with confidence

scores less than 0.75 were discarded. The HINTþHI interaction

network consists of the combination of all interactions in HINT bi-

nary, HINT co-complex, and HuRI HI interaction networks.

We ran Hierarchical HotNet (103 permutations) on the thresh-

olded � log10-transformed gene-level p values for each ancestry-

trait combination. We restricted our further investigation to the

largest subnetwork identified in each significant ancestry-trait-

interaction network combination (p < 0.05).
Results

Multiple recent studies have interrogated the extent to

which SNP-level associations for a given trait replicate
(B) Manhattan plot of SNP-level associations around the CRP gene
Boundaries of the CRP gene are shown with vertical dashed black
the region. Black stars in the European, South Asian, and East Asian
dated as contributing to serum levels of C-reactive protein.55,56

(C) Heatmap of Bonferroni-corrected significant genotyped SNPs repl
SNPs in the 1 MB region surrounding the CRP gene. Entries along th
the 1 MB region surrounding the CRP gene for each ancestry. The co
ciations replicated out of all possible replications in each ancestry pair
considered). For example, the maximum number of genome-wide sig
East Asian is 25, and 20 replicate, resulting in the cell color denotin
SNPs, is shown in Figure S20.
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across ancestries, both empirically and under a variety of

models (see Wojcik et al.,6 Durvasula and Lohmueller,28

Shi et al.,44 Carlson et al.,52 Liu et al.,12 Eyre-Walker,53

Shi et al.54). To extensively compare variant-level associa-

tions among the seven ancestry cohorts that we analyzed,

we first examined the number of genome-wide significant

SNP-level associations that replicated exactly on the basis

of chromosomal position and reference SNP cluster ID

(rsID) in multiple ancestries (see Figure S5A and

Figure S5C, with Bonferroni-corrected thresholds provided

in Table S11). Exact replication of at least one SNP-level as-

sociation across two or more ancestries occurs in all 25

traits that were studied. The C-reactive protein (CRP) trait

had the highest proportion of replicated SNP associations

in multiple ancestries, with 18.95% replicating with the

standard GWA framework in at least two ancestries, but

has a relatively low number of unique GWA significant

SNPs (2,734) when compared to other traits (Figure 1).

This is most likely because the genetic architecture of

CRP is sparse and highly conserved across ancestries, as is

shown in Figure 2. We note that the concordance of

genome-wide significant SNP-level association statistics

for CRP among five ancestry cohorts is exceptional. In

the other 24 traits we analyzed, we did not observe any

SNP-level replication among five cohorts. C-reactive pro-

tein, which is encoded by the gene of the same name

located on chromosome 1, is synthesized in the liver and

released into the bloodstream in response to inflamma-

tion. In our standard GWA analysis of SNP-level associa-

tion signal in each ancestry cohort with CRP, rs3091244

is genome-wide significant in a single ancestry cohort.

rs3091244 has been functionally validated as influencing

CRP levels55,56 and is linked to genome-wide significant

SNPs in the other two ancestries for which genotype data

are available. Interestingly, all GWA significant SNP-level

associations for CRP in the Native Hawaiian ancestry

cohort replicate in both the African American (PAGE)

and the Hispanic and Latin American cohorts (these three

cohorts were all genotyped on the same array).

In the other 24 traits, the proportion of genome-wide

SNP-level replications was below 10% (Figure 1A). For poly-

genic traits, replication of SNP-level GWA results is chal-

lenging to interpret considering the large number of

GWA significant associations for the trait overall. For

example, height contains the largest number of replicated

SNP-level associations in our multi-ancestry analysis—but
located on chromosome 1 for each ancestry (zoomed in from A).
lines. All six ancestries contain genome-wide significant SNPs in
plots represent rs3091244, a SNP that has been functionally vali-

icated between each pair of ancestries analyzed. Here, we focus on
e diagonal represent the total number of SNP-level associations in
lor of each cell is proportional to the percentage of SNP-level asso-
(i.e., theminimumof the diagonal entries between the pairs being
nificant SNPs that can possibly replicate between the Hispanic and
g 80% replication. A similar matrix, computed including imputed
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these only represent 8.90% of all unique SNP-level associ-

ations with height discovered in any ancestry cohort. A

more comprehensive discussion of previously associated

SNPs is available for both height and CRP in the supple-

mental information. The number of SNPs that replicate

among cohorts vary by trait and, as a proportion of the to-

tal number of significant SNP-level association signals, is

typically less than 10% (Figure S5).

We also explored how varying the SNP-level significance

threshold for each ancestry cohort influences the replica-

tion of SNP-level associations by using the standard GWA

framework (Figures 1B and 1C). We performed power cal-

culations for a range of set effect sizes and minor allele fre-

quencies (according to the design and discussion in Sham

and Purcell9) to identify cohorts where GWA studies lack

power to identify associations with a nominal significance

threshold of 53 10�8. The two largest cohorts we studied

here, the European ancestry cohort and East Asian ancestry

cohort, are sufficiently large to identify true SNP associa-

tions regardless of choice of effect size or minor allele fre-

quency (Figure S3). Conversely, in the two smallest cohorts

we studied, the AIAN and Native Hawaiian cohorts, GWA

studies would lack power to detect true SNP associations

with either small effect ðb%0:1Þ sizes or low minor allele

frequencies (MAF < 0.05) (Figure S3).

We then applied a two-stage GWA study design with a

less stringent nominal significance threshold for replica-

tion in the non-European ancestry cohorts; the resulting

thresholds are shown in Table S12. The nominal signifi-

cance threshold was calculated as 0.05 divided by the num-

ber of Bonferroni-corrected significant SNPs in the Euro-

pean ancestry cohort that were tested in at least one

other ancestry cohort. Using the European ancestry cohort

for discovery of associations, we calculated the proportion

of associated SNPs that were nominally significant in at

least one non-European ancestry cohort (Figure 1D). As ex-

pected, the proportion of SNP-level replication increased

across all 25 traits that were studied (maximum percentage

of replication was 94.23% for Basophil count, 49 of 52

SNPs; minimum percentage of replication was 40.39% for

hemoglobin, 580 of 1,436 SNPs). Number and proportion

of replicated SNP-level associations with this framework

are shown in Figure S4. These results are in agreement

with our results from the application of two fine-mapping

methods, SuSiE17 and PESCA,44 to the SNP-level summary

statistics of the European and East Asian ancestry cohorts;

this analysis also indicated widespread homogeneity in di-

rection of effect among significant SNPs (described in the

supplemental information, Tables S18–S22).

Enrichment analyses aggregate SNP-level association sta-

tistics with predefined SNP sets, genes, and pathways to

identify regions of the genome enriched for trait associa-

tions beyond what is expected by chance. Published

enrichment analyses have demonstrated the ability to

identify trait associations that go unidentified with stan-

dard SNP-level GWA analysis.13,14,17,57–60 The standard

GWA method is known to have a high false discovery
The Ame
rate (FDR),61,62 which enrichment analyses can mitigate.

Our analyses in Figure S6 and Figure S7 illustrate that

two methods—regression with summary statistics

(RSS),17 a fully Bayesian method, and gene-ε29—control

FDR particularly well both in the presence and absence

of population structure. However, Figure S8 and Table

S23 illustrate that both GWA study and gene-ε are limited

by the sample size of the cohort of interest. Specifically,

when the sample size is set to 2,000 individuals, power is

low and FDRs are high for both the standard GWA frame-

work and gene-ε. Enrichment methods increase power

for identifying biologically interpretable trait associations

in studies with smaller sample sizes and with heterogenous

genetic architecture than do present-day GWA studies and

therefore can be particularly useful when analyzing multi-

ancestry genetic datasets with merged phenotype data. For

example, Nakka et al.41 identified an association between

ST3GAL3 and attention-deficit/hyperactivity disorder

(ADHD) by using methods that aggregated SNP-level sig-

nals across genes and networks. ADHD is a trait with heri-

tability estimates as high as 75% that had no known

genome-wide significant SNP-level associations at the

time; Nakka et al.41 studied genotype data from just

3,319 individuals with cases, 2,455 controls and 2,064

trios.63 A study by Demontis et al.64 later found a SNP-level

association in the ST3GAL3 gene but was only able to do so

with a cohort an order of magnitude larger (20,183 individ-

uals diagnosed with ADHD and 35,191 controls, totaling

55,374 individuals).

Because non-European GWA ancestry cohorts usually

have much smaller sample sizes compared to studies

with individuals of European ancestry, enrichment ana-

lyses offer a unique opportunity to boost statistical power

and identify biologically relevant genetic associations

with traits of interest by using multi-ancestry datasets. In

a simulation study with synthetic phenotypes generated

from the European and African ancestry cohorts in the

UK Biobank, we show that gene-ε is able to identify signif-

icantly associated genes even in smaller cohorts

(N ¼ 10;000 and N ¼ 4;967 in the European and African

ancestry cohorts, respectively) without the inflated FDR

that is often exhibited by the standard GWA framework

(Figures S9 and S10). Additionally, in these simulations,

gene-ε correctly identifies ‘‘causal’’ genes that are

commonly associated in both cohorts (Figures S11 and

S12). These simulations illustrate the utility of modeling

LD (and in the case of gene-ε, additionally shrinking in-

flated effect sizes) information to identify enrichment of

SNP-level associations in predefined SNP sets.

In an analysis performed by Ben-Eghan et al.30 on 45

studies analyzing UK Biobank data, the second most

commonly stated reason for omitting non-European co-

horts in applied GWA analyses was the lack of power for

identifying SNP-level GWA signals. We tested for gene-

level associations in each of the 25 complex traits in each

ancestry cohort for which we had data (Tables S1–Table

S10) and identified associations in genes and
rican Journal of Human Genetics 109, 871–884, May 5, 2022 877



transcriptional elements shared across ancestries for every

trait. All of our analyses discussed here used gene-ε (see per-

formance comparison with other enrichment analyses in

Cheng et al.13 and Figures S9–S12), an empirical Bayesian

approach that aggregates SNP-level GWA summary statis-

tics, where p values for each gene are derived by construct-

ing an empirical null distribution based on the eigenvalues

of a gene-specific partitioning of the LD matrix (for more

details, see Cheng et al.13). Our analyses show that several

hematological traits have a higher rate of significant gene-

level associations that replicate across multiple ancestry

cohorts than SNP-level associations that replicate across

ancestry cohorts (Figure 1B). These include platelet count

(PLC), mean corpuscular hemoglobin (MCH), mean

corpuscular hemoglobin concentration (MCHC), hemato-

crit, hemoglobin, mean corpuscular volume (MCV), red

blood cell count (RBC), and neutrophil count

(Figure S5F). Focusing on platelet count as an example,

we identify 65 genes that are significantly enriched for as-

sociations in multiple ancestries when tested with gene-ε

(see Table S16 for details on Bonferroni thresholds we

used to correct for the number of genes tested; Table S24

displays gene-ε for the shared significant genes in non-Eu-

ropean ancestry cohorts).13 Fifty-five of these genes are

significantly associated in both the European and East

Asian ancestry cohorts, and the remaining ten all replicate

in other pairs of ancestry cohorts. Overall, each of the six

ancestry cohorts in our analysis share at least one signifi-

cant gene with another ancestry cohort, as shown in

Figure S13. Our analysis of platelet count illustrates how

the implementation of gene-level enrichment analyses

can lead to the identification of shared elements of genetic

trait architecture among ancestry cohorts that would have

not been identified with the standard SNP-level GWA

framework alone. Additionally, gene-level enrichment an-

alyses yield statistically significant results that are biologi-

cally interpretable across ancestry cohorts even when sam-

ple sizes were highly variable.

Results from gene-level enrichment analyses can be

further propagated on protein-protein interaction net-

works to identify interacting genes enriched for association

signals.45 Often, studies use network propagation as a way

to incorporate information from multiple ‘‘omics’’ data-

bases in order to identify significantly mutated gene sub-

networks or modules contributing to a particular dis-

ease.65 An unexplored extension of network propagation

is how it can be used with multi-ancestry GWA datasets

to identify significantly mutated subnetworks that are

shared or ancestry specific.47

To conduct network propagation of gene-level associa-

tion results in our analyses, we applied the Hierarchical

HotNet method16 to gene-ε gene-level association statistics

for each trait-ancestry dataset. In Figure 3, we display the

significant (p value < 0:01) network results for triglyceride

levels in three ancestry cohorts: European, East Asian, and

Native Hawaiian (networks separated by ancestry are avail-

able in Figure S14). In both the European and East Asian
878 The American Journal of Human Genetics 109, 871–884, May 5,
cohorts, we identify enrichment of mutations in a highly

connected subnetwork of genes in the apolipoprotein fam-

ily. In addition, we identify a gene subnetwork enriched for

mutations in the East Asian and Native Hawaiian cohorts

that interacts with the significantly mutated subnetwork

identified in both the European and East Asian cohorts.

For instance, beta-secretase 1 (BACE1) is a genome-wide

significant gene-level association in the East Asian cohort

but does not contain SNPs previously associated with tri-

glycerides in any ancestry cohort in the GWAS Catalog.

BACE1 has gene-ε significant p values in both the East

Asian ancestry cohort (p ¼ 3.57 3 10�13) and European

ancestry cohort (p ¼ 5.55 3 10�17). BACE1 was significant

at the gene level but contained no previously associated

SNPs in any cohort in the GWAS Catalog. BACE1 plays a

role in the metabolism of amyloid beta precursor protein

and is known to play a role in amyloid precursor protein

(APP) metabolism.66 Additionally, both APOL1 and HBA1

were identified as significantly associated with triglycerides

via gene-ε in our analysis of the Native Hawaiian ancestry

cohort, and both genes were part of significant subnet-

works identified by Hierarchical HotNet in the European

and Native Hawaiian ancestry cohorts. It is important to

underscore that the results from the Native Hawaiian

ancestry cohort are based on a relatively small sample

size (N ¼ 1,915). While small sample size can increase

the FDR in the gene-ε (Figure S8), we highlight the net-

works identified as enriched for associations with triglycer-

ides in the Native Hawaiian ancestry cohort due to their

proximity and biological connection to the networks iden-

tified in the well-powered European and East Asian

ancestry cohorts. Furthermore, there were no variant-level

associations for triglyceride levels that were significant in

both the European and Native Hawaiian cohorts (Tables

S14 and S15). If analysis had stopped at the variant level,

the shared signal of association would have gone unidenti-

fied. Details on replicated SNP-level and gene-level associ-

ations among ancestries for triglyceride levels are shown

in Figure S15 and Figure S16, respectively. While the iden-

tification of these subnetworks is predicated on the use of

LD panels derived from 1000 Genomes populations as ref-

erences, we find widespread validation of SNP-level associ-

ations with triglyceride levels in many of the genes

included in the significant subnetworks (see GWAS Cata-

log results in Table S25 and gene-ε p values for each gene

included in the subnetwork in Table S26).

