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Figure S1: Estimated heritability with different regression weights with LDER based on
simulated GWAS summary statistics. The sample sizes varied from 5, 000 to 50, 000. The number
of SNPs was fixed at 100, 000. The proportion of causal SNPs was 5%. The effect sizes were sampled
from a spike-and-slab distribution with heritability 0.5. The simulations were repeated for 50 times.
Dashed lines represent the true value. Diamonds indicate means in boxplots. The colors of the boxes
differentiate the estimation methods.
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Figure S2: Comparisons between LDER, LDSC, HESS, and HDL on the estimation of
heritability and confounding inflation based on simulated GWAS summary statistics with
varying sample sizes. The number of SNPs was fixed at 100, 000. The proportion of causal SNPs
was varied from 0.5% to 10%. The effect sizes were sampled from a spike-and-slab distribution with
heritability from 0.05 to 0.5 and with no confounding effects or inflation factor 1.1. The simulations
were repeated for 50 times. Dashed lines represent the true value. Diamonds indicate means in boxplots.
The colors of the boxes differentiate the estimation methods.
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Figure S3: Comparisons between the one and two-stage procedure of LDER and LDSC
on the estimation of heritability and confounding inflation based on simulated GWAS
summary statistics. The sample sizes varied from 5, 000 to 50, 000. The number of SNPs was
fixed at 100, 000. The proportion of causal SNPs was 5%. Effect sizes were sampled from a spike-
and-slab distribution with heritability 0.5. The simulations were repeated for 50 times. Dashed lines
represent the true value. Diamonds indicate means in boxplots. The colors of the boxes differentiate
the estimation methods. (A) The confounding inflation factor was set to 1 (with no confounding
inflation). (B) The confounding inflation factor was set to 1.1.



2 Supplementary Tables

Table S1: Precision and accuracy of the heritability estimates with LDER, LDSC, HESS,
and HDL. The simulations were based on UKBB genotypes, and repeated for 50 times. The heritabil-
ity was fixed at 0.5 and the proportion of causal SNPs was 0.5%. The highest precision and smallest
RMSEs are highlighted in boldface.

(a) The performance of LDER and LDSC with in-sample LD estimated by UKBB European
samples.

n
Precision (1/SD) RMSE

LDER LDSC HESS HDL LDER LDSC HESS HDL
5,000 15.74 10.73 16.92 NA∗ 0.063 0.089 0.084 0.500
10,000 30.75 24.08 25.11 NA 0.043 0.058 0.093 0.500
20,000 43.05 32.75 28.84 NA 0.022 0.034 0.069 0.500
50,000 65.21 48.00 47.23 163.32 0.019 0.022 0.167 0.462

∗ NA indicates the estimates are too close to zero, yielding infinite 1/SD.
(b) The performance of LDER and LDSC with external LD estimated by 1000G European sam-
ples.

n
Precision (1/SD) RMSE

LDER LDSC HESS LDER LDSC HESS
5,000 12.35 10.51 17.50 0.089 0.091 0.150
10,000 23.60 24.55 25.85 0.044 0.062 0.040
20,000 34.79 31.67 33.81 0.024 0.037 0.031
50,000 57.84 46.16 47.76 0.021 0.026 0.113



Table S2: Precision and accuracy of the heritability estimates with one- and two-stage of
LDER and LDSC. The simulations were based on UKBB genotypes, and repeated for 50 times. The
heritability was fixed at 0.5 and the proportion of causal SNPs was 1%. The highest precision and
smallest RMSEs are highlighted in boldface.

(a) The performance of LDER and LDSC with in-sample LD estimated by UKBB European
samples.

n

Precision (1/SD) RMSE
LDER LDSC LDER LDSC

2-stage 1-stage 2-stage 1-stage 2-stage 1-stage 2-stage 1-stage
5,000 17.82 16.82 12.51 12.43 0.073 0.074 0.095 0.082
10,000 23.53 21.31 17.82 17.47 0.034 0.050 0.053 0.057
20,000 40.18 37.38 31.14 29.69 0.030 0.033 0.041 0.037
50,000 73.79 75.49 53.77 41.53 0.016 0.027 0.022 0.030

