## **SUPPORTING INFORMATION 1**

Exposure to contemporary and emerging chemicals in commerce among pregnant women in the United States: The Environmental influences on Child Health Outcomes (ECHO) Program

Jessie P. Buckley, Jordan R. Kuiper, Deborah H. Bennett, Emily S. Barrett, Tracy Bastain, Carrie V. Breton, Sridhar Chinthakindi, Anne L. Dunlop, Shohreh F. Farzan, Julie B. Herbstman,

Margaret R. Karagas, Carmen J. Marsit, John D. Meeker, Rachel Morello-Frosch, Thomas G. O'Connor, Megan E. Romano, Susan Schantz, Rebecca J. Schmidt, Deborah J.

Watkins, Hongkai Zhu, Edo D. Pellizzari, Kurunthachalam Kannan, and Tracey J. Woodruff on behalf of program collaborators for Environmental influences on Child Health Outcomes

Pages: 15

Figures: 1

Tables: 4

**Table S1**. Characteristics of Participating ECHO Pregnancy Cohorts (N = 9)

**Table S2.** Description of Measured Parent Compounds, Chemicals, Individual Analytes, and

 Composite Analytes

**Table S3.** Coefficients of Variation (CVs) of Quality Control (QC) Pooled Samples (A and B)

 and Median Relative Percent Differences (RPDs) of Blinded Duplicate Pairs

**Table S4**. Sociodemographic characteristics of pregnant women in the study sample, the nine

 participating cohorts, and 68 ECHO cohorts

**Figure S1.** Violin plot of log<sub>2</sub>-transformed urinary analyte concentrations measured among 171 pregnant women in ECHO

| Cohort name                                                                                                   | Location(s)                       | Years of<br>cohort<br>enrollment<br>(current<br>study) | Recruitment timing and eligibility criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cohort features                                                                                                                         | Number<br>in pilot<br>study | Number<br>of blinded<br>duplicates |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|
| Chemicals in Our<br>Bodies (CiOB) <sup>1-4</sup>                                                              | San<br>Francisco,<br>California   | 2014–present<br>(2014–2018)                            | Women seeking routine prenatal care and<br>delivery services from three University of<br>California, San Francisco hospitals were<br>recruited at 12–28 weeks of pregnancy.<br>Eligibility criteria included English or<br>Spanish speakers, singleton birth, >=18<br>years of age, no major pregnancy<br>complications.                                                                                                                                                                                                                                                                 | Cohort is urban, racially and<br>economically diverse, with<br>38% non-Hispanic White,<br>34% Latina, 19% Asian, and<br>8% Black women. | 20                          | 2                                  |
| Illinois Kids<br>Developmental<br>Study (IKIDS) <sup>4</sup>                                                  | Champaign-<br>Urbana,<br>Illinois | 2013–present<br>(2019)                                 | Women were recruited from two obstetric<br>clinics at their first prenatal visit and<br>enrolled at 10–14 weeks of gestation.<br>Eligibility criteria included 18–40 years of<br>age, not caring multiples, not in a high-risk<br>pregnancy, fluent in English, not planning to<br>leave the area before the child's first<br>birthday.                                                                                                                                                                                                                                                  | Cohort is from a mid-size<br>mid-western college town,<br>predominantly non-Hispanic<br>White and college-educated.                     | 17                          | 2                                  |
| Maternal and<br>Developmental<br>Risks from<br>Environmental and<br>Social Stressors<br>(MADRES) <sup>5</sup> | Los Angeles,<br>California        | 2015–present<br>(2016–2019)                            | Recruitment from community health centers<br>in urban Los Angeles with a focus on<br>medically underserved populations.<br>Eligibility for participants at the time of<br>recruitment included: (1) less than 30 weeks<br>pregnant, (2) at least 18 years of age, and (3)<br>a fluent speaker of English or Spanish.<br>Exclusion criteria for the study included: (1)<br>multiple gestation; (2) having a physical,<br>mental, or cognitive disability that would<br>prevent participation or ability to provide<br>consent; (3) current incarceration; and (4)<br>HIV positive status. | Participants are<br>predominantly Hispanic and<br>approximately 50% were<br>born outside of the U.S.                                    | 20                          | 2                                  |
| Understanding<br>Pregnancy Signals<br>and Infant                                                              | Rochester,<br>New York            | 2015–2019<br>(2019–2020)                               | 1st trimester recruitment from academic-<br>affiliated prenatal clinics with an<br>underserved patient population. Eligibility<br>criteria included: <14 weeks of gestation,                                                                                                                                                                                                                                                                                                                                                                                                             | Enriched for maternal<br>sociodemographic diversity<br>and psychosocial<br>stress through recruitment at                                | 20                          | 0                                  |