SNP-level and gene-level association results are further

discussed for both platelet count and triglyceride levels

in the supplemental information. Our results indicate

that network propagation methods, such as Hierarchical

HotNet, can identify subnetworks of genes on known pro-

tein-protein interaction networks that are enriched for sig-

nificant gene-level associations beyond what is expected

by chance. As is the case with triglyceride levels in the Eu-

ropean, East Asian, and Native Hawaiian cohorts analyzed

in this study, application of pathway enrichment analyses

offers the potential to identify subnetworks of interacting
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Figure 3. A subnetwork of apolipoprotein genes is significantly enriched for mutations in European, East Asian, and Native Hawaiian
ancestries associated with triglyceride levels
The largest significantly altered subnetwork (p value< 0.05) for triglyceride levels contains overlapping gene subnetworks for each of the
European, East Asian, and Native Hawaiian ancestries when analyzed independently with Hierarchical HotNet.16 Each node in the
network represents a gene. The shading of each node indicates the statistical significance of the association of that gene with triglyceride
levels in a particular cohort. Two genes are connected if their protein products interact based on the ReactomeFI 201648 (European, East
Asian) or iRefIndex 15.049 (Native Hawaiian) protein-protein interaction networks. Several genes from the apolipoprotein gene family
are significantly associated with triglyceride levels in both the European and East Asian cohorts (see data and code availability). Addi-
tionally, the interactions between them form a highly connected subnetwork. Smaller subnetworks identified in the Native Hawaiian
cohort are distal modules that are connected to the subnetwork detected in the European cohort. Not all genes in the largest significantly
altered subnetwork for the Native Hawaiian ancestry group are shown for visualization purposes (127 not pictured here). Genes that
contain SNPs previously associated to triglyceride levels in a European cohort in the GWAS Catalog are indicated with y. Similarly, genes
that contain SNPs previously associated with triglyceride levels in a non-European cohort in the GWAS Catalog are indicated with z. The
studies identifying these associations are given in Table S25.
genes that are enriched for gene-level association signals in

multiple ancestry cohorts.
Discussion

Many recent studies have proposed changes to multi-

ancestry GWA study design2,5,6,28,30–32,67–69. In this anal-

ysis, we have focused on the potential of methods to in-

crease the insight gained into complex trait architecture

from multi-ancestry GWA datasets via the generation of

biologically interpretable hypotheses. We demonstrate

the potential gains of moving beyond standard SNP-level

GWA analysis by using 25 quantitative complex traits

among seven human ancestry cohorts in three large bio-

banks: BioBank Japan, the UK Biobank, and the PAGE con-

sortium database (Tables S1–S10). Ultimately, we believe

that studying complex traits demands analysis across mul-

tiple genomic scales and ancestries in order to gain biolog-

ical insight into complex trait architecture and ultimately

achieve personalized medicine.

As has been previously noted,5,31 non-European

ancestry cohorts are often excluded from GWA analyses

of multi-ancestry biobanks; complementing the analyses

of Ben-Eghan et al.,30 we find that 80.13% of UK Biobank

studies over the last 9 years only report significant SNP-

level associations in the white British cohort (Figures S1

and S2), despite the tens of thousands of individuals of

non-European ancestry sampled in that dataset. Unless

this practice is curbed by the biomedical research commu-

nity, it will exacerbate already existing disparities in
The Ame
healthcare across diverse communities. There are un-

doubted benefits from increased sampling in a given

ancestry for association mapping with the standard GWA

framework, but it is still unknown the extent to which re-

sults from larger GWA and fine-mapping studies using Eu-

ropean-ancestry genomes will generalize to the entire hu-

man population.2,26

As long as sample sizes of non-European ancestry co-

horts in GWA studies remain relatively small, researchers

tend to not analyze these data fully, making it imperative

to consider alternative tests to the standard GWA frame-

work in order to fully leverage the data available for study-

ing the genetic basis of human complex traits. Two-stage

GWA studies with nominal significance thresholds in repli-

cation cohorts offer one approach for identifying repli-

cated associations. In addition, application of multi-

ancestry fine-mapping methods such as PESCA44 support

the results of recent analyses from Mathieson36 that even

when SNP-level significance is not observed in multiple

ancestry cohorts, the direction of effect is generally the

same. These methods continue to rely on the statistical

detection of association from individual SNPs. Given that

multi-ancestry biobank datasets have variable power to

detect SNP-level associations given differences in sample

size and minor allele frequencies across cohorts

(Figure S3), many researchers simply ignore non-European

ancestry samples in GWA studies,(2,5,6,30) potentially

perpetuating health disparities and limiting our under-

standing of the genetic basis of complex traits and any

heterogeneity in genetic trait architecture.44,47 For these

reasons, we strongly recommend drawing on enrichment
rican Journal of Human Genetics 109, 871–884, May 5, 2022 879



analyses to study genetic associations with a trait of inter-

est, as enrichment analyses offer the opportunity for

generating interpretable hypotheses regarding the shared

biological mechanisms underwriting complex traits by us-

ing large-scale multi-ancestry datasets with variable sample

sizes. Enrichment analyses offer a biologically interpret-

able way of boosting power to detect genetic architecture

without alterations to the original design of a study.

There are multiple other technical considerations for con-

ducting multi-ancestry association analyses that we do not

consider here, which future studies may explore further in

the context of SNP-level association studies and enrichment

analyses. First, because we are analyzing some datasets for

which we did not have access to genotype data (BioBank

Japan and PAGE study data), we relied on reference panels

to estimate LD, which is not ideal for enrichment analyses

(as has been explored by Zhu and Stephens,17 Shi et al.44).

While we draw on the published literature to validate our

findings of shared genetic architecture underlying the com-

plex traits studied here (Table S25), our pipelines highlight

the importance of managed access to individual-level geno-

type data for gaining insight into the genetic basis of com-

plex traits. Second, we have not addressed the downstream

consequences of using self-identified ancestry to define co-

horts in large-scale GWA studies (but see Willer et al.,70 Lin

et al.,71 Yang et al.,72 Urbut et al.73). Third, each sample we

analyzed has also experienced environmental exposures

thatmay influence the statistical detection of genetic associ-

ations, and some of those environmental exposures may be

correlated with genomic ancestry.19,74–76 Interrogation of

the influence of gene by environment interactions on com-

plex traitsmustbedonewithhighly controlled experiments,

which can in turn help prioritize traits in which association

studieswill be interpretable anduseful. Lastly,weunderscore

that increasing sample size in GWA studies alone will not

resolve these fundamental biological questions: the propor-

tion of phenotypic variance explained by associations

discovered as sample sizes increase in GWA studies has

largely reacheddiminishing returns,42 andgene-by-environ-

ment interactions are increasingly influential, and esti-

mable, in large biobanks with cryptic relatedness.77,78

Many recentmethodological advances that leverageGWA

summary statistics have focused on testing the co-localiza-

tion of causal SNPs (e.g., fine mapping79–82), the non-addi-

tive effects of SNP-level interactions (i.e., epistasis83,84), and

multivariate GWA tests.73,84–86 While these methods can

be extended and applied to multi-ancestry GWA analyses,

they still focus on SNP-level signals of genetic trait architec-

ture (see also Brown et al.,87 Galinsky et al.88). Unlike the

traditional GWAmethod, enrichment analyses increase sta-

tistical power by aggregating SNP-level signals of genetic as-

sociations and allowing for genetic heterogeneity in SNP-

level trait architecture across samples as well as offering the

opportunity for immediate insights into trait architecture

with existing datasets. These methods have been compara-

tivelyunderused inmulti-ancestryGWAstudies.Application

of enrichmentmethods to small cohorts is prone to the same
880 The American Journal of Human Genetics 109, 871–884, May 5,
statistical limitations as the standard GWA framework,

namely, less power to detect true associations and elevated

false positive rates when applied to small sample sizes

(Figure S8, Table S23). However, enrichment of associations

can be assessed at multiple biological scales—genes, gene

sets, and networks—thereby allowing for biologically

informed insight into trait architecture when small sample

sizes are studied inconjunctionwithbetter powered cohorts,

generating targeted hypotheses for biological validation.

Thus, comparison of results from enrichment analyses offer

the opportunity to identify therapeutic targets in ancestries

where sample sizes are limited.

While many studies note that differences in LD

across ancestries affect transferability of effect size esti-

mates,6,52,89–91 recent studies in population genetics have

additionally debated how various selection pressures and

genetic drift may hamper transferability of GWA

results across ancestries (see for example, Edge and Rosen-

berg,21,22 Novembre and Barton,24 Harpak and Przewor-

ski,26 Durvasula and Lohmueller,28 Mostafavi et al.29).

Future GWA studies should be coupled with approaches

from studies of how evolutionary processes shape the ge-

netic architecture of complex traits.26,34,53,92

Two open questionsmust be tackled when studying com-

plex trait architecture in the multi-ancestry biobank era: (1)

to what extent is the true genetic trait architecture (causal

SNPs and/or their effects on a trait of interest) heteroge-

neous across cohorts6,93 and (2) which components of

GWA results (e.g., p values, estimated effect size, direction

of effect sizes) are transferable across ancestries at any

genomic scale? Continued application of the standard

SNP-level GWA approach will not answer these questions.

However, enrichment methods that aggregate SNP-level ef-

fects, test for effect size heterogeneity, and leverage genomic

annotations and gene interaction networks offer opportu-

nities to directly test these fundamental questions. Methods

can and should play an important role as biomedical

research shifts current paradigms to extend the benefits of

personalizedmedicine beyond people of European ancestry.

Additionally, biomedical researchers should continue to

pressure both funding agencies and institutions to diversify

their sampling efforts in the name of inclusion and address-

ing—instead of exacerbating—genomic health disparities.

In addition to those efforts, we believe existing and new

methods can increase the return on investment in multi-

ancestry biobanks, ensure that every bit of information

from these datasets is studied, and prioritize biological

mechanism above SNP-level statistical association signals

by identifying associations that are robust across ancestries.
Data and code availability

All scripts and publicly available data from GWA, gene,

and pathway association tests are available at https://github.

com/ramachandran-lab/multiancestry_enrichment. Results from

PESCA analyses were provided through personal correspondence

by Huwenbo Shi.
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Haller, T., Metspalu, M., Mägi, R., Fischer, K., and Pagani, L.

(2020). Ancestry deconvolution and partial polygenic score

can improve susceptibility predictions in recently admixed in-

dividuals. Nat. Commun. 11, 1628.

91. Huang, H., Ruan, Y., Feng, Y.-C.A., Chen, C.-Y., Lam, M.,

Sawa, A., Martin, A., Qin, S., and Ge, T. (2021). Improving

polygenic prediction in ancestrally diverse populations.

Preprint at medRxiv. https://doi.org/10.1101/2020.12.27.

20248738.

92. Hayward, L.K., and Sella, G. (2019). Polygenic adaptation after

a sudden change in environment. Preprint at bioRxiv. https://

doi.org/10.1101/792952.

93. McClellan, J., and King,M.C. (2010). Genetic heterogeneity in

human disease. Cell 141, 210–217.
2022

http://refhub.elsevier.com/S0002-9297(22)00101-X/sref80
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref80
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref81
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref81
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref81
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref82
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref82
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref82
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref82
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref83
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref83
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref83
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref83
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref84
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref84
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref84
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref85
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref85
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref85
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref86
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref86
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref87
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref87
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref87
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref87
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref88
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref88
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref88
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref88
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref89
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref89
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref90
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref90
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref90
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref90
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref90
https://doi.org/10.1101/2020.12.27.20248738
https://doi.org/10.1101/2020.12.27.20248738
https://doi.org/10.1101/792952
https://doi.org/10.1101/792952
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref93
http://refhub.elsevier.com/S0002-9297(22)00101-X/sref93


The American Journal of Human Genetics, Volume 109
Supplemental information
Enrichment analyses identify shared associations

for 25 quantitative traits in over 600,000

individuals from seven diverse ancestries

Samuel Pattillo Smith, Sahar Shahamatdar, Wei Cheng, Selena Zhang, Joseph Paik, Misa
Graff, Christopher Haiman, T.C. Matise, Kari E. North, Ulrike Peters, Eimear
Kenny, Chris Gignoux, Genevieve Wojcik, Lorin Crawford, and Sohini Ramachandran



S1 Supplemental Note for Smith et al. 2021 - “Enrichment anal-1

yses identify shared associations for 25 quantitative traits in2

over 600,000 individuals from seven diverse ancestries”3

S0.1 SNP-level results for height and C-reactive protein4

In Figure S5A and Figure S5D, we found that, across 25 traits analyzed, height had the greatest number5

of genome-wide significant SNP-level associations (76,910 unique associations) in at least one ancestry. Of6

these SNP-level associations, 8.90% (7,377 SNPs) replicate based o↵ of rsID in at least two ancestry cohorts.7

Height is not the only trait in which the standard GWA SNP-level association test detects associations that8

replicate extensively across ancestries. In fact, SNP-level associations replicate in each of the 25 continuous9

traits that we analyze in this study.10

We analyzed SNP-level associations with C-reactive protein in six ancestry cohorts: African-American11

(PAGE), European, South Asian, East Asian, Native Hawaiian, and Hispanic and Latin American cohorts.12

C-reactive protein is an example of a trait with a sparse and highly conserved genetic architecture across13

ancestries, as shown in Figure 2. Many SNPs within the CRP gene have been previously associated with C-14

reactive protein plasma levels1–3. In our analysis, rs3091244 is genome-wide significant in only the European15

ancestry cohort, and has been functionally validated as influencing C-reactive protein levels4,5. The SNP16

rs3091244 is located in a promoter region slightly upstream of CRP, and it has clinical implications for both17

atrial fibrillation6 and lupus erythematosus7 (European p = 1.54⇥ 10�116; East Asian p = 1.15⇥ 10�9).18

We expanded our search for replicated GWA SNP-level association signals across ancestry cohorts by19

scanning for 1 Mb regions that contained associations to the same phenotype in two or more ancestries—20

a process often referred to as “clumping”. These windows were centered at every unique genome-wide21

significant SNP in any ancestry for a given trait (we refer the 1Mb window around the significant SNP as a22

“clump”, Figure S5B and Figure S5E). In addition to the largest number of unique SNP-level associations,23

height also had the largest proportion of clumps containing a significant SNP-level GWA association signal24

that replicated in at least two ancestry cohorts (see Figure S5B and Figure S5E). The three traits with the25

greatest proportion of clumps containing SNP-level GWA signals that replicate in multiple ancestry cohorts26

were height (77.09% of clumps), urate (65.89%), and low density lipoprotein (54.40%).27

In addition to the SNP-level associations on chromosome 1 surrounding the CRP gene across all six28

ancestry cohorts (displayed in Figure 2), there are other regions of the genome that contain significant GWA29

associations with C-reactive protein that replicate in multiple ancestry cohorts. On chromosome 2, there is a30

cluster of four SNPs significantly associated with C-reactive protein levels in the European, East Asian, and31



Hispanic and Latin American ancestry cohorts. Of these, rs1260326 (European p = 1.01⇥10�55; East Asian32

p = 1.70 ⇥ 10�9; Hispanic and Latin American p = 1.24 ⇥ 10�20), rs780094 (European p = 9.95 ⇥ 10�51;33

East Asian p = 1.70 ⇥ 10�9; Hispanic and Latin American p = 1.14 ⇥ 10�16), and rs6734238 (African-34

American (PAGE) p = 3.04 ⇥ 10�10; European p = 8.38 ⇥ 10�34; South Asian p = 2.17 ⇥ 10�9) were35

statistically significant in three of the six ancestry cohorts that we analyzed. Each of these three SNPs has36

been previously associated with C-reactive protein levels in a European ancestry cohort8–10. Of these three37

SNPs, only one (rs6734238) had previously been replicated in other ancestries (in African-American, and38

Hispanic and Latin American cohorts11).39

On chromosome 19 there are 23 SNPs that are associated with CRP in the African-American PAGE,40

