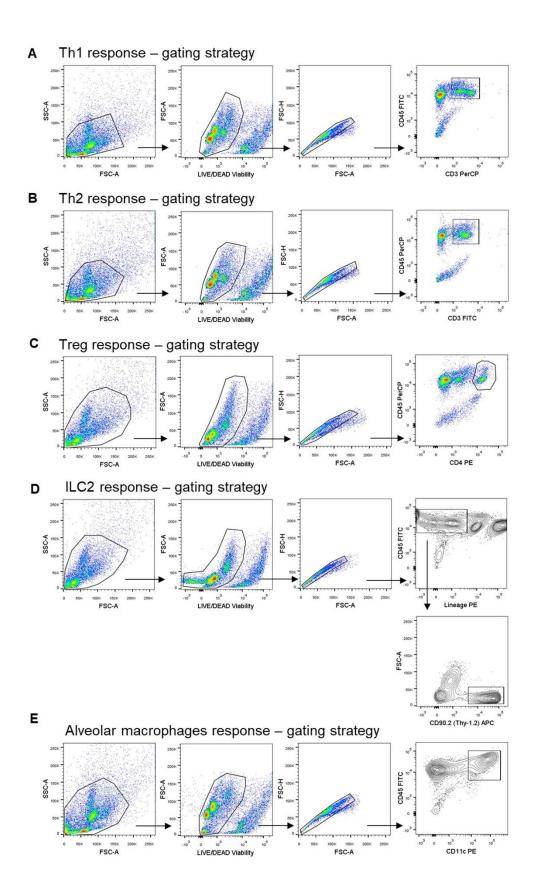
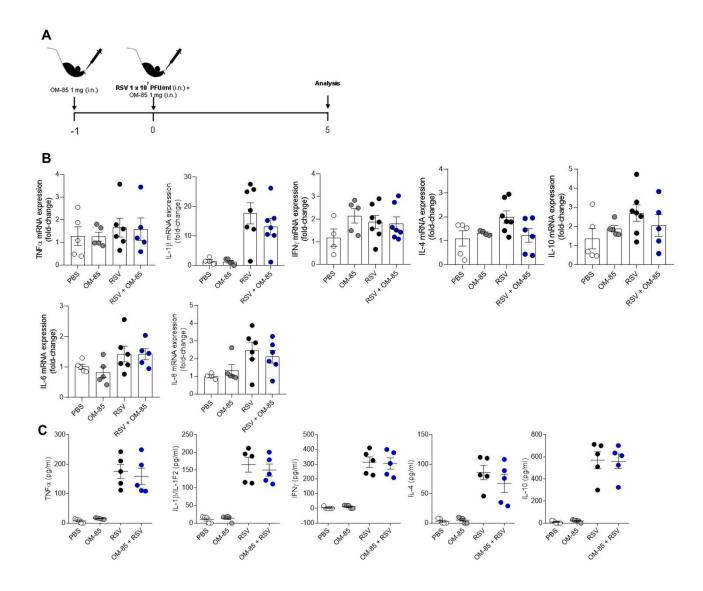
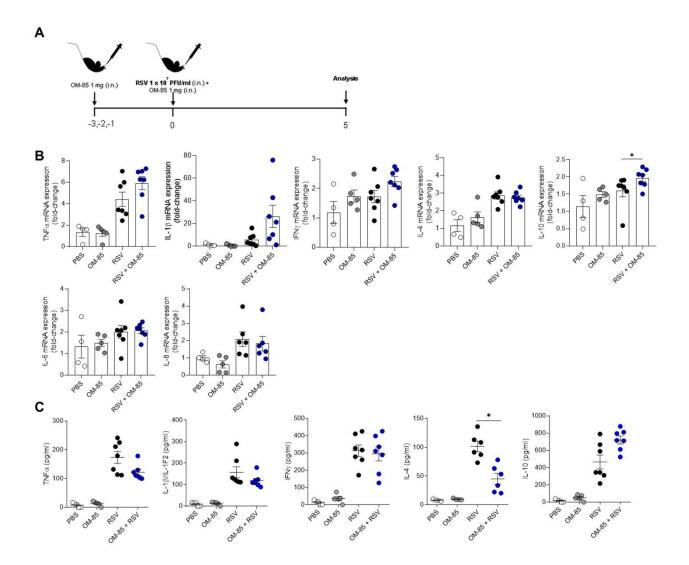
## Supplementary Material