**Table S1**. Characteristics of Participating ECHO Pregnancy Cohorts (N = 9)

| Cohort name                                                                                      | Location(s)                   | Years of<br>cohort<br>enrollment<br>(current<br>study) | Recruitment timing and eligibility criteria                                                                                                                                                                                                                                                                                                                                                                                  | Cohort features                                                            | Number<br>in pilot<br>study | Number<br>of blinded<br>duplicates |
|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|------------------------------------|
| Development<br>(UPSIDE) <sup>6</sup>                                                             |                               |                                                        | >=18 years of age, singleton pregnancy, no<br>known substance abuse issues or history of<br>psychotic illness, no major endocrine<br>disorder, high-risk health condition, or<br>significant obstetric concern at baseline.                                                                                                                                                                                                  | clinics serving<br>disproportionately high-need<br>patients.               |                             |                                    |
| Puerto Rico Testsite<br>for Exploring<br>Contamination<br>Threats<br>(PROTECT) <sup>7, 8 9</sup> | Northern<br>Puerto Rico       | 2011-present<br>(2017–2018)                            | Women recruited at prenatal care visit.<br>Eligibility criteria included <20 weeks of<br>gestation, age 18–40 years, residence in<br>Northern Karst region of Puerto Rico, no<br>IVF or major pre-existing medical<br>conditions (e.g. diabetes).                                                                                                                                                                            | Hispanic cohort.                                                           | 20                          | 0                                  |
| Atlanta African<br>American Maternal-<br>Child Cohort <sup>10-12</sup>                           | Atlanta,<br>Georgia           | 2014 –<br>present<br>(2016–2018)                       | Pregnant women 18–40 years of age who<br>self-reported as Black or African American,<br>were born in the United States, had a<br>singleton pregnancy at 8–14 weeks of<br>gestation presenting for care at clinics<br>affiliated with Emory University (Emory<br>and Grady Health Systems) and who did not<br>have IVF or pre-existing chronic medical<br>conditions were invited to participate.                             | Black/African American<br>cohort from metropolitan<br>Atlanta.             | 20                          | 0                                  |
| Markers of Autism<br>Risk in Babies:<br>Learning Early<br>Signs (MARBLES)<br><sup>13</sup>       | Northern<br>California        | 2006-present<br>(2008–2015)                            | Pregnant women were eligible if they had a<br>child or other first degree relative with<br>autism spectrum disorder (ASD), were 18<br>years of age or older, spoke, read, and<br>understood English, and lived within 2.5<br>hours of the Davis/Sacramento region at the<br>time of enrollment. The families were<br>primarily recruited from those who received<br>state-funded services for ASD in Northern<br>California. | Mothers of a child with autism.                                            | 14                          | 6                                  |
| Fair Start                                                                                       | New York<br>City, New<br>York | 2013-present<br>(2017–2019)                            | Pregnant women were enrolled from<br>community obstetric clinics associated with<br>New York Presbyterian Hospital. Eligibility<br>criteria included English or Spanish                                                                                                                                                                                                                                                      | Urban residents of upper<br>Manhattan and South Bronx,<br>mainly Hispanic. | 20                          | 20                                 |