European, and Hispanic and Latin American ancestry cohorts. Two other SNPs are associated with C-41

reactive protein in the African-American (PAGE), European, and Hispanic and Latin American cohorts,42

as well as the East Asian ancestry cohort. One of these two SNPs, rs7310409 (African-American (PAGE)43

p = 8.57 ⇥ 10�9; European p = 3.57 ⇥ 10�210; East Asian p = 2.72 ⇥ 10�27; Hispanic and Latin American44

p = 5.35 ⇥ 10�29) located in the HNF1 homeobox A (HNF1A) gene, has been previously associated with45

C-reactive protein levels in only a European ancestry cohort9,10. Three additional significant SNPs in our46

analysis have been previously associated with European ancestry cohorts in previous studies, including:47

rs116931011 (European p = 1.52 ⇥ 10�172; East Asian p = 1.28 ⇥ 10�18; Hispanic and Latin American48

p = 1.17 ⇥ 10�27), rs11839108,12 (European p = 5.50 ⇥ 10�177; East Asian p = 3.16 ⇥ 10�29; Hispanic and49

Latin American p = 7.47⇥10�29), and rs795324913 (European p = 1.19⇥10�177; East Asian p = 1.10⇥10�19;50

Hispanic and Latin American p = 4.80 ⇥ 10�29). Two SNPs, rs2259816 (European p = 2.77 ⇥ 10�172;51

East Asian p = 9.33 ⇥ 10�18; Hispanic and Latin American p = 1.90 ⇥ 10�27) and rs7979473 (African52

p = 1.49 ⇥ 10�9; East Asian p = 6.06 ⇥ 10�29; Hispanic and Latin American p = 1.56 ⇥ 10�30), have been53

previously associated with C-reactive protein in both African-American and Hispanic and Latin American54

ancestry cohorts11. There is one final group of three SNPs associated with C-reactive protein in the African-55

American (PAGE), European, East Asian, and Hispanic and Latin American ancestry cohorts on chromosome56

19. One of them, rs4420638 (East Asian p = 9.93⇥ 10�29; Hispanic and Latin American p = 2.03⇥ 10�30),57

has been previously associated in a European ancestry cohort8,10,12. These four regions indicate a highly58

conserved SNP-level architecture of C-reactive protein across six ancestry cohorts. Interestingly, we were59

unable to replicate associations with C-reactive protein across ancestries at the gene or pathway levels.60

Gene and pathway association results61

Three genes, GP6, RDH13, and AGPAT5, were significantly associated with platelet count (PLC) in the62

African-American (PAGE) ancestry cohort and the East Asian ancestry cohort (Figure S13. Of these, no63



significant SNPs in glycoprotein VI platelet (GP6 ) have been reported in the GWAS catalog for either64

ancestry cohort. However, a single SNP within GP6, rs1613662, has previously been associated with mean65

platelet volume in a GWA study analyzing a European ancestry cohort14. GP6 plays a critical role in66

platelet aggregation, and mutations have been previously associated with fetal loss15. Retinol dehydrogenase67

13 (RDH13 ) has no reported GWAS catalog associations with platelet count, but is within 60kb of a SNP68

significantly associated with platelet aggregation16. Of the three genes significantly associated with PLC69

in both the European and AIAN cohorts, 1-Acylglycerol-3-Phosphate O-Acyltransferase 5 (AGPAT5 ) is a70

member of a gene family known to play a role in immunity and inflammation response17.71

Alcohol dehydrogenase 2 (ALDH2 ) has additionally been associated with hypertension in an elderly72

Japanese cohort18. A member of the RAS oncogene family (RAB8A) has been shown to play a role in73

the inhibition of inflammatory response. In contrast, cut like homeobox 2 CUX2 contains a significantly74

associated SNP in the array used in this study for the East Asian ancestry cohort, but it has no previous75

associations in a European ancestry cohort. However, CUX2 is significantly associated at the gene-level in76

both the European and East Asian ancestry cohorts. Although not reported as being associated with PLC77

in the GWAS Catalog, a single SNP, rs61745424 which encodes a missense mutation, has been previously78

identified as being related to the trait19. The gene-" association statistics for the seven genes significantly79

associated with PLC are available in Table S24.80

Finally, a single gene, acyl-CoA dehydrogenase family member 10 (ACAD10 ) associated in our gene-level81

analysis of PLC, was significant in both the European and East Asian ancestry cohorts (European gene-82

" p = 1.47⇥10�10; East Asian gene-" p = 2.00⇥10�10) but contained no previous associations in the GWAS83

catalog. The African-American and Hispanic and Latin American ancestry cohorts analyzed in Qayyum84

et al. 20 both contain SNPs within ACAD10 that are significantly associated with PLC.85

In our analysis of triglyceride levels in six ancestry cohorts (African-American (PAGE), European, East86

Asian, South Asian, Hispanic and Latin American, and Native Hawaiian), we identified shared genetic87

architecture at the SNP, gene, and subnetwork level. Replicated SNPs and genes between the six ancestry88

cohorts are shown in Figure S15-Figure S16. We focus our discussion of results at the network level in89

the European, East Asian, and Native Hawaiian ancestry cohorts (Figure 3). In the European and East90

Asian ancestry cohorts, we identified 55 shared genome-wide significant associations at the gene-level. Of91

these results, eight genes lie in the same significantly mutated subnetwork (Hierarchical HotNet p < 10�3)92

when analyzing each ancestry cohort independently. Five of those eight genes belong to the apolipoprotein93

family of genes, including: apolipoprotein A1 (APOA1 ), apolipoprotein A4 (APOA4 ), apolipoprotein A594

(APOA5 ), apollipoprotein C3 (APOC3 ), apolipoprotein E (APOE ). Specifically, the apolipoprotein play a95

central role in lipoprotein biosynthesis and transport. All of these genes contain SNPs previously associated96



with triglyceride levels in a European ancestry cohort21–26. All five genes also contain SNPs previously97

associated with triglyceride levels in non-European ancestry cohorts. Specifically, APOA1, APOC3, and98

APOE each contain SNPs previously associated with triglyceride levels in African-American and Hispanic99

and Latin American ancestry cohorts21,22. APOA5 has previously been associated to triglyceride levels in100

an East Asian, African-American, and Hispanic and Latin American ancestry cohorts24,27.101

The other three genes that were significantly associated with triglyceride levels in the European and East102

Asian ancestry cohorts are members of the largest significantly mutated subnetwork including phospholipid103

transfer protein (PLTP ; European gene-" p = 4.29⇥ 10�9; East Asian gene-" p = 6.66⇥ 10�15), lipoprotein104

lipase (LPL; European gene-" p = 4.08⇥10�13; East Asian gene-" p = 1.00⇥10�20), and angiopoietin like 3105

(ANGPTL3 ; European gene-" p = 8.86⇥ 10�8; East Asian gene-" p = 1.00⇥ 10�20). PLTP has previously106

been associated with triglyceride levels in European, African-American, and Hispanic and Latin American107

ancestry cohorts21,22,24,28–32. LPL is one of the most well-studied genes in the regulation of triglyceride levels.108

It has previously been associated with triglyceride levels in European ancestry cohorts21–26,28–32,32–45, East109

Asian ancestry cohorts27,46, and African ancestry cohorts as well as Hispanic and Latin American ancestry110

cohorts21,24,28,29,42,44,45,47,48. The final gene that was genome-wide significant in both the European and111

East Asian ancestry cohorts, ANGPTL3, has no previous associations in the GWAS catalog and presents112

a novel candidate gene within the network. While not significant in any gene-level analysis, ANGPTL4113

(European gene-" p = 1.00 ⇥ 10�20; East Asian gene-" p = 9.99 ⇥ 10�1) is from the same family is present114

in the largest subnetwork in the European cohort and also has also been previously identified as having115

associations in European, African, and Hispanic and Latin American ancestry cohorts24,28,42,44,45,49.116

In our analysis of the European ancestry cohort from the UK Biobank, we additionally identified a set of117

eight genes that are connected to the core network discussed above. One of these genes is ANGPTL4, which118

we discussed above. Five of these genes were significant at the gene-level in the European ancestry cohort,119

including four apoliprotein genes (APOC1 ; European gene-" p = 1.67 ⇥ 10�16, APOC2 ; European gene-120

" p = 3.57⇥10�13, APOC4 ; European gene-" p = 3.72⇥10�13, and APOB ; European gene-" p = 1.00⇥10�20)121

and lipase maturation factor 1 (LMF1 ; European gene-" p = 8.03 ⇥ 10�7). Each of these genes have been122

previously associated with triglyceride levels in a European ancestry cohort24. Additional associations123

were also found in that same study which conducted a meta-analysis of European, African-American, and124

Hispanic and Latin American ancestry cohorts. The final two genes included in the significantly mutated125

subnetwork of the European ancestral cohort, APOL1 and HBA1, were not were not identified as genome-126

wide significant by gene-" and have no previous SNP-level associations with triglyceride levels in the GWAS127

Catalog. Interestingly, both APOL1 (Native Hawaiian gene-" p = 8.89⇥10�11) and HBA1 (Native Hawaiian128

gene-" p = 2.46⇥10�10) were both identified as genome-wide significant by gene-" in our analysis of the Native129



Hawaiian ancestry cohort and the interaction between them was identified in our Hierarchical HotNet50130

analysis as present in both the European and Native Hawaiian ancestry cohorts.131

In addition to APOL1 and HBA1, six more genes are connected to the core network of genes that overlap132

in the East Asian and European significantly mutated subnetworks. Of these, both HBA2 and B4GALT3 are133

significant at the gene-level in the Native Hawaiian ancestry cohort alone. They are each connected to genes134

identified in both the European and Native Hawaiian ancestry cohorts as members of the largest significantly135

mutated subnetwork. The final three genes include kallikrein related peptidase 8 (KLK8 ), pancreatic lipase136

PNLIP, and wnt family member 4 (WNT4 ) which were not significant at the gene-level and did not contain137

previous SNP-level associations in the GWAS catalog.138

Three of the genes within the network identified in the East Asian ancestry cohort contain previously139

associated SNPs in both European and non-European ancestry cohorts, including: cholesteryl ester transfer140

protein (CETP), proprotein convertase subtilisin/kexin type 6 (PCSK6 ), and proprotein convertase subtil-141

isin/kexin type 7 (PCSK7 )21,29. The final three genes in the significantly mutated subnetwork identified in142

the East Asian ancestry cohort were not significant at the gene-level and do not contain previously associated143

SNPs in the GWAS catalog in any ancestral cohort. Lecithin-cholesterol acyltransferase (LCAT ) is involved144

in cholesterol biosynthesis and apolipoprotein F (APOF ) encodes one of the minor apolipoprotein genes145

present in plasma. Finally, tyrosine-protein kinase receptor 3 (TYRO3 ) plays a role in ligand recognition146

and cell metabolism51. The gene-" p-values in each ancestry cohort for each of the 28 genes discussed here147

are shown in Table S26.148

Supplemental Figures149



Figure S1: Number of publications we identified using UK Biobank data from 2012 to 2020.
Studies identified using PMIDs as described in the Supplemental Information. Studies that are displayed
on the UK Biobank website (https://www.ukbiobank.ac.uk/) and identified on PubMed are shown in
purple. Studies listed on the UK Biobank website but do not have a PMID are shown in blue, and studies
only identified using PubMed but not listed on the UK Biobank website are shown in red. The protocols
for identifying studies both on PubMed and the UK Biobank website are detailed in the Supplemental
Information. Data from both the UK Biobank website and PubMed were accessed on January 12, 2021.



Multi-ancestry

Figure S2: Number of studies published using UK Biobank data from 2012 to 2020 that
have available metadata in the GWAS Catalog. Our protocols for identifying studies from the
GWAS Catalog are detailed in the Supplemental Information. Multi-ancestry studies are shown in pur-
ple and include those that list samples of more than one ancestral group in the GWAS catalog (as de-
fined according to the protocol using Popejoy and Fullerton 52 , available on the GitHub page https:
//github.com/ramachandran-lab/redefining_replication). Studies that only list samples of European
ancestry in the GWAS catalog are shown in blue. Every multi-ancestry analysis includes samples of Euro-
pean ancestry and of at least one other ancestry. GWAS Catalog data was accessed on January 10, 2021
from the website https://www.ebi.ac.uk/gwas/docs/file-downloads using the final release file of 2020
(see file named gwas catalog v1.0.2-associations e100 r2020-12-15.tsv).
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Figure S3: Power calculations for the standard GWA framework as a function of sample sizes
using a range of e↵ect sizes and minor allele frequencies. A. For an absolute value of e↵ect size
equal to 0.1 we performed power calculations for the standard GWA framework for cohorts with sample sizes
of up to 30,000 individuals. Similar plots for absolute value of e↵ect size set to 0.5 and 1 are shown in B.
and C., respectively. A full description of the power calculations is given in the Materials and Methods.
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Figure S4: Summaries of replicated SNP-level associations when using two-stage GWA study
design a nominal significance threshold. (A) Number and (C) proportion of nominally significant
SNPs associated with a phenotype in the European ancestry cohort that were replicated in at least one
other ancestry cohorts using a nominal p-value threshold calculated as 0.05 divided by the number of SNPs
significantly associated with that trait in the European ancestry cohort. The corresponding thresholds for
each trait are listed in Table S12. For ease of comparison, (B) number and (D) proportion of Bonferroni
significant SNP-level associations that replicate among ancestry cohorts using the ancestry-trait Bonferroni-
correction thresholds shown Table S11. Expansion of three letter trait codes are given in Table S2. Expansion
of three letter trait codes are given in Table S2.
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Figure S5: Summaries of replicated associations at multiple genomic scales among ancestry
cohorts for all 25 traits analyzed using Bonferroni-corrected thresholds. Expansion of three let-
ter trait codes are given in Table S2. (A) Number and (D) proportion of genome-wide significant SNPs
associated with a phenotype in at least one ancestry cohort that were replicated in at least two ancestry
cohorts. In all 25 traits, genome-wide significant SNPs replicate in at least two ancestry cohorts. Height
contains over 7,000 replicated SNPs among the seven ancestry cohorts analyzed, illustrating its highly poly-
genic architecture. For many traits across all categories, with the exception of other biochemical (i.e., CRP),
the replication rate of genes is higher in gene-level associations than at the SNP-level. (B) Number and
(E) proportion of 1Mb windows, or “clumps”, that contain at least one genome-wide significant SNP-level
associations for a given phenotype in at least two ancestry cohorts. (C) Number and (F) proportion of
genome-wide significant gene-level associations that replicate among ancestry cohorts. Replicated associa-
tions in hematological are common at the gene-level in hematological and metabolic traits. For instance, in
three of the four cohorts with mean corpuscular hemoglobin (MCH) measurements HBA1 and HBA2 were
identified as significant associated with MCH in the African, European, and East Asian ancestry cohorts
Table S3. The denominator of the proportion is calculated as the total number of unique SNPs, clumps,
or genes that are significantly associated with a trait in at least on ancestral cohort. Note that D and F
correspond to Figure 1A and B, with an altered x-axis upper limit of 0.8 in this figure.
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Figure S6: gene-" outperforms and controls false discovery rate (FDR) better than other
association methods in simulations with varying heritability and sample size. Simulations were
designed to assess gene versus SNP-level association false discovery rate (FDR) and power in an unstructured
population as described by the protocols in the Supplemental Information. The top and bottom panels
show the FDR and power of four di↵erent association methods on 100 simulated datasets, respectively. We
compared performance of three gene-level association test methods (gene-"53, RSS54, SKAT55) with outputs
from the standard GWA association test under di↵erent simulation parameters (sample size N , narrow-sense
heritability h