(b) The performance of LDER and LDSC with external LD estimated by 1000G European sam-
ples.

n

Precision (1/SD) RMSE
LDER LDSC LDER LDSC

2-stage 1-stage 2-stage 1-stage 2-stage 1-stage 2-stage 1-stage
5,000 14.07 14.06 12.28 12.22 0.077 0.074 0.102 0.085
10,000 20.05 19.63 17.32 17.02 0.047 0.051 0.056 0.059
20,000 33.60 30.87 27.99 29.12 0.032 0.035 0.045 0.041
50,000 64.16 55.15 53.84 40.50 0.017 0.039 0.025 0.035

Table S3: Simulations with both population stratification and polygenicity. The χ2 in even
chromosomes is treated as the true confounding inflation factors. The SDs derived from 50 repeated
simulations are shown in brackets.

n Null χ2 InfLDER InfLDSC Null χ2 /InfLDER Null χ2 /InfLDSC

5,000 1.12 (0.00) 1.12 (0.00) 1.08 (0.00) 0.99 (0.00) 1.03 (0.00)
10,000 1.16 (0.01) 1.16 (0.01) 1.14 (0.00) 1.00 (0.00) 1.02 (0.00)
20,000 1.18 (0.01) 1.18 (0.01) 1.18 (0.01) 1.00 (0.01) 1.00 (0.01)
50,000 1.18 (0.03) 1.17 (0.02) 1.19 (0.03) 1.00 (0.02) 0.99 (0.01)



Table S4: Comparisons of the estimated heritability on ten UKBB traits by LDER, LDSC,
HESS, and HDL. The heritability estimated by BOLT-LMM was regarded as the true value. The
SEs were estimated by a delete-block jackknife procedure for LDER. The precision is defined as the
reciprocal of the estimated SE reported by each method.

Method LDER LDSC HESS HDL
RMSE 0.049 0.057 0.580 0.200

Mean precision 86.12 38.53 227.6 NA∗

∗ NA indicates the software failed to provide an estimate of the standard error in the estimated heritability.

Table S5 (.xlsx): The 97 UKBB traits with significantly different heritability estimates
(after Bonferroni correction) between LDER and LDSC. The SEs in brackets were estimated
with block-jackknife. The heritability estimates of binary traits has been transformed to liability scale.

Table S6 (.xlsx): A numerical comparison between the estimates of heritability and con-
founding inflation by LDER and LDSC on 221 UKBB quantitative traits. The SEs in
brackets were estimated with block-jackknife.

Table S7 (.xlsx): A numerical comparison between the estimates of heritability and con-
founding inflation by LDER and LDSC on 593 UKBB dichotomous traits. The estimated
heritability have been transformed to liability scale. The SEs in brackets were estimated with block-
jackknife.

Table S8: Runtime (minutes) comparison for LDER, LDSC, HESS, and HDL. The LD
information is calculated with 10, 000 UKBB individuals with 404, 892 autosomal variants. The time
is the average based on 10 repeats of the simulation.

LDER LDSC HESS HDL
LD preparation 6 243 7 60

Estimation 1.8 0.4 0.2 3.2
Total (k traits) 6 + 1.8k 243 + 0.4k 7.2k 60 + 3.2k



3 Supplementary Methods

3.1 The two-stage procedure
In parallel to LDSC, we use a two-stage procedure to reduce the variance of the estimates. In the
first stage, we estimate the regression intercept, and constrain the intercept to be no smaller than 1.
In the second stage, we fix the intercept to the value derived from the first stage and estimate the
heritability using all SNPs. In real data applications, we employ a linear shrinkage method for the
LD matrix estimation, and set the eigenvalues smaller than 1e − 06 to 0. We notice that there were
many projected z-values (z̃2i ) with extremely small magnitudes, which were generated mainly due to
the eigen-decomposition of inaccurately estimated LD matrices, and contributed to the downward bias
of confounding inflations and further upward bias in heritability. Therefore, we estimate the LDER
regression intercept with SNPs of z̃2i smaller than 0.005 removed in the first stage of the estimation.