| Cohort name                                                      | Location(s)                   | Years of<br>cohort<br>enrollment<br>(current<br>study) | Recruitment timing and eligibility criteria                                                                                                                                                                                                                                                  | Cohort features                                                                                                                                                                                   | Number<br>in pilot<br>study | Number<br>of blinded<br>duplicates |
|------------------------------------------------------------------|-------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|
|                                                                  |                               |                                                        | speakers, singleton birth, >=18 years old,<br>and no major pregnancy complications.                                                                                                                                                                                                          |                                                                                                                                                                                                   |                             |                                    |
| New Hampshire<br>Birth Cohort Study<br>(NHBCS) <sup>14, 15</sup> | Concord and<br>Lebanon,<br>NH | 2009-present<br>(2017–2019)                            | Pregnant women 18–45 years of age were<br>recruited at either ~12 weeks or ~ 24–<br>28 weeks of gestation from prenatal clinics<br>in New Hampshire. Eligibility criteria<br>included English literacy, use of a private,<br>unregulated water system at home, and a<br>singleton pregnancy. | Participants are<br>representative of the<br>vulnerable group of rural<br>pregnant women and are<br>primarily non-Hispanic<br>White, reflective of the<br>underlying population of the<br>region. | 20                          | 2                                  |

## References

1. Morello-Frosch, R.; Cushing, L. J.; Jesdale, B. M.; Schwartz, J. M.; Guo, W.; Guo, T.; Wang, M.; Harwani, S.; Petropoulou, S. E.; Duong, W.; Park, J. S.; Petreas, M.; Gajek, R.; Alvaran, J.; She, J.; Dobraca, D.; Das, R.; Woodruff, T. J., Environmental Chemicals in an Urban Population of Pregnant Women and Their Newborns from San Francisco. *Environ Sci Technol* **2016**, *50*, (22), 12464-12472.

2. Eick, S. M.; Hom Thepaksorn, E. K.; Izano, M. A.; Cushing, L. J.; Wang, Y.; Smith, S. C.; Gao, S.; Park, J. S.; Padula, A. M.; DeMicco, E.; Valeri, L.; Woodruff, T. J.; Morello-Frosch, R., Associations between prenatal maternal exposure to per- and polyfluoroalkyl substances (PFAS) and polybrominated diphenyl ethers (PBDEs) and birth outcomes among pregnant women in San Francisco. *Environ Health* **2020**, *19*, (1), 100.

3. Wang, A.; Gerona, R. R.; Schwartz, J. M.; Lin, T.; Sirota, M.; Morello-Frosch, R.; Woodruff, T. J., A Suspect Screening Method for Characterizing Multiple Chemical Exposures among a Demographically Diverse Population of Pregnant Women in San Francisco. *Environ Health Perspect* **2018**, *126*, (7), 077009.

4. Eick, S. M.; Enright, E. A.; Geiger, S. D.; Dzwilewski, K. L. C.; DeMicco, E.; Smith, S.; Park, J. S.; Aguiar, A.; Woodruff, T. J.; Morello-Frosch, R.; Schantz, S. L., Associations of Maternal Stress, Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFAS), and Demographic Risk Factors with Birth Outcomes and Offspring Neurodevelopment: An Overview of the ECHO.CA.IL Prospective Birth Cohorts. *Int J Environ Res Public Health* **2021**, *18*, (2).

5. Bastain, T. M.; Chavez, T.; Habre, R.; Girguis, M. S.; Grubbs, B.; Toledo-Corral, C.; Amadeus, M.; Farzan, S. F.; Al-Marayati, L.; Lerner, D.; Noya, D.; Quimby, A.; Twogood, S.; Wilson, M.; Chatzi, L.; Cousineau, M.; Berhane, K.; Eckel, S. P.; Lurmann, F.; Johnston, J.; Dunton, G. F.; Gilliland, F.; Breton, C., Study Design, Protocol and Profile of the Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) Pregnancy Cohort: a Prospective Cohort Study in Predominantly Low-Income Hispanic Women in Urban Los Angeles. *BMC Pregnancy Childbirth* **2019**, *19*, (1), 189.