2, and sparsity). We define sparsity as the proportion of SNPs that are ground-truth causal.
Standard errors across the simulated replicates are shown using black whisker plots. Simulation protocol is
described in the Supplemental Information.
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Figure S7: gene-" outperforms and controls false discovery rate (FDR) better than other
association methods in simulations with varying heritability and sample size. Simulations are
designed to assess gene versus SNP-level association false discovery rate (FDR) and power in an structured
population as described by the protocols in the Supplemental Information. The top and bottom panels
show the FDR and power of four di↵erent association methods on 100 simulated datasets, respectively. We
compared performance of three gene-level association test methods (gene-"53, RSS54, SKAT55) with outputs
from the standard GWA association test under di↵erent simulation parameters (sample size N , narrow-sense
heritability h

2, and sparsity). We define sparsity as the proportion of SNPs that are designated to be causal.
Standard errors across the simulated replicates are shown using black whisker plots.
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Figure S8: gene-" outperforms and controls false discovery rate (FDR) better than the stan-
dard GWA framework in simulations with varying heritability and sparsity. All simulations were
done with 2,000 individuals to test the power of gene-" to detect associations in a small cohort. The FDR
(top) and power (bottom) for each parameter set are calculated across 100 simulated replicates. A. Results
from simulated populations where population structure is present. B. Results from simulated populations
when population structure is not present. Mean power and false discovery rate, as well as corresponding
standard errors, are shown in Table S23 for clarity.
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Figure S9: gene-" identifies associated genes in two simulated ancestry cohorts under a variety
of genetic architectures with low narrow sense heritability. A. Precision-recall (top row) and receiver
operating curves (bottom row) for gene-" analysis of cohorts simulated using genotypes from individuals of
European (N = 10,000; blue line) and African (N = 4,967; red line) ancestry, respectively. Narrow-sense
heritability was set to h

2 = 0.2 in each simulation. Sparsity of causal SNPs was set to a proportion of 0.1 and
the proportion of causal SNPs shared was tested at di↵erent values. 50 replicates of each set of simulations
under each parameter were performed. B. Precision-recall (top row) and receiver operating curves (bottom
row) for gene-" analysis of 50 replicated simulations of a European and African cohort using a causal SNP
sparsity of 0.5.
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Figure S10: gene-" identifies associated genes in two simulated ancestry cohorts under a
variety of genetic architectures with high narrow sense heritability. A. Precision-recall (top row)
and receiver operating curves (bottom row) for gene-" analysis of cohorts simulated using genotypes from
individuals of European (N = 10,000; blue line) and African (N = 4,967; red line) ancestry, respectively.
Narrow-sense heritability was set to h

2 = 0.6 in each simulation. Sparsity of causal SNPs was set to a
proportion of 0.1 and the proportion of causal SNPs shared was tested at di↵erent values. 50 replicates of
each set of simulations under each parameter were performed. B. Precision-recall (top row) and receiver
operating curves (bottom row) for gene-" analysis of 50 replicated simulations of a European and African
cohort using a causal SNP sparsity of 0.5.
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Figure S11: gene-" (orange) has a lower false discovery rate for identification of shared
genetic determinants between cohorts than the standard GWA framework (red). Narrow-sense
heritability (percent variance explained by the genotype matrix) was set to h

2 = 0.2 for all simulations.
A. False discovery rate of shared genetic determinants between two ancestry cohorts using varying levels of
causal SNP sparsity and proportion of shared causal SNPs between the cohorts. B. Power of gene-" and
the standard GWA framework to detect shared genetic determinants between two cohorts. Error bars were
calculated using the results from 50 simulations of each parameter set of sparsity and proportion of shared
causal SNPs for both FDR(A) and Power(B). C. Receiver operating curves corresponding to simulations of
genetic architecture when causal SNP sparsity is equal to 0.1 (corresponding to the left-hand panels of A
and B). D. Receiver operating curves corresponding to simulations of genetic architecture when causal SNP
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Figure S12: gene-" (orange) has a lower false discovery rate for identification of shared
genetic determinants between cohorts than the standard GWA framework (red). Narrow-sense
heritability (percent variance explained by the genotype matrix) was set to h

2 = 0.6 for all simulations.
A. False discovery rate of shared genetic determinants between two ancestry cohorts using varying levels of
causal SNP sparsity and proportion of shared causal SNPs between the cohorts. B. Power of gene-" and
the standard GWA framework to detect shared genetic determinants between two cohorts. Error bars were
calculated using the results from 50 simulations of each parameter set of sparsity and proportion of shared
causal SNPs for both FDR(A) and Power(B). C. Receiver operating curves corresponding to simulations of
genetic architecture when causal SNP sparsity is equal to 0.1 (corresponding to the left-hand panels of A
and B). D. Receiver operating curves corresponding to simulations of genetic architecture when causal SNP
sparsity is equal to 0.5 (corresponding to the right-hand panels of A and B).
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Figure S13: All six ancestries have gene-level associations with platelet count that replicate
in at least one other ancestry. Total number of genome-wide significant genes in each ancestry, after
correcting for total number of regions tested, are given in the bar plot located in the bottom right (significance
thresholds are given in Table S16, sample sizes are given in Table S6 - Table S9). Shared gene-level association
statistics between pairs of ancestries are shown in the vertical bar plot; the pair of ancestries represented
by each bar can be identified using the dots and links below the barplot. Of the 65 genome-wide significant
gene-level association statistics that replicate in at least two ancestry cohorts, only 25 contain SNPs that
have been previously associated with platelet count in at least one ancestry in at least one study in the GWAS
catalog (https://www.ebi.ac.uk/gwas/home) This plot was generated using the UpSetR package56.
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Figure S14: Significantly mutated subnetworks associated with triglyceride levels identified
in the (A) European, (B) East Asian, and (C) Native Hawaiian ancestry cohorts. Significantly
mutated subnetworks were identified using the Hierarchical HotNet method50. Genes that were identified in
each ancestry as significantly associated with triglyceride levels using the gene-" method are shaded using
ancestry-specific color coding (also used in Figure 3, European—blue, East Asian—pink, Native Hawaiian—
green). Significantly mutated subnetworks in the (A) European and (B) East Asian cohorts were identified
using the ReactomeFI57 protein-protein interaction network, and the significantly mutated subnetwork in
the (C) the Native Hawaiian cohort was identified using the iRefIndex 15.058 protein-protein interaction
networks. Genes that are present in any of the significantly mutated subnetworks that contain SNPs pre-
viously associated with triglyceride levels in the GWAS Catalog are listed with corresponding citations in
Table S25.
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Figure S15: Shared SNP-level associations with triglyceride levels in six ancestral cohorts.
Total number of genome-wide significant genes in each ancestry, after correcting for total number of regions
tested, are given in the bar plot located in the bottom right (significance thresholds are given in Table S11
and sample sizes are given in Table S6 - Table S9). Shared SNP-level association statistics between pairs of
ancestries are shown in the vertical bar plot. The pair of ancestries represented by each bar can be identified
using the dots and links below the vertical barplot. This plot was generated using the UpSetR package56.
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Figure S16: Shared gene-level associations with triglyceride levels in five ancestral cohorts.
Total number of genome-wide significant genes in each ancestry, after correcting for total number of regions
tested, are given in the bar plot located in the bottom right (significance thresholds are given in Table S16
and sample sizes are given in Table S6 - Table S9). Shared gene-level association statistics between pairs of
ancestries are shown in the vertical bar plot. The pair of ancestries represented by each bar can be identified
using the dots and links below the vertical barplot. This plot was generated using the UpSetR package56.



CA

Proportion of variant replications
Bonferroni corrected

P
ro

po
rti

on
 o

f g
en

e 
re

pl
ic

at
io

ns
B

on
fe

rr
on

i c
or

re
ct

ed

P
ro

po
rti

on
 o

f g
en

e 
re

pl
ic

at
io

ns
p-

va
lu

e 
< 

10
-2

Anthropometric Blood pressure Hematological Metabolic Kidney C-reactive protein

B

P
ro

po
rti

on
 o

f g
en

e 
re

pl
ic

at
io

ns
p-

va
lu

e 
< 

10
-3

Proportion of variant replications
p-value < 5 x 10-5

Proportion of variant replications
p-value <10-3

Figure S17: Less stringent significance thresholds lead to a decrease in the proportion of
replicated SNP-level associations and an increase in the proportion of gene-level associations
among ancestries for each of the 25 traits analyzed. A. Proportion of all SNP-level Bonferroni-
corrected genome-wide significant associations in any ancestry that replicate in at least one other ancestry is
shown on the x-axis (see Table S11 for ancestry-trait specific Bonferroni corrected p-value thresholds). On the
y-axis we show the proportion of significant gene-level associations that were replicated for a given phenotype
in at least two ancestries (see Table S16 for Bonferroni corrected significance thresholds for each ancestry-trait
pair). The black stars on the x- and y-axes represent the mean proportion of replicates in SNP and gene
analyses, respectively. C-reactive protein (CRP) contains the greatest proportion of replicated SNP-level
associations of any of the phenotypes. B. The x-axis indicates the proportion of SNP-level associations that
surpass a nominal threshold of p-value < 10�5 in at least one ancestry cohort that replicate in at least one
other ancestry cohort. The y-axis indicates the proportion of gene-level associations that surpass a nominal
threshold of p-value < 10�3 in at least one ancestry cohort and replicate in at least one other ancestry
cohort. Nominal p-value thresholds tend to decrease the proportion of replicated SNP-level associations and
tend to increase the proportion of replicated gene-level associations. The number of unique SNPs and genes
that replicated in each cohort is given in Figure S18. C. The x-axis indicates the proportion of SNP-level
associations that surpass a nominal threshold of p-value < 10�3 in at least one ancestry cohort that replicate
in at least one other ancestry cohort. The y-axis indicates the proportion of gene-level associations that
surpass a nominal threshold of p-value < 10�2 in at least one ancestry cohort and replicate in at least one
other ancestry cohort. The number of unique SNPs and genes that replicated in each cohort is given in
Figure S19. As shown in panel B, nominal p-value thresholds tend to decrease the proportion of replicated
SNP-level associations and tend to increase the proportion of replicated gene-level associations. Expansion
of three letter trait codes are given in Table S2.
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Figure S18: Summaries of replicated associations at multiple genomic scales among ancestry
cohorts for all 25 traits analyzed using nominal p-value thresholds (SNP p-value < 5 ⇥ 10�5,
gene p-value < 10�3). (A) Number and (C) proportion of genome-wide significant SNPs associated with
a phenotype in at least one ancestry cohort that were replicated in at least two ancestry cohorts using a
nominal p-value threshold of 5⇥10�5. (B) Number and (D) proportion of genome-wide significant gene-level
associations that replicate among ancestry cohorts using a nominal p-value threshold of 10�3. Expansion of
three letter trait codes are given in Table S2.
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Figure S19: Summaries of replicated associations at multiple genomic scales among ancestry
cohorts for all 25 traits analyzed using nominal p-value thresholds (SNP p-value < 10�3, gene
p-value < 10�2). (A) Number and (C) proportion of genome-wide significant SNPs associated with a
phenotype in at least one ancestry cohort that were replicated in at least two ancestry cohorts using a
nominal p-value threshold of 10�3. (B) Number and (D) proportion of genome-wide significant gene-level
associations that replicate among ancestry cohorts using a nominal p-value threshold of 10�2. Expansion of
three letter trait codes are given in Table S2. Expansion of three letter trait codes are given in Table S2.
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Figure S20: Pairwise replication of SNP-level association signals for C-reactive protein in
six ancestral cohorts using genotype and imputed data. Imputed data was available and included
in this analysis for each of the six cohorts. The inclusion of imputed SNPs in GWA analysis of C-reactive
protein increases both the number of significant SNPs in each ancestry (along the diagonal) as well as the
number of replicating significant SNP-level associations among pairs of ancestry cohorts (lower triangular).
The corresponding analysis of pairwise SNP-level replication using only genotype data from each cohort is
shown in Figure 2C.
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Figure S21: Multiple prioritized trait clusters with shared core genetic trait architecture
replicate in the (A) African (UKB), (B) European, (C) South Asian, and (D) East Asian
ancestry cohorts. The WINGS algorithm identified prioritized phenotype clusters in each of these ancestry
cohorts, denoted in each dendrogram as clades with emboldened lines. Three clusters of phenotypes were
found in all ancestries (shown and labeled in black), comprising: mean corpuscular volume (MCV) and
mean corpuscular hemoglobin (MCH), hemoglobin and hematocrit, and the metabolic traits low-density
lipoprotein (LDL) and cholesterol levels. In both the European and East Asian ancestry cohorts, red blood
cell count (RBC) was also a member of the hemoglobin and hematocrit phenotype cluster. Two other
phenotype clusters were identified in at least two ancestry cohorts. One of these clusters contains white
blood cell count (WBC) and neutrophil count, and the other contains diastolic and systolic blood pressure
(DBP and SBP). These two clusters are color-coded according to the ancestry cohorts in which they are
prioritized. The WINGS algorithm was applied to traits from each ancestry cohort separately as described
in the Supplemental Information.



Supplemental Tables150



A
n
ce

st
ry

co
h
o
rt

la
b
el

in
th

is
st
u
d
y

S
tu

d
y

L
a
b
el

fr
o
m

o
ri
g
in
a
l
st
u
d
y

S
a
m
p
le

S
iz
e

N
u
m
b
er

o
f
S
N
P
s

E
u
ro
p
ea
n

U
K

B
io
b
an

k
S
el
f-
id
en
ti
fi
ed

w
h
it
e
b
ri
ti
sh

34
9,
41
1

1,
93
3,
09
6

E
as
t
A
si
an

B
io
b
an

k
Ja

p
an

E
as
t
A
si
an

19
,1
90

-
20
6,
69
2

4,
82
3,
10
1
-
6,
62
8,
00
5

H
is
p
an

ic
an

d
L
at
in

A
m
er
ic
an

P
A
G
E

A
d
m
ix
ed

H
is
p
an

ic
an

d
L
at
in

A
m
er
ic
an

15
,5
22

-
21
,9
55

8,
57
6,
62
2
-
8,
82
2,
60
7

A
fr
ic
an

-A
m
er
ic
an

(P
A
G
E
)

P
A
G
E

A
fr
ic
an

-A
m
er
ic
an

3,
75
0
-
17
,2
80

12
,1
07
,3
45

-
12
,2
74
,1
27

S
ou

th
A
si
an

U
K

B
io
b
an

k
S
el
f-
id
en
ti
fi
ed

S
ou

th
A
si
an

5,
71
6

95
8,
37
5

A
fr
ic
an

(U
K
B
)

U
K

B
io
b
an

k
A
fr
ic
an

4,
96
7

57
8,
32
0

N
at
iv
e
H
aw

ai
ia
n

P
A
G
E

N
at
iv
e
H
aw

ai
ia
n

1,
77
7
-
3,
93
8

6,
65
6,
99
6
-
6,
96
6,
16
9

A
m
er
ic
an

In
d
ia
n
/A

la
sk
a

N
at
iv
e

P
A
G
E

A
IA

N
57
4
-
64
5

3,
97
0,
24
7
-
8,
50
4,
92
3

T
a
b
le

S
1
:
A
n
ce

st
ry

co
h
o
rt
s
a
n
a
ly
ze

d
in

th
is

st
u
d
y.