3.2 Derivation of regression weights

In order to derive the variance of z̃2i , we assume that n is large and β ∼ N
(
0,

h2
g

m I
)

, and the i.i.d.

random error term e ∼ N
(
0,
(
1− h2

g

)
I
)
. Then we have z̃ | β ∼ N

(√
nD

1
2UTβ, I

)
. The expectation

and covariance matrix of z̃ can be calculated with E(z̃) = E [E(z̃ | β)] = 0, and Cov(z̃) = E[Cov(z̃ |
β)] + Cov[E(z̃ | β)] = I +

nh2
g

m D. Thus, z̃i ∼ N
(
0, 1 + nh2

gDii/m
)
, where Dii is the i-th eigenvalue

of the LD matrix. The z̃2i follows a scaled χ2 distribution with scale factor 1 + nh2
gDii/m, and the

variance function is

Var
(
z̃2i
)
= 2

(
1 +

nh2
g

m
Dii

)2

. (1)

Similarly, when the confounding inflation exists, we have

Var
(
z̃2i
)
= 2

(
λ+

nh2
g

m
Dii

)2

. (2)

3.3 Variance of the estimated heritability and inflation factor
We now show that theoretically, the estimation of inflation will have larger variance as sample size goes
larger for LDER and LDSC. The intuition behind is that the magnitude of the z-scores of the GWAS,
which determines the magnitude of the dependent variable in the regression of LDER, increases with
sample size. Please note that the “sample size” of the regression in LDER is determined by the number
of SNPs, rather than the sample size of the GWAS. Moreover, we provide theoretical justification for
estimates of least square regression on Equation E

(
z̃2i
)
= λ +

nh2
g

m Dii, and the same holds for LDSC.
By regressing z̃2i on Dii, we have

Var

(
n̂h2

g

m

)
= Var

(∑m
i=1

(
Dii − D̄

)
z̃2i

Sdd

)
=

(
1

Sdd

)2 m∑
i=1

[(
Dii − D̄

)2
Var

(
z̃2i
)]

, (3)

where Sdd =
∑m

i=1

(
Dii − D̄

)2, and D̄ = 1
m

∑m
i=1 Dii = l̄, where l̄ is the average LD score, i.e.,

l̄ =
∑m

j=1 lj/m. The second equation follows the independence among z̃2i s. Combining with Eqn (2),



we have
Var

(
ĥ2
g

)
= 2

(
1

Sdd

)2 m∑
i=1

[(
Dii − D̄

) (m
n
λ+ h2

gDii

)]2
. (4)

In addition,

Var(λ̂) = Var

(
z̃2 −

n̂h2
g

m
D̄

)
= Var

(
z̃2
)
+ D̄2 Var

(
nĥ2

g

m

)
− 2Cov

(
z̃2,

n̂h2
g

m
D̄

)

=

m∑
i=1

{[
1

m2
+ D̄2

(
1

Sdd

)2 (
Dii − D̄

)2]
Var

(
z̃2i
)}

− 2Cov

(
z̃2,

n̂h2
g

m
D̄

)
.

(5)

We consider the covariance term:

Cov

(
z̃2,

n̂h2
g

m
D̄

)
= Cov

 m∑
i=1

1

m
z̃2i , D̄

m∑
j=1

(
Djj − D̄

)
z̃2j

Sdd

 =

m∑
i=1

m∑
j=1

D̄

(
Djj − D̄

)
mSdd

Cov
(
z̃2i , z̃

2
j

)
=

m∑
i=1

D̄

(
Dii − D̄

)
mSdd

Var
(
z̃2i
)
,

(6)

where the last equation follows the independence among z̃is. Thus, we have

Var(λ̂) =

m∑
i=1

{[
1

m2
+ D̄2

(
1

Sdd

)2 (
Dii − D̄

)2 − 2D̄

(
Dii − D̄

)
mSdd

]
Var

(
z̃2i
)}

=

m∑
i=1

( 1

m
− D̄

(
Dii − D̄

)
Sdd

)2

Var
(
z̃2i
)

= 2

m∑
i=1

( 1

m
− D̄

(
Dii − D̄

)
Sdd

)2(
λ+

nh2
g

m
Dii

)2
 ,

(7)

which is an increasing function of n.
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