6. O'Connor, T.; Best, M.; Brunner, J.; Ciesla, A. A.; Cunning, A.; Kapula, N.; Kautz, A.; Khoury, L.; Macomber, A.; Meng, Y.; Miller, R. K.; Murphy, H.; Salafia, C. M.; Vallejo Sefair, A.; Serrano, J.; Barrett, E.; study, U., Cohort profile: Understanding Pregnancy Signals and Infant Development (UPSIDE): a pregnancy cohort study on prenatal exposure mechanisms for child health. *BMJ Open* **2021**, *11*, (4), e044798.

7. Ferguson, K. K.; Rosen, E. M.; Rosario, Z.; Feric, Z.; Calafat, A. M.; McElrath, T. F.; Velez Vega, C.; Cordero, J. F.; Alshawabkeh, A.; Meeker, J. D., Environmental phthalate exposure and preterm birth in the PROTECT birth cohort. *Environ Int* **2019**, *132*, 105099.

8. Ashrap, P.; Watkins, D. J.; Mukherjee, B.; Boss, J.; Richards, M. J.; Rosario, Z.; Velez-Vega, C. M.; Alshawabkeh, A.; Cordero, J. F.; Meeker, J. D., Maternal blood metal and metalloid concentrations in association with birth outcomes in Northern Puerto Rico. *Environ Int* **2020**, *138*, 105606.

9. Manjourides, J.; Zimmerman, E.; Watkins, D. J.; Carpenito, T.; Velez-Vega, C. M.; Huerta-Montanez, G.; Rosario, Z.; Ayala, I.; Vergara, C.; Feric, Z.; Ondras, M.; Suh, H. H.; Gu, A. Z.; Brown, P.; Cordero, J. F.; Meeker, J. D.; Alshawabkeh, A., Cohort profile: Center for Research on Early Childhood Exposure and Development in Puerto Rico. *BMJ Open* **2020**, *10*, (7), e036389.

10. Dunlop, A. L.; Knight, A. K.; Satten, G. A.; Cutler, A. J.; Wright, M. L.; Mitchell, R. M.; Read, T. D.; Mulle, J.; Hertzberg, V. S.; Hill, C. C.; Smith, A. K.; Corwin, E. J., Stability of the vaginal, oral, and gut microbiota across pregnancy among African American women: the effect of socioeconomic status and antibiotic exposure. *PeerJ* **2019**, *7*, e8004.

11. Brennan, P. A.; Dunlop, A. L.; Smith, A. K.; Kramer, M.; Mulle, J.; Corwin, E. J., Protocol for the Emory University African American maternal stress and infant gut microbiome cohort study. *BMC Pediatr* **2019**, *19*, (1), 246.

12. Dunlop, A. L.; Jordan, S. L.; Ferranti, E. P.; Hill, C. C.; Patel, S.; Hao, L.; Corwin, E. J.; Tangpricha, V., Total and Free 25-Hydroxy-Vitamin D and Bacterial Vaginosis in Pregnant African American Women. *Infect Dis Obstet Gynecol* **2019**, *2019*, 9426795.

13. Hertz-Picciotto, I.; Schmidt, R. J.; Walker, C. K.; Bennett, D. H.; Oliver, M.; Shedd-Wise, K. M.; LaSalle, J. M.; Giulivi, C.; Puschner, B.; Thomas, J.; Roa, D. L.; Pessah, I. N.; Van de Water, J.; Tancredi, D. J.; Ozonoff, S., A Prospective Study of Environmental Exposures and Early Biomarkers in Autism Spectrum Disorder: Design, Protocols, and