In
st
u
d
ie
s
w
h
er
e
G
W
A

su
m
m
ar
y
st
at
is
ti
cs

w
er
e
av
ai
la
b
le

to
u
s,

sa
m
p
le

si
ze

an
d
nu

m
b
er

of
S
N
P
s
d
i↵
er

d
u
e
to

or
ig
in
al

st
u
d
y
d
es
ig
n
.
T
h
e
sp
ec
ifi
c
sa
m
p
le

si
ze

an
d
nu

m
b
er

of
S
N
P
s
fo
r
ea
ch

tr
ai
t
in

st
u
d
ie
s
fr
om

B
io
b
an

k
Ja

p
an

an
d
P
A
G
E

ar
e
p
ro
vi
d
ed

in
T
ab

le
S
5-
T
ab

le
S
10
.



Trait Name Code

Body mass index BMI

High density lipoprotein HDL

Low density lipoprotein LDL

Hemoglobin A1c HBA1C

Estimated glomerular filtration rate EGFR

C-reactive protein CRP

Systolic blood pressure SBP

Diastolic blood pressure DBP

Platelet count PLC

Mean corpuscular hemoglobin concentration MCHC

Mean corpuscular hemoglobin MCH

Mean corpuscular volume MCV

Red blood cell count RBC

White blood cell count WBC

Table S2: Abbreviations used throughout this study for 14 quantitative traits analyzed in
this study. The remaining 11 traits analyzed were Basophil count, Cholesterol, Eosinophil count, Height,
Hematocrit, Hemoglobin, Lymphocyte count, Monocyte count, Neutrophil count, and Triglyceride levels,
respectively. These are not abbreviated in the main text.



Trait Name or Code AIAN Native Hawaiian Hispanic

BMI Yes Yes Yes

Basophil count No No No

CRP Yes Yes Yes

Cholesterol Yes Yes Yes

DBP Yes No Yes

EGFR Yes No Yes

Eosinophil count No No No

HBA1C Yes Yes Yes

HDL Yes Yes Yes

Height Yes Yes Yes

Hematocrit No No No

Hemoglobin No No No

LDL Yes Yes Yes

Lymphocyte count No No No

MCH Yes No Yes

MCHC No No No

MCV No No No

Monocyte count No No No

Neutrophil count No No No

PLC Yes No Yes

RBC No No No

SBP Yes No Yes

Triglyceride No Yes Yes

Urate No No No

WBC Yes No Yes

Table S3: Traits assayed in the PAGE study data by ancestry cohort. Data were available for
each of the 25 listed traits in the UK Biobank European, South Asian, and African cohorts, as well as, the
East Asian cohort from the Biobank Japan. Thus, each trait was analyzed in a minimum of four ancestries
and a maximum of seven ancestries.



Trait

Number of significant
SNPs in at least the
European or East

Asian cohort

Number of SNPs with
same direction of

e↵ect

Percentage of SNPs
with same direction of

e↵ect

BMI 6,374 4,456 69.91

Basophil 884 520 58.82

CRP 694 463 66.71

Cholesterol 3,451 2,379 68.94

DBP 1,962 1,320 67.28

EGFR 7,129 5,038 70.67

Eosinophil 5,890 3,608 61.26

HBA1C 3,030 2,206 72.81

HDL 5,995 4,077 68.01

Height 33,577 22,090 65.79

Hematocrit 5,382 3,602 66.93

Hemoglobin 5,280 3,601 68.20

LDL 2,521 1,929 76.56

Lymphocyte 2,214 1,237 55.87

MCH 6,763 4,674 69.11

MCHC 1,760 1,124 63.86

MCV 7,489 5,208 69.54

Monocyte 3,929 2,565 65.28

Neutrophil 5,431 3,850 70.89

PLC 11,014 7,161 65.02

RBC 9,211 6,263 67.99

SBP 1,807 1,182 65.41

Triglyceride 3,743 2,686 71.76

WBC 6,017 4,105 68.22

Urate 5,864 3,787 64.58

Table S4: E↵ect size homogeneity in variants identified as significant in the European or East
Asian cohorts. In each of the 25 traits analyzed in this study a majority of variants that are significant in
at least the European or East Asian cohorts had the same direction of e↵ect in the other ancestry cohort.



Trait Name or Code Sample Size Total SNPs Pruned SNPs Regions Citations

Basophil count 62,076 5,653,566 410,465 23,106 59

BMI 158,284 5,653,566 410,465 23,085 60

CRP 75,391 5,608,701 408,166 23,108 59

DBP 136,615 5,653,566 410,465 23,085 59

eGFR 143,658 5,608,701 408,166 23,108 59

Eosinophil count 62,076 5,653,566 410,465 23,106 59

HDL 70,657 5,608,701 408,166 23,108 59

Height 159,095 6,296,332 354,647 23,679 61

Hematocrit 108,757 5,653,566 410,465 23,106 59

Hemoglobin 108,769 5,653,566 410,465 23,085 59

HbA1c 75,391 5,608,701 408,166 23,108 59

LDL 72,866 5,608,701 408,166 23,108 59

Lymphocyte count 62,076 5,653,566 410,465 23,106 59

MCH 108,054 5,653,566 410,465 23,106 59

MCHC 108,738 5,653,566 410,465 23,106 59

MCV 108,526 5,653,566 410,465 23,085 59

Monocyte count 62,076 5,653,566 410,465 23,106 59

Neutrophil count 62,076 5,653,566 410,465 23,106 59

PLC 108,208 5,653,566 410,465 23,085 59

RBC 108,794 5,653,566 410,465 23,085 59

SBP 136,597 5,653,566 410,465 23,085 59

Cholesterol 128,305 5,608,701 408,166 23,108 59

Triglyceride 105,597 5,608,701 410,465 23,108 59

Urate 109,029 5,608,701 408,166 23,108 59

WBC 107,694 5,653,566 408,166 23,085 59

Table S5: Number of individuals, total SNPs, pruned SNPs used for gene-", and genes and
transcription factors (regions) included in the analysis for each trait in Biobank Japan data.
Regions were defined using the hg19 list provided in Gusev et al. 62 .



Trait Name or Code Sample Size Total SNPs Pruned SNPs Regions

BMI 17,127 12,139,115 404,401 24,216

CRP 8,349 12,274,126 404,572 24,206

DBP 11,380 12,148,801 405,188 24,218

eGFR 8,261 12,128,273 403,371 24,207

Hemoglobin A1c 17,127 12,139,115 404,401 24,215

HDL 10,085 12,114,827 404,089 24,201

Height 17,280 12,139,907 404,522 24,201

LDL 9,720 12,107,344 403,740 24,218

MCHC 3,750 12,132,232 405,558 24,217

PLC 8,850 12,131,935 404,497 24,193

SBP 11,380 12,148,801 405,188 24,218

Cholesterol 10,137 12,110,337 403,674 24,222

Triglyceride 9,980 12,110,879 403,455 24,206

WBC 8,802 12,126,732 404,579 24,219

Table S6: Number of individuals, total SNPs, pruned SNPs used for gene-", and genes and
transcription factors (regions) included in the analysis for each trait in the African-American
cohort of the PAGE study data.

Trait Name or Code Sample Size Total SNPs Pruned SNPs Region Count

BMI 21,955 8,812,436 432,762 24,138

CRP 15,912 8,576,621 397,941 24,118

DBP 21,549 8,784,112 430,360 24,126

Estimated glomerular filtration rate 18,548 8,702,426 422,598 24,123

HbA1c 21,955 8,812,436 432,762 24,138

HDL 17,751 8,583,603 412,771 24,122

Height 22,187 8,822,606 433,604 24,132

LDL 17,373 8,588,800 413,074 24,116

MCHC 15,522 8,763,739 427,208 24,132

PLC 18,949 8,612,804 415,201 24,115

SBP 21,549 8,784,112 430,360 24,126

Cholesterol 17,802 8,586,887 412,830 24,115

Triglyceride 17,856 8,594,121 413,546 24,104

WBC 18,206 8,603,503 414,462 24,123

Table S7: Number of individuals, total SNPs, pruned SNPs used for gene-", and genes and
transcription factors (regions) included in the analysis for each trait in the Hispanic and Latin
American cohort of the PAGE study data.



Trait Name or Code Sample Size Total SNPs Pruned SNPs Regions

BMI 645 8,374,976 421,826 24,124

CRP 574 8,504,922 417,287 24,136

DBP 636 8,376,521 421,528 24,136

eGFR 602 8,336,044 417,540 24,132

Hemoglobin A1c 645 8,374,976 421,826 24,124

HDL 604 8,315,912 415,939 24,121

Height 645 8,375,624 421,750 24,117

LDL 591 8,360,719 419,544 24,123

MCHC 620 3,970,246 62,339 17,381

PLC 603 8,294,302 414,530 24,133

Systolic blood pressure 636 8,376,521 421,528 24,136

Cholesterol 604 8,586,887 415,939 24,121

WBC 602 8,289,567 414,462 24,133

Table S8: Number of individuals, total SNPs, pruned SNPs used for gene-", and genes and
transcription factors (regions) included in the analysis for each trait in the AIAN cohort of
the PAGE study data.

Trait Name or Code Sample Size Total SNPs Pruned SNPs Regions

BMI 3,936 6,664,738 415,221 23,885

CRP 1,777 6,966,169 428,517 23,834

Hemoglobin A1c 3,936 6,664,738 415,221 23,885

HDL 1,912 6,656,996 416,255 23,894

Height 3,938 6,660,920 415,172 23,878

LDL 1,900 6,662,802 416,810 23,895

Cholesterol 1,915 6,660,807 416,425 23,899

Triglycerides 1,915 6,660,807 416,425 23,899

Table S9: Number of individuals, total SNPs, pruned SNPs used for gene-", and genes and
transcription factors (regions) included in the analysis for each trait in the Native Hawaiian
(Native Hawaiian) cohort of the PAGE study data.



Trait Name or Code Sample Size Total SNPs Pruned SNPs Regions

BMI 4,647 15,362,633 433,356 24,085

CRP 1,811 14,374,461 428,656 24,116

DBP 1,086 12,470,507 416,273 24,112

eGFR 150 8,314,417 337,167 24,017

HbA1c 4,647 15,362,633 433,356 24,085

HDL 2,378 13,413,244 428,598 24,072

Height 4,679 15,366,710 433,005 24,103

LDL 2,316 13,327,313 428,741 24,075

MCHC 128 8,089,136 315,583 23,946

PLC 541 10,528,072 421,929 24,098

SBP 1,086 12,470,507 416,273 24,112

Cholesterol 2,387 13,436,190 428,656 24,078

Triglyceride 2,381 13,423,953 429,246 24,073

WBC 543 10,570,051 421,776 24,095

Table S10: Number of individuals, total SNPs, pruned SNPs used for gene-", and genes and
transcription factors (regions) included in the analysis for each trait in the Asian cohort of the
PAGE study data.
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Trait Name or
Code

Median E↵ect
Size Correlation

E↵ect Sizes
> 0.1 (Mean)

Median PIP
Correlation

PIPs > 0.01
(Mean)

BMI 0.0143 0 0.073 67.3

Basophil 3.69⇥10�6 0 0.002 211.8

CRP 0.096 0.7 0.159 142.6

Cholesterol 0.966 1 0.232 53.1

DBP 0.001 0.6 0.012 173.1

EGFR 4.71⇥10�6 0 0.005 149

Eosinophil 0.0179 0.2 0.042 325.8

HBA1C 0.012 0.2 0.025 26.8

HDL 0.325 0.1 0.219 57.6

Height 9.20⇥10�5 1.6 0.010 187.7

Hematocrit -4.16⇥10�6 0.5 0.015 40.3

Hemoglobin -1.13⇥10�5 0.6 0.014 45.8

LDL 0.949 1 0.331 60.9

Lymphocyte -1.01⇥10�6 1.5 0.001 1368.5

MCH 7.098⇥10�6 0.6 0.007 60.9

MCHC -2.00⇥10�6 0.9 0.01 58.7

MCV 1.71⇥10�5 0.6 0.01 70

Monocyte 0.002 0.1 0.017 349.4

Neutrophil 0.038 0.1 0.071 66.5

PLC 0.609 0.9 0.154 112.5

RBC 9.650⇥10�5 0.9 0.028 49.7

SBP 0.001 0.6 0.019 166.8

Triglyceride 0.348 0.0 0.247 164.7

Urate 0.252 0.5 0.24 39.9

WBC 0.0002 0.1 0.01 347.8

Table S19: Replication of e↵ect sizes and posterior inclusion probabilities (PIPs) among ten
independent subsamples of the UK Biobank European ancestry cohort using SuSiE65 for fine-
mapping. The sample size of the ten independent, non-overlapping subsamples of the UK Biobank European
ancestry cohort was set to 10,000. For the 1,895,051 SNPs that were analyzed in every European ancestry
cohort subsample ( Table S1) and the e↵ect sizes and PIPs (columns 2 and 4, respectively) generated using the
SuSiE method65, we calculated the median correlation coe�cient between all possible pairwise comparisons
(10 choose 2) of the European ancestry cohort subsamples. Column 3 reports the mean number of SNPs
with e↵ect sizes greater than 0.1 across all ten European ancestry cohort subsamples for each trait. Column
5 reports the mean number of SNPs with a posterior inclusion probability greater than 0.01 across the ten
European ancestry cohort subsamples for each trait.
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False discovery rate

gene-"

Structured Population Unstructured Population

Sparsity 0.01 0.1 0.01 0.1

h
2 = 0.2 0 (0) 0.010 (0.044) h

2 = 0.2 0.418 (0.183) 0.618 (0.085)

h
2 = 0.6 0.020 (0.141) 0 (0) h

2 = 0.6 0.097 (0.284) 0.327 (0.245)

GWAS

Sparsity 0.01 0.1 Sparsity 0.01 0.1

h
2 = 0.2 0.447 (0.153) 0.636 (0.075) h

2 = 0.2 0.01 (0.1) 0.001 (0.011)

h
2 = 0.6 0.127 (0.324) 0.38 (0.241) h

2 = 0.6 0.057 (0.227) 0 (0)

Power

gene-"

Structured Population Unstructured Population

Sparsity 0.01 0.1 Sparsity 0.01 0.1

h
2 = 0.2 0.023 (0.043) 0.045 (0.104) h

2 = 0.2 0.002 (0.038) 0.392 (0.108)

h
2 = 0.6 0.0006 (0.0006) 0.0002 (0.002) h

2 = 0.6 0.0006 (0.0006) 0.0004 (0.002)

GWAS

Sparsity 0.01 0.1 Sparsity 0.01 0.1

h
2 = 0.2 0.154 (0.038) 0.397 (0.052) h

2 = 0.2 0.010 (0.038) 0.001 (0.108)

h
2 = 0.6 0.0002 (0.0008) 0.005 (0.004) h

2 = 0.6 0.057 (0.0006) 0 (0.002)

Table S23: Performance of the standard GWA framework and gene-" in simulations of a
small cohort with N = 2, 000 individuals. Mean false discovery rate and power for 100 simulations of a
population under each parameter set shown in Figure S8. Standard errors are given in parentheses.