## **1** Supplementary Table

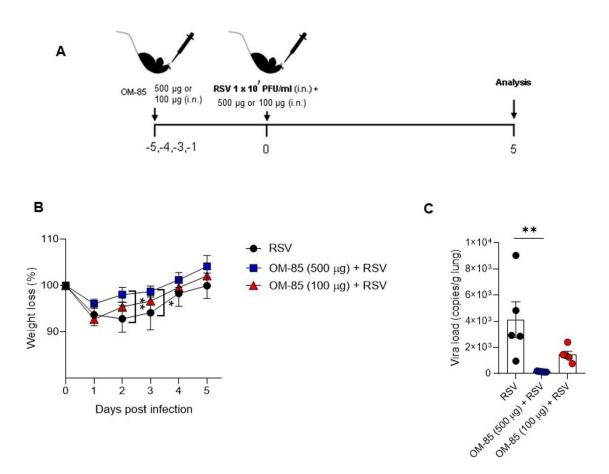
## Supplementary Table 1. Gene ID description


| Gene name     | Gene ID       | Species |
|---------------|---------------|---------|
| Actb          | Mm02619580_g1 | Mouse   |
| Tnfa          | Mm00443258_m1 | Mouse   |
| Il1b          | Mm00434228_m1 | Mouse   |
| Ifng          | Mm01168134_m1 | Mouse   |
| <i>I</i> 14   | Mm00445259_m1 | Mouse   |
| 116           | Mm00446190_m1 | Mouse   |
| Cxcl15 (IL-8) | Mm00441263_m1 | Mouse   |
| 1110          | Mm01288386_m1 | Mouse   |
| Ifnb1         | Mm00439552_s1 | Mouse   |
| Isg15         | Mm01705338_s1 | Mouse   |
| Ddx58 (RIG-I) | Mm01216853_m1 | Mouse   |
| ACTB          | Hs01060665_g1 | Human   |
| IFNB1         | Hs01077958_s1 | Human   |
| ISG15         | Hs01921425_s1 | Human   |

| IFIH1 (MDA5) | Hs00223420_m1 | Human |  |
|--------------|---------------|-------|--|
| DDX58        | Hs01061436_m1 | Human |  |


## 2. Supplementary Figures




Supplementary Figure 1. Gating strategy of each immune cell population. (A) Gating strategy of Th1 lymphocytes. (B) Gating strategy of Th2 lymphocytes. (C) Gating strategy of Treg lymphocytes. (D) Gating strategy of ILC2. (E) Gating strategy of alveolar macrophages.




Supplementary Figure 2. Short-time preventive treatment with OM-85 does not modulate cytokine production in the lungs during RSV infection. Mice were treated intranasally with OM-85 (1mg) 1 day prior to RSV infection. Afterwards, mice were infected with RSV (1x10<sup>7</sup> PFU/ml) and received another OM-85 boost 6h later. BAL and lung were harvested at day 5 post-infection. (A) Experimental design. (B) *Tnfa*, *111b*, *Ifng*, *114*, *1110*, *116* and *Cxcl15* (IL-8) gene expression in the lungs detected by real-time PCR (fold change compared to untreated/uninfected control). (C) Production of TNF $\alpha$ , IL-1 $\beta$ , IFN $\gamma$ , IL-4 and IL-10 in the lungs measured by ELISA. All data are expressed as mean ± SEM. Multiple groups were compared using Kruskal–Wallis.



Supplementary Figure 3. OM-85 pretreatment starting 3 days prior to modulates IL-4 and IL-10 production in the lungs during RSV infection. Mice were treated intranasally with OM-85 (1mg) 3 days prior to RSV infection. Afterwards, mice were infected with RSV (1x10<sup>7</sup> PFU/ml) and received another OM-85 boost 6h later. BAL and lung were harvested at day 5 post-infection. (A) Experimental design. (B) *Tnfa*, *111b*, *Ifng*, *114*, *1110*, *116* and *Cxcl15* (IL-8) gene expression in the lungs detected by real-time PCR (fold change compared to untreated/uninfected control). (C) Production of TNF $\alpha$ , IL-1 $\beta$ , IFN $\gamma$ , IL-4 and IL-10 in the lungs measured by ELISA. All data are expressed as mean ± SEM. Multiple groups were compared using Kruskal–Wallis. \*p < 0.05.



Supplementary Figure 4. OM-85 pretreatment protects against RSV infection in a dosedependent manner. Mice were treated intranasally with OM-85 (1mg) 5 days prior to RSV infection. Afterwards, mice were infected with RSV ( $1x10^7$  PFU/ml) and received another OM-85 boost 6h later. (A) Experimental design. (B) Percentage of weight loss relative to day 0 (right before infection). (C) RSV viral load detected in lung tissue by real-time PCR (viral copies/g of lung tissue). All data are expressed as mean ± SEM. Multiple groups were compared using Kruskal–Wallis. \*\*p < 0.01, \*\*\*p < 0.001.



\* vs Control

**Supplementary Figure 5.** *In vitro* **OM-85 toxicity assay.** Mycoplasma-free A549 cells (8 x  $10^4$  cells/ml) were treated with different concentrations of OM-85 for 96h. Cell viability was assessed by MTT assay using untreated control as 100% of viability. All data are expressed as mean ± SEM. Multiple groups were compared using Kruskal–Wallis. \*\*p < 0.01, \*\*\*p < 0.001.