Gene African-American European South Asian East Asian AIAN
Hispanic and

Latin American

RDH13 4.14⇥ 10�10 9.95⇥ 10�1 8.80⇥ 10�2 1.76⇥ 10�6 1 7.88⇥ 10�1

AGPAT5 1 1.30⇥ 10�6 7.83⇥ 10�1 5.00⇥ 10�1 7.33⇥ 10�8 1

GP6 7.20⇥ 10�10 9.93⇥ 10�1 1.47⇥ 10�1 9.07⇥ 10�7 1 6.92⇥ 10�1

ALDH2 1 1.00⇥ 10�20 1.13⇥ 10�2 1.00⇥ 10�20 1 1

RAB8A 9.57⇥ 10�1 1.00⇥ 10�20 1 5.76⇥ 10�6 1 9.97⇥ 10�1

CUX2 1 5.13⇥ 10�7 1.16⇥ 10�1 3.44⇥ 10�11 1 1

ACAD10 1 1.47⇥ 10�10 1.10⇥ 10�2 2.00⇥ 10�10 1 1

Table S24: Gene-level association p-values for seven genes associated with platelet count in
at last two ancestry cohorts. Of the 65 genes that were associated with platelet count in at least two
ancestry cohorts, these seven contained previously identified SNP-level associations in studies submitted
to the GWAS Catalog. Previous associations in the GWAS Catalog are discussed in the Supplemental
Information. Ancestry-specific Bonferroni corrected significance thresholds for gene-level association analysis
of platelet count are shown in Table S16.



Gene African or African-American European East Asian Hispanic

ANGPTL4 42 28 NA 28

APOA1 21 21 NA 21

APOA4 NA 22 NA NA

APOA5 24 23–26 27 24

APOB 29 29 NA 29

APOC1 21 22 NA 21

APOC2 24 24 NA 24

APOC3 21 21,22 NA 21

APOC4 22 22 NA 22

APOE 22 22,24 NA 22

CETP 21 22 NA 21

LMF1 NA 22 NA NA

LPL 21 22 27 21

PCSK6 42 22 NA 42

PCSK7 24 24 27 24

PLTP 21,24,28,29 21,22,28–31 NA 21,24,28,29

Table S25: Genes shown in Figure 3 as associated with triglyceride levels are supported by
publications in the GWAS Catalog. Each of the genes listed is present in the significantly mutated
subnetworks identified using Hierarchical HotNet50 as enriched for associations with triglyceride levels in the
European, East Asian, or Native Hawaiian ancestry cohorts. We mapped SNP-level associations from the
GWAS Catalog to the 29 genes present in the significantly mutated subnetworks shown in Figure 3 (using
the gene list provided by Gusev et al. 62) to generate the results for the 16 genes shown here.



Gene
African-American

(PAGE)
European South Asian East Asian

Native
Hawaiian

Hispanic and
Latin American

APOA1 4.99⇥ 10�1 1.00⇥ 10�20 9.91⇥ 10�1 1.00⇥ 10�20 7.52⇥ 10�1 4.99⇥ 10�1

APOA4 4.99⇥ 10�1 1.00⇥ 10�20 2.51⇥ 10�5 1.00⇥ 10�20 9.15⇥ 10�1 4.99⇥ 10�1

APOA5 4.99⇥ 10�1 1.42⇥ 10�11 1.60⇥ 10�6 9.95⇥ 10�1 3.67⇥ 10�12 4.99⇥ 10�1

APOC3 4.99⇥ 10�1 1.00⇥ 10�20 9.82⇥ 10�1 9.83⇥ 10�1 3.05⇥ 10�15 4.99⇥ 10�1

APOE 4.99⇥ 10�1 1.00⇥ 10�20 8.65⇥ 10�1 1.00⇥ 10�20 1 1

PLTP 4.99⇥ 10�1 4.29⇥ 10�9 9.66⇥ 10�1 6.66⇥ 10�15 1.00⇥ 10�2 4.99⇥ 10�1

LPL 4.99⇥ 10�1 4.08⇥ 10�13 3.00⇥ 10�3 1.00⇥ 10�20 6.59⇥ 10�1 4.99⇥ 10�1

ANGPTL3 4.99⇥ 10�1 8.86⇥ 10�8 2.00⇥ 10�3 1.00⇥ 10�20 4.00⇥ 10�3 1

ANGPTL4 4.99⇥ 10�1 1.00⇥ 10�20 9.78⇥ 10�1 9.99⇥ 10�1 9.89⇥ 10�1 1

APOC1 4.99⇥ 10�1 1.67⇥ 10�16 4.99⇥ 10�1 1.00⇥ 10�20 9.81⇥ 10�1 4.99⇥ 10�1

APOC2 4.99⇥ 10�1 3.57⇥ 10�13 7.71⇥ 10�1 1.11⇥ 10�1 9.11⇥ 10�1 4.99⇥ 10�1

APOC4 4.99⇥ 10�1 3.72⇥ 10�13 7.36⇥ 10�1 2.58⇥ 10�14 9.73⇥ 10�1 4.99⇥ 10�1

APOB 4.99⇥ 10�1 1.00⇥ 10�20 9.99⇥ 10�1 7.32⇥ 10�12 1.00⇥ 10�3 1

LMF1 9.98⇥ 10�1 8.03⇥ 10�7 1 3.21⇥ 10�2 3.79⇥ 10�5 9.98⇥ 10�1

APOL1 4.99⇥ 10�1 5.30⇥ 10�2 6.40⇥ 10�2 1 8.89⇥ 10�11 4.99⇥ 10�1

HBA1 4.99⇥ 10�1 3.75⇥ 10�5 9.99⇥ 10�1 4.51⇥ 10�1 2.46⇥ 10�10 1

HBA2 4.99⇥ 10�1 1.30⇥ 10�5 9.99⇥ 10�1 4.51⇥ 10�1 3.93⇥ 10�10 4.99⇥ 10�1

B4GALT3 4.99⇥ 10�1 6.80⇥ 10�2 7.21⇥ 10�1 4.99⇥ 10�1 1.23⇥ 10�6 1

KLK8 1 1 1.62⇥ 10�6 9.89⇥ 10�1 1.00⇥ 10�3 1

PNLIP 4.99⇥ 10�1 9.99⇥ 10�1 9.26⇥ 10�1 7.75⇥ 10�1 1.00⇥ 10�3 4.99⇥ 10�1

WNT4 4.99⇥ 10�1 9.61⇥ 10�1 9.99⇥ 10�1 4.99⇥ 10�1 3.29⇥ 10�5 4.99⇥ 10�1

BACE1 4.99⇥ 10�1 5.55⇥ 10�17 2.20⇥ 10�2 9.99⇥ 10�16 6.69⇥ 10�1 4.99⇥ 10�1

CETP 4.99⇥ 10�1 1.00⇥ 10�3 9.99⇥ 10�1 1.41⇥ 10�6 9.99⇥ 10�1 4.99⇥ 10�1

PCSK6 4.99⇥ 10�1 1 9.99⇥ 10�1 1.83⇥ 10�5 1.00⇥ 10�3 4.99⇥ 10�1

PCSK7 4.99⇥ 10�1 1.66⇥ 10�8 9.97⇥ 10�1 1.00⇥ 10�20 9.99⇥ 10�1 4.99⇥ 10�1

LCAT 4.99⇥ 10�1 5.00⇥ 10�1 1 6.24⇥ 10�3 4.38⇥ 10�1 4.99⇥ 10�1

APOF 4.99⇥ 10�1 5.78⇥ 10�1 7.79⇥ 10�1 4.10⇥ 10�3 9.64⇥ 10�1 4.99⇥ 10�1

TYRO3 4.99⇥ 10�1 9.28⇥ 10�1 9.99⇥ 10�1 1.20⇥ 10�2 8.57⇥ 10�1 4.99⇥ 10�1

Table S26: Gene-" p-values for the 28 genes present in the significantly mutated subnetworks
associated with triglyceride level in the European, East Asian, and Native Hawaiian cohorts.
Each of these genes is present in Figure 3 which depicts the overlapping significantly mutated subnetworks
identified using Hierarchical HoNet50 identified in an analysis of triglyceride levels in the European, East
Asian, and Native Hawaiian cohorts. Known SNP-level associations identified within the bounds of these
genes in previous studies submitted to the GWAS Catalog are discussed in the Supplemental Information.
Ancestry-specific Bonferroni corrected significance thresholds for gene-level association analysis of triglyc-
eride levels are shown in Table S16.



Supplemental Subjects and Methods151

UK Biobank Data152

We downloaded individual genotype data using the UK Biobank’s (UKB) ukbgene resource, https://153

biobank.ctsu.ox.ac.uk/crystal/download.cgi. European individuals from the UK Biobank data were154

selected using the self-identified ancestry (data field 21000) using values outlined at https://biobank.155

ctsu.ox.ac.uk/crystal/field.cgi?id=21000. Using the relatedness file provided by the UK Biobank,156

one individual from each related pair was then randomly removed. This process was repeated for individuals157

whose self-identified ancestry was South Asian.158

We performed unsupervised genome-wide ancestry estimation using ADMIXTURE by setting K = 366
159

on the self-identified African ancestry cohort. We also included YRI and CEU individuals in the ADMIX-160

TURE runs from the 1000 Genomes Project, to identify the ancestry components corresponding to African161

and European ancestry. We removed individuals containing less than 5% membership in the African an-162

cestry component and more than 5% membership in the third component, which corresponds to American163

Indian/Alaskan Native (AIAN) ancestry (??). We downloaded imputed SNP data from the UK Biobank for164

all remaining individuals and removed SNPs with an information score below 0.8. Information scores for each165

SNP are provided by the UK Biobank (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967).166

The remaining genotype and high-quality imputed SNPs were put through a stringent quality control pipeline167

in each ancestry cohort to obtain cohort-specific SNPs to be used for further analysis as detailed in the main168

text (detailed below).169

We performed the following quality control filters in the European, South Asian, and African cohorts170

from the UK Biobank (Application number 22419). Genotype data for 488,377 individuals in the UK171

Biobank were downloaded using the UK Biobank’s ukbgene (https://biobank.ctsu.ox.ac.uk/crystal/172

download.cgi) tool and converted using the provided ukbconv tool (https://biobank.ctsu.ox.ac.uk/173

crystal/refer.cgi?id=149660). Phenotype data was also downloaded for those same individuals using174

the ukbgene tool. Individuals identified by the UK Biobank to have high heterozygosity, excessive related-175

ness, or aneuploidy were removed (1,550 individuals). After then separating individuals into self-identified176

ancestral groups using data field 21000. Within these cohorts, unrelated individuals were then selected by177

randomly selecting an individual from each pair of related individuals. This resulted in 349,469 European178

individuals, 5,716 South Asian individuals, and 4,967 African individuals.179

Genotype quality control was then performed on each cohort separately using the following steps. All180

structural variants were first removed, leaving only single nucleotide polymorphisms in the genotype data.181

Next, all AT/CG SNPs were removed to avoid possible confounding due to sequencing errors. Then, SNPs182



with minor allele frequency less than 1% were removed using the plink267 --maf 0.01 . We then removed183

all SNPs found to be in Hardy-Weinberg equilibrium, using the plink --hwe 0.000001 flag to remove all184

SNPs with a Fisher’s exact test p-value > 10�6. Finally, all SNPs with missingness greater than 1% were185

removed using the plink --mind 0.01 flag.186

Finally, we note that the number of filtered SNPs in the African cohort is smaller than the number187

of filtered SNPs in the European cohort. These results stand in contrast to expectation about number of188

independent variants in these two populations. We believe this to be due to ascertainment bias on the189

genotyping array.190

Biobank Japan Data191

We downloaded summary statistics for 25 quantitative traits from the Biobank Japan (BBJ) website (http:192

//jenger.riken.jp/en/result)59–61,68. The sample descriptions and number of SNPs included in our193

analyses are given in Table S5. The number of SNPs included in the analysis of each trait represent those194

SNPs that: (i) contained an rsid number that could be mapped to the hg19 genome build, (ii) overlapped195

with SNPs contained within the 1000 Genomes Project phase 3 genotype data, and (iii) had a minor allele196

frequency greater than 0.01 in Japanese (JPT) individuals in the 1000 Genomes Project. We used the 1000197

Genomes phase 3 data from 93 JPT individuals to estimate the linkage disequilibrium (LD) between SNPs198

in BioBank Japan for which we had the summary statistic data; LD was estimated separately for each of199

the 25 quantitative traits using the trait specific SNP arrays. LD estimates were used in the calculation of200

regional association statistics.201

Population Architecture using Genomics and Epidemiology (PAGE) Study Data202

Summary statistics for genotyped and imputed SNPs in five admixed populations were downloaded from the203

Population Architecture using Genomics and Epidemiology (PAGE)69 with permission granted via approval204

of manuscript proposal. We included summary statistics for up to 14 quantitative traits for African-American,205

Hispanic and Latin American, Native Hawaiian, American Indian/Alaska Native, and Asian ancestry cohorts206

when available. All AT/CG SNPs were omitted, and SNPs with an IMPUTE2 information score greater than207

0.8 were included in this analysis. Number of individuals and SNPs varied across ancestry-trait combinations208

and are given in Table S5 - Table S10.209

Individuals from the 1000 Genomes Project phase 370 and the Human Genome Diversity Panel (HGDP)71210

were used to obtain LD estimates between SNPs for each ancestry cohort. To construct the LD reference211

panel for PAGE summary statistics from the African-American ancestry cohort, unrelated individuals from212

the 1000 Genomes Americans of African Ancestry in SW USA (ASW) and African Caribbeans in Barbados213



(ACB) were used. Only SNPs found in both the 1000 Genomes imputed data and PAGE summary statistics214

files were used in gene-level association and heritability analyses. We used the same approach to compute215

reference LD estimates between SNPs for the Hispanic and Latin American, AIAN, and Asian ancestry216

cohorts, with the following 1000 Genomes reference population, respectively: Mexican Ancestry from Los217

Angeles USA (MXL) and Puerto Ricans from Puerto Rico (PUR); Colombians from Medellin, Colombia218

(CLM) and Peruvians from Lima, Peru (PEL); and the East Asian superpopulation (EAS). For the Native219

Hawaiian individuals from the PAGE study, there were no appropriate reference populations in the 1000220

Genomes data. In order to construct a reference LD matrix for the Native Hawaiian ancestry cohort, we221

randomly sampled individuals from populations in the most recent release of the HGDP proportional to the222

global ancestry of the Native Hawaiian cohort. The Native Hawaiian cohort’s global ancestry proportions223

were determined using ADMIXTURE runs to be 47.89% Oceanian, 25.16% East Asian, 25.51% European,224

0.90% African, and 0.54% AIAN in a separate publication (Wojcik preprint - in prep.). We did not sample225

from populations with less than 1% of the total ancestry in the admixture analysis referenced above. The226

resulting sample from which LD was estimated included 39 individuals from the Papuan Sepik in New227

Guinea and Melanesian in Bougainville, 14 individuals from the French in France, and 14 individuals from228

the Yoruba in Nigeria.229

WHI study cohort description230

The Women’s Health Initiative (WHI) is a long-term, prospective, multi-center cohort study investigating231

post-menopausal women’s health in the US. WHI was funded by the National Institutes of Health and the232

National Heart, Lung, and Blood Institute to study strategies to prevent heart disease, breast 124 cancer,233

colon cancer, and osteoporotic fractures in women 50-79 years of age. WHI involves 161,808 women recruited234

between 1993 and 1998 at 40 centers across the US. The study consists of two parts: the WHI Clinical Trial235

which was a randomized clinical trial of hormone therapy, dietary modification, and calcium/Vitamin D236

supplementation, and the WHI Observational Study, which focused on many of the inequities in women’s237

health research and provided practical information about incidence, risk factors, and interventions related238

to heart disease, cancer, and osteoporotic fractures. For this project, women who self identified as European239

were excluded from the study sample (dbGaP study accession number: phs000227).240

HCHC/SOL study cohort description241

The Hispanic Community Health Study / Study of Latinos (HCHS/SOL) is a multi center study of His-242

panic/Latino populations with the goal of determining the role of acculturation in the prevalence and devel-243

opment of diseases, and to identify other traits that impact Hispanic/Latino health. The study is sponsored244



by the National Heart, Lung, and Blood Institute (NHLBI) and other institutes, centers, and o�ces of the245

National Institutes of Health (NIH). Recruitment began in 2006 with a target population of 16,000 persons246

of Cuban, Puerto Rican, Dominican, Mexican or Central/South American origin. Household sampling was247

employed as part of the study design. Participants were recruited through four sites a�liated with San Diego248

State University, Northwestern University in Chicago, Albert Einstein College of Medicine in Bronx, New249

York, and the University of Miami. Researchers from seven academic centers provided scientific and logistical250

support. Study participants who were self-identified Hispanic/Latino and aged 18-74 years underwent ex-251

tensive psycho-social and clinical assessments during 2008-2011. A re-examination of the HCHS/SOL cohort252

is conducted during 2015-2017. Annual telephone follow-up interviews are ongoing since study inception to253

determine health outcomes of interest. (dbGaP study accession number: phs000555).254

BioMe Biobank study cohort description255

The Charles Bronfman Institute for Personalized Medicine at Mount Sinai Medical Center (MSMC), BioMeTM256

54 BioBank (BioMe) is an EMR-linked bio-repository drawing from Mount Sinai Medical Center consented257

patients which were drawn from a population of over 70,000 inpatients and 800,000 outpatients annually.258

The MSMC serves diverse local communities of upper Manhattan, including Central Harlem (86% African259

American), East Harlem (88% Hispanic/Latino), and Upper East Side (88% Caucasian/White) with broad260

health disparities. BioMeTM 58 enrolled over 26,500 participants from September 2007 through August261

2013, with 25% African American, 36% Hispanic/Latino (primarily of Caribbean origin), 30% Caucasian,262

and 9% of Other ancestry. The BioMeTM 60 population reflects community-level disease burdens and health263

disparities with broad public health impact. Biobank operations are fully integrated in clinical care pro-264

cesses, including direct recruitment from clinical sites waiting areas and phlebotomy stations by dedicate265

Biobank recruiters independent of clinical care providers, prior to or following a clinician standard of care266

visit. Recruitment currently occurs at a broad spectrum of over 30 clinical care sites. Study participants267

of self-reported European ancestry were not included in this analysis. (dbGaP study accession number:268

phs000925).269

MEC study cohort description270

The Multiethnic Cohort (MEC) is a population-based prospective cohort study including approximately271

215,000 men and women from Hawaii and California. All participants were 45-75 years of age at baseline, and272

primarily of 5 ancestries: Japanese Americans, African Americans, European Americans, Hispanic/Latinos,273

and Native Hawaiians. MEC was funded by the National Cancer Institute in 1993 to examine lifestyle risk274

factors and genetic susceptibility to cancer. All eligible cohort members completed baseline and follow-up275



questionnaires. Within the PAGE II investigation, MEC proposes to study: 1) diseases for which we have276

DNA available for large numbers of cases and controls (breast, prostate, and colorectal cancer, diabetes,277

and obesity); 2) common traits that are risk factors for these diseases (e.g., body mass index / weight,278

waist-to-hip ratio, height), and 3) relevant disease-associated biomarkers (e.g., fasting insulin and lipids,279

steroid hormones). The specific aims are: 1) to determine the population-based epidemiologic profile (al-280

lele frequency, main e↵ect, heterogeneity by disease characteristics) of putative causal SNPs in the five281

racial/ethnic groups in MEC; 2) for SNPs displaying e↵ect heterogeneity across ethnic/racial groups, we will282

utilize di↵erences in LD to identify a more complete spectrum of associated SNPs at these loci; 3) investi-283

gate gene x gene and gene x environment interactions to identify modifiers; 4) examine the associations of284

putative causal SNPs with already measured intermediate phenotypes (e.g., plasma insulin, lipids, steroid285

hormones); and 5) for SNPs that do not fall within known genes, start to investigate their relationships with286

gene expression and epigenetic patterns in small genomic studies. For this project, MEC contributed African287

American, Japanese American, and Native Hawaiian samples.(dbGaP study accession number: phs000220).288

Fine-mapping analyses289

Methods: Protocol for implementation of SuSiE and PESCA290

To perform SNP-level fine mapping analyses on a given quantitative trait, we applied Sum of Single E↵ects291

(SuSiE) variable selection software65. SuSiE implements a Bayesian linear regression model on individual292

level data where sparse prior distributions are placed on the e↵ect size of SNP and posterior inclusion293

probabilities (PIPs) are used to summarize their statistical relevance to the trait of interest. The software294

for SuSiE requires an input ` which fixes the maximum number of causal SNPs to include in the model. In295

this work, we consider results when this parameter is chosen conservatively (` = 3000). We used the three296

cohorts for which we had genotype data from the UK Biobank (African, European, and South Asian) to297

test whether there was e↵ect size heterogeneity among ancestries in the 25 traits analyzed in this study. We298

first selected ten independent, non-overlapping subsamples of 10,000 individuals from the European ancestry299

cohort and filtered out any SNPs that had a minor allele frequency of less than 0.01. For each subsample, we300

then applied SuSiE to each of the 25 traits and compared the e↵ect sizes and posterior inclusion probabilities.301

The average number of SNPs with an e↵ect size greater than 0.01 and average number of SNPs with a PIP302

greater than 0.01 for each trait across the ten cohorts are reported in Table S19. Table S19 also reports the303

median correlation coe�cient of e↵ect sizes and PIPs among the 45 pairwise comparisons between the 10304

subsample cohorts.305

We then applied SuSiE to the African and South Asian ancestry cohorts and compared their resulting306



e↵ect sizes and PIPs to ten independent, non-overlapping subsamples of the European ancestry cohort. The307

number of SNPs with an e↵ect size greater than 0.1 and PIPs greater than 0.01 in both the focal cohort308

(either African or South Asian) and at least one of the ten European ancestry subsamples of the same size309

are reported in Table S20 and Table S21. Also reported in these tables, are the mean number of e↵ect sizes310

greater than 0.01 and PIPs greater than 0.01 across the European ancestry subsamples for each trait and the311

number of unique e↵ect sizes greater than 0.01 and PIPs greater than 0.01 that were only identified in the312

African or South Asian ancestry cohorts. Finally, Table S20 and Table S21 report the median correlation313

coe�cient of the African or South Asian ancestry cohort e↵ect sizes and PIPs with the ten European ancestry314

subsample cohorts of the same size.315

We report the median Cochran’s Q statistic calculated among all pairs of European subsamples for316

posterior inclusion probabilities (PIPs) Table S22. Additionally, we report the median Cochran’s Q for317

both PIPs and e↵ect sizes between the ten European ancestry subsamples and the South Asian and African318

ancestry cohorts from the UK Biobank.319

We compared the results of two fine-mapping methods, SuSie65 and PESCA72, when applied to SNP-level320

summary statistics in the European (UKB) and East Asian (BBJ) cohorts. SuSie is an iterative Bayesian321

stepwise selection method that identifies a credible set of SNPs that contribute to a phenotype of interest65.322

Using the e↵ect sizes and standard errors generated from the standard GWA framework for each trait in each323

ancestry, we applied SuSiE in order to identify probable sets of causal SNPs. We then found the correlation324

between the posterior inclusion probabilities of each SNP in the European and East Asian cohorts.325

Unlike SuSiE, the PESCA framework is explicitly designed for identifying shared SNP-level association326

signals between multiple ancestry cohorts versus ancestry-specific associations72. In addition to GWA sum-327

mary statistics, PESCA uses information about the correlation structure between SNPs (i.e., LD) to identify328

SNPs that are likely to be causal in two cohorts of interest. Shi et al. 72 analyzed seven continuous traits in329

the European (UKB) and East Asian (BBJ) cohorts using PESCA and produced posterior probabilities that330

individual SNPs were: (i) associated with a phenotype in both the both cohorts, (ii) associated with the331

trait of interest only in the European cohort, or (iii) associated with the trait of interest only in the East332

Asian cohort. For each trait, we calculated the number of SNPs that were nominally significant (p-value333

< 10�5, as in the original PESCA analysis) in the standard GWA framework in both the European and334

East Asian cohorts and had a PESCA posterior probability of being associated in both ancestries > 0.8 (see335

Table S18). We also found the number of SNPs that had a PESCA posterior probability of being associated336

in both ancestries > 0.8 that were only identified as significant in one ancestry using the GWA framework.337

Finally, we explored the recent proposition of Mathieson 73 that the direction of e↵ect for SNP-level338

summary statistics might be conserved among ancestry cohorts even if those variants are not genome-wide339



significant in either cohort. To that end, for each of the 25 traits that we analyzed, we compared the direction340

of SNP e↵ect sizes between the European and East Asian ancestry cohorts. We were only able to carry this341

analysis out for variants that were genotyped in both cohorts (Table S18). For each remaining nominally342

significant variant, we stored the direction of the e↵ect size and checked the direction of e↵ect size in the343

other ancestry. When zero was included within the range of the e↵ect size plus or minus one standard344

deviation, we assumed the SNP did not have the same direction in both cohorts. We note that this test345

may be confounded by the precision of e↵ect size estimation and warrants further exploration, including an346

analysis of local false sign discovery rates (see74,75).347

Results: Fine-mapping methods have variable e�cacy in identification of SNP level associa-348

tions among ancestry cohorts349

Often, replication of GWA results across cohorts is tested using genomic regions centered on a SNP. Scans350

across the region surrounding the SNP of interest are usually defined arbitrarily — using physical windows351

(or “clumps”) to smooth over ascertainment bias and varying LD across cohorts or ancestries instead of352

using regions that are biologically annotated such as genes or transcriptional elements. While clumping353

presents an easy way to scan for regional replication of a given GWA finding, the corresponding results are354

not readily interpretable when prioritizing GWA results for downstream validation. We performed clumping355

using windows of size 1Mb centered around significant SNP-level associations (see Materials and Methods).356

Height had the largest proportion of windows that contain a SNP-level association that replicated in at least357

two ancestries (Figure S5B and Figure S5E). In the three traits with the greatest proportion of windows358

containing SNP-level replications — height (77.09% of clumps), urate (65.89%), and low density lipoprotein359

(54.40%) — we then recorded the number of genes and transcriptional elements within the window that360

contained GWA significant SNP-level associations. We found that for all three traits, the vast majority of361

1Mb windows that were used to clump SNP-level associations contained multiple genes and transcriptional362

elements with significantly associated SNPs: height (94.04% of significant variants are within 1 Mb of two363

or more genes, 17.93 genes in clump (mean) ± 15.71 (standard deviation)), urate (97.47%, 18.44 ± 13.72),364

and low density lipoprotein (99.12%, 14.85 ± 12.89). Thus, we find window-based clumping does not easily365

produce biologically interpretable hypotheses for downstream validation.366

Recent analyses of multi-ancestry GWA cohorts have also tested for e↵ect size heterogeneity64,65,69,76,77.367

We applied the fine-mapping method SuSiE65 to identify signals of e↵ect size heterogeneity in the three368

ancestry cohorts for which we had access to raw genotype data (UK Biobank European ancestry, African369

ancestry, and South Asian ancestry individuals; see Table S1). We find little evidence of correlated SuSiE370

e↵ect size estimates among ancestry cohorts, including among independent subsamples of the UK Biobank371



European ancestry individuals Table S19 - Table S21. In addition, we applied PESCA (a method developed372

by Shi et al. 64) to the results of our SNP-level analysis to understand how the modeling of LD to a↵ected the373

power to identify probably causal SNPs shared in the European and East Asian ancestry cohorts. PESCA374

improves upon standard clumping approaches by modeling the LD in a region to identify SNPs that are375

likely to be causal for the same trait in multiple ancestries. In a comparison with the results from seven376

continuous traits analyzed in the original study64, we found that the vast majority of SNPs identified by377

PESCA as causal (posterior probability > 0.8) in both ancestries were also nominally significant in our SNP-378

level association results (see Table S18). Both SuSiE65 and PESCA64 demonstrate the utility of modeling379

variation in LD structure among ancestries when conducting multi-ancestry GWA studies.380

Recently, Mathieson 73 proposed the hypothesis that the direction of e↵ect sizes is the same among381

ancestries, even when the e↵ects are not genome-wide significant. To test this, we compared the direction382

of e↵ect in SNPs that were significant in either the European or East Asian ancestry cohort to the direction383

of the e↵ect in the other ancestry where the SNP was tested using the standard GWA framework. We limit384

the comparison to the European and East Asian cohorts due to their large sample sizes which increases the385

precision of e↵ect size estimates. Table S18 shows the number of variants that were significantly associated386

with each trait in at least one of the European and East Asian ancestry cohorts, and also displays the number387

of those variants that have the same direction of e↵ect as the significant variant in the other ancestry. In the 25388

traits that we analyzed, the direction of e↵ect was conserved in both the European and East Asian ancestry389

cohorts (between e↵ect direction concordance from 55.87% and 76.56% of SNPs across 25 traits). The390

remaining SNPs where the direction of the e↵ect size was not conserved represent those SNPs that: (i) had391

di↵erent direction of e↵ect size, (ii) were not tested in both ancestry cohorts, or (iii) had e↵ect size estimates392

within one standard error of zero (Table S18). The observed conservation of e↵ect size direction in multiple393

ancestry cohorts, even when SNPs are non-significant in one or more cohorts, is a primary assumption394

of regional enrichment methods and supports Mathieson 73 ’s hypothesis and findings. This suggests that395

regional enrichment methods, which are sensitive to shared patterns of e↵ect size direction among cohorts,396

are a natural approach to apply to GWA summary statistics even in the absence of replication SNP-level397

GWA signals among cohorts. We ultimately acknowledge that a more in depth analysis of fine-mapping398

application to multi-ancestry genetic data is needed to make any conclusions. This precursory analysis using399

the SuSiE54 and PESCA64 highlights that there is widespread heterogeneity in direction of e↵ect.400

S0.2 Description of the gene-" framework401

A unique feature of gene-" is that it treats SNPs with spuriously associated nonzero e↵ects as non-associated.402

gene-" assumes a reformulated null distribution of SNP-level e↵ects �̃j ⇠ N (0,�2
"), where �

2
" is the SNP-403



level null threshold and represents the maximum proportion of phenotypic variance explained (PVE) by a404

spurious or non-associated SNP. This leads to the reformulated SNP-level null hypothesis H0 : E[�2
j ]  �

2
" .405

To infer an appropriate �
2
" , gene-" fits a K-mixture of normal distributions over the regularized e↵ect sizes406

with successively smaller variances (i.e., �
2
1 > · · · > �

2
K = 0). In this study as in Cheng et al. 53 , we407

assume that associated SNPs will appear in the first set, while spurious and non-associated SNPs appear408

in the latter sets. As a final step, gene-" computes its gene-level association test statistic for the g-th gene409

by conformably partitioning the regularized GWA e↵ect size estimates and computing the quadratic form410

Q̃g = �̃|
g �̃g. Corresponding p-values are then derived using Imhof’s method. This assumes the common gene-411

level null H0 : Qg = 0, where the null distribution of Qg is dependent upon the eigenvalues from the scaled412

LD matrix �
2
"⌃. For details on implementation, validation and performance comparison with simulations,413

and empirical application to UK Biobank white British individuals in six traits, see Cheng et al. 53 .414

S0.3 Regression with Summary Statistics (RSS) Enrichment.415

Consider a GWA study with N individuals typed on P SNPs. For the j-th SNP, assume that we are given

corresponding e↵ect sizes b�j and standard error bsj via a single-SNP linear model fit using OLS. RSS then

implements the following likelihood to model the GWA summary statistics54

b� ⇠ N (bS⌃bS�1�, bS⌃bS) (1)

where bS = diag(bs) is a J ⇥J diagonal matrix of standard errors, ⌃ is again used to represent some empirical

estimate of the LD matrix (i.e., using some external reference panel with ancestry matching the cohort of

interest), and � are the true (unobserved) SNP-level e↵ect sizes. To model gene-level enrichment, RSS

assumes the following hierarchical prior structure on the true e↵ect sizes

�j ⇠ ⇡j N (0,�2
�) + (1� ⇡j) �0, (2)

�
2
� = h

2

0

@
JX

j=1

⇡j N
�1bs�2

j

1

A
�1

, (3)

⇡j =
⇣
1 + 10�(✓0+aj✓)

⌘�1
, (4)

where �0 is point mass centered at zero, h2 denotes the narrow-sense heritability of the trait, aj is an indicator

detailing whether the j-th SNP is inside a particular gene, ✓0 is the background proportion of trait-associated

SNPs, and ✓ reflects the increase in probability (on the log10-odds scale) when a SNP within a gene has

non-zero e↵ect. Here, the authors follow earlier works78 and place independent uniform grid priors on the



hyper-parameters {h2
, ✓0, ✓}. Note that, unlike other methods, RSS does not calculate a P -value for assessing

gene-level association. Instead, RSS produces a posterior enrichment probability that at least one SNP in a

given gene boundary is associated with the trait

Pg := 1� Pr [�j = 0, 8j 2 Jg |D] (5)

where D represents all of the input data including the GWA summary statistics {b�,bs}, the estimated LD416

matrix ⌃, and any applicable SNP annotations or weights a = (a1, . . . , aJ). See54,79 for more details on417

preferred hyper-parameter settings. As noted in the main text, RSS is relies on a Markov chain Monte Carlo418

(MCMC) scheme for sampling posterior distributions and estimating model parameters. As a result, its419

algorithm can be subject to convergence issues if these (or the random seed) are not chosen properly.420

S0.4 SNP-set (Sequence) Kernel Association Test (SKAT).421

The implementation of SKAT required access to raw phenotype y and genotype X information for N

individuals typed on J SNPs. To assess enrichment of the |Jg| variants within gene g, consider the linear

model with sub-matrix Xg

y = �0 +Xg�g + e, e ⇠ N (0, ⌧2I) (6)

where �0 is an intercept term, �g = (�1, . . . ,�|Jg|) is a vector of regression coe�cients for the SNPs within

the gene of interest, and e is a normally distributed error term with mean zero and scaled variance ⌧
2. For

model flexibility, gene-specific SNP e↵ects �j are assumed to follow an arbitrary distribution with mean

zero and marginal variances aj�
2
� , where �

2
� is a variance component and aj is a pre-specified weight for

the j-th SNP. To this end, SKAT uses a variance component scoring approach and tests the null hypothesis

H0 : � = 0, or equivalently H0 : �2
� = 0. The corresponding gene-level test statistic bQg then takes on the

familiar quadratic form

bQg = (y � b�0)
|Kg(y � b�0) (7)

where b�0 is the predicted mean of trait under the null hypothesis, and is computed by projecting y onto the

column space of the intercept (i.e., a vector of ones). The term Kg = XgAgAgX|
g is commonly referred to

as an N ⇥N kernel matrix, where Ag = diag(a1, . . . , a|Jg|) is used to denote a diagonal weight matrix that



changes for each gene g. Each element of Kg is computed via the linear kernel function

k(xi,xi0) =

|Jg|X

j=1

ajxijxi0j . (8)

While implementing SKAT in this work, we follow previous works and set each weight to be
p
aj =422

Beta(MAFj , 1, 25) — the beta distribution density function with pre-specified parameters evaluated at the423

sample minor allele frequency (MAF) for the j-th SNP in the gene region. For more details, see55,80–82.424

Clustering traits sharing a core set of associated genes using the WINGS algorithm425

We used the WINGS algorithm83 to identify clusters of traits sharing a core set of genes enriched for426

associated mutations. WINGS takes as input a gene (M) by trait (N) matrix and uses the Ward distance427

metric to find the distance among vectors of gene scores for di↵erent phenotypes; in this study, we used428

gene-" gene-level association statistics as the input to WINGS. The more significantly associated genes that429

two traits share, the closer they will be in the gene-dimensional space. Applying WINGS to a matrix of430

gene scores for each ancestry separately, we examined whether the same traits clustered together, separately431

in each ancestry. We constructed matrices of gene-" gene-level association statistics for the UK Biobank432

European, African, South Asian (from the UK Biobank) and East Asian (Biobank Japan) ancestry cohorts.433

Each of these matrices contained gene-level association statistics for all 25 quantitative traits of interest.434

The total number of genes and regulatory regions included were: European (23,603), African (23,575),435

South Asian(23,671), and East Asian (21,435). For the East Asian ancestry cohort, we limited the genes436

to the intersection of genes with gene-" gene-level association statistics across all 25 traits. The number of437

gene scores calculated for each trait in the East Asian ancestry cohort varies due to the heterogeneity in438

imputed and genotype SNP arrays in the Biobank Japan studies (Table S5 and Table S16). Figure S21 shows439

the resulting dendrograms displaying prioritized phenotypes identified using the WINGS algorithm on each440

cohort’s gene score matrix. The WINGS algorithm is designed to run on 25 phenotypes or more (see McGuirl441

et al. 83 for details), and we therefore did not apply the WINGS algorithm to the AIAN, Native Hawaiian,442

or Hispanic and Latin American cohorts as there was not data for enough phenotypes (Table S6-Table S10).443

Analysis of GWAS Catalog Metadata and Previous GWA Publications444

We cross-referenced our results from association testing at multiple genomic scales against previously pub-445

lished results in the GWAS catalog (https://www.ebi.ac.uk/gwas/) and in PubMed using the following446

processes.447

In order to collect PubMed IDs (PMIDs) for publications associated with the UK Biobank, a two-part448



data collection process was used. The first process was to directly search for publications with variations449

of the term “UK Biobank” (e.g., U.K. Biobank, United Kingdom Biobank) from PubMed using the Entrez450

Programming Utilities (E-Utilities) API. The E-Utilities API is the public API to the NCBI Entrez sys-451

tem and allows direct access to all Entrez databases including PubMed. Search queries were formulated by452

narrowing publications using year published and then further narrowing to those publications with varia-453

tions of the search term “UK Biobank” in either the title or abstract. The open-source Python package454

Entrez (https://biopython.org/DIST/docs/api/Bio.Entrez-module.html) from the Biopython Project455

was used to facilitate interaction with the E-Utilities API.456

The second data collection process was to gather information from publications listed directly on the UK457

Biobank website (https://www.ukbiobank.ac.uk/). Since the majority of publications on the website did458

not have an easily accessible PMID, identifying information including publication title and year was scraped459

and used to retrieve a publication’s corresponding PMID (again using the E-Utilities API). The HTML/XML460

document parsing Python library Beautiful Soup (https://www.crummy.com/software/BeautifulSoup/461

bs4/doc/) was used to parse the HTML of the various UK Biobank webpages, and the Python Requests462

library (https://requests.readthedocs.io/en/master/) was used to programatically send HTTP calls463

to the server hosting the website. PMIDs were retrieved directly from the XML output of the E-Utilities464

API calls.465

The PMIDs retrieved from both processes were aggregated into a single set of unique PMIDs, as some466

publications were identified by both processes. Publications that could not get associated PMIDs from the467

second data collection process were flagged for manual processing. The PMIDs that were retrieved from468

PubMed directly but could not be found based on the publication information provided on the UK Biobank469

website were noted. Conversely, the PMIDs that could be retrieved from publication information found on470

the UK Biobank website but not directly from PubMed were also noted.471

Using the compiled list of PMIDs, analyses of the UK Biobank data set reported in the GWAS cat-472

alog association data were compiled. Previous genotype-to-phenotype association data and sample an-473

cestry descriptions were downloaded from https://www.ebi.ac.uk/gwas/docs/file-downloads. Unique474

genotype-to-phenotype associations were parsed using a set of custom python scripts. All scripts used475

in the curation of PMIDs, parsing of GWAS catalog summary data, and determination of previously476

published genotype-to-phenotype associations from UK Biobank studies are available on GitHub (https:477

//github.com/ramachandran-lab/redefining_replication).478



Simulation design to test the power and false discovery rate of GWA and gene-level association479

analyses480

Simulations of a single population481

In our simulation studies, we used the following general simulation scheme to generate quantitative traits482

using real genotype data on chromosome 1 from N randomly sampled individuals of European ancestry in483

the UK Biobank. This pipeline follows from previous studies53,84. We will use X to denote the N ⇥ J484

genotype matrix, with J denoting the number of single nucleotide polymorphisms (SNPs) encoded as 0, 1, 2485

copies of a reference allele at each locus and xj representing the genotypic vector for the j-th SNP. Following486

quality control procedures detailed in the Supplemental Information, our simulations included J = 36,518487

SNPs distributed across genome. We used the NCBI’s RefSeq database in the UCSC Genome Browser to488

assign SNPs to genes which resulted in G = 1,408 genes in the simulation studies.489

After the annotation step, we simulated phenotypes by first assuming that the total phenotypic variance490

V[y] = 1, and that all observed genetic e↵ects explained a fixed proportion of this value (i.e., narrow-sense491

heritability, h2). Next, we randomly selected a certain percentage of genes to be enriched fotr associations492

and denoted the sets of SNPs that they contained as C. Within C, we selected causal SNPs in a way such493

that each associated gene at least contains one SNP with non-zero e↵ect size. Quantitative continuous traits494

were then generated under the following two general linear models:495

• Standard Model: y =
P

c2C xc�c + e496

• Population Structure Model: y = Wb+
P

c2C xc�c + e497

where y is an N -dimensional vector containing all the phenotype states; xc is the genotype for the c-th498

causal SNP; �c is the additive e↵ect size for the c-th SNP; and e ⇠ N (0, ⌧2I) is an N -dimensional vector499

of normally distributed environmental noise. Additionally, in the model with population structure, W is an500

N ⇥ M matrix of the top M = 10 principal components (PCs) from the genotype matrix and represents501

additional population structure with corresponding fixed e↵ects b. The e↵ect sizes of SNPs in genes enriched502

for associations are randomly drawn from standard normal distributions and then rescaled so they explain503

a fixed proportion of the narrow-sense heritability V[
P

xc�c] = h
2. The coe�cients for the genotype PCs504

are also drawn from standard normal distributions and rescaled such that V[Wb] = 10% of the total505

phenotypic variance, with the variance of all non-genetic e↵ects contributing V[Wb] + V[e] = (1� h
2). For506

any simulations conducted under the population structure model, genotype PCs are not included in any of507

the model fitting procedures, and no other preprocessing normalizations were carried out to account for the508

additional population structure. More specifically, GWA summary statistics are then computed by fitting a509



single-SNP univariate linear model via ordinary least squares (OLS):510

b�j = (x|
jxj)

�1x|
jy; (9)

for every SNP in the data j = 1, . . . J . These OLS e↵ect size estimates, along with an empirically LD matrix511

⌃ computed directly from the full N ⇥ J genotype matrix X, are given to gene-". We also retain standard512

errors and p-values for the implementation of competing methods: RSS54, SKAT55, and the standard GWA513

SNP-level association test. Given the simulation procedure above, we simulate a wide range of scenarios for514

comparing the performance of gene-level association approaches by varying the following parameters:515

• Number of individuals: N = 5,000 and 10,000;516

• Narrow-sense heritability: h2 = 0.2 and 0.6;517

• Percentage of enriched genes: 1% (sparse) and 10% (polygenic);518

Furthermore, we set the number of causal SNPs with non-zero e↵ects to be some fixed percentage of all SNPs519

located within the designated genes enriched for associations. We set this percentage to be 0.125% in the520

1% associated SNP-set case, and 3% in the 10% associated SNP-set case. All performance comparisons are521

based on 100 di↵erent simulated runs for each parameter combination. Lastly, for each simulated dataset,522

we also selected some number of intergenic SNPs (i.e., SNPs not mapped to any gene) to have non-zero523

e↵ect sizes. This was done to mimic genetic associations in unannotated regulatory elements. Specifically,524

five randomly selected intergenic SNPs were given non-zero contributions to the trait heritability in the 1%525

enriched genes case, and 30 intergenic SNPs were selected in the 10% enriched genes case.526

All performance comparisons are based on 100 di↵erent simulated runs for each parameter combina-527

tion. We computed gene-level p-values for gene-", SKAT, and the single-SNP GWAS. For evaluating the528

performance of RSS, we compute posterior enrichment probabilities. For all approaches, we assessed the529

power and false discovery rates when identifying enriched genes at either a Bonferroni-corrected threshold530

(p = 0.05/1, 408 genes = 3.55 ⇥ 10�5) or according to the median probability model (posterior enrichment531

probability > 0.5)85. Figure S6 and Figure S7 show the mean performances (and standard errors) across532

all simulated replicates. Figure S8 illustrates that both GWAS and gene-" are limited by the sample size of533

the cohort of interest. Specifically, when the sample size is set to 2,000 individuals power is low and false534

discovery rates are high for both the standard GWA framework and gene-".535



Simulations of genetic trait architecture in two populations536

We used the African (UKB) cohort and a subset of the European cohort and simulation studies to test the537

ability of GWAS and gene-" to detect shared causal SNPs (in the case of gene-", genes containing causal538

SNPs) in a multi-ancestry study. Using the same simulation protocol as that described for testing power of539

di↵erent enrichment analysis methods, described in Simulations in a single population, we labeled all genes540

containing at least one causal SNP as ”causal”. We first determined the power of gene-" to identify SNPs or541

genes that are causal in each cohort under a variety of genomic architectures. The total amount of variance542

explained in the phenotype by the causal SNPs (i.e. the narrow-sense heritability) to be equal to 0.2 or543

0.6. In each of these contexts, the sparsity of causal variants as a function of the total number of variants544

was set to either 0.1 or 0.5. These values of causal SNP sparsity were selected in order to ensure that an545

ample number of SNPs were associated with the phenotype in both cohorts. Finally, the overlap in causal546

SNPs between the two cohorts was tested at proportions equal to 0 (no overlap in causal between SNPs547

cohorts) 0.25, 0.5, and 1 (complete overlap in causal SNPs between cohorts). For each of these parameter548

sets, 50 replicate simulations were performed of two cohorts derived from 10,000 European individuals and549

4,967 African individuals, respectively. We summarize the performance of the standard GWA framework550

and gene-" across the parameter space. Generally, gene-" performs better on the European cohort than it551

does in the African cohort, but is better powered in the African cohort when the causal SNPs are the same552

in both cohorts (Figure S9 and Figure S10). Additionally, gene-" performs better when identifying causal553

genes that are shared between the two cohorts - particularly when traits have high heritability Figure S11 -554

Figure S12.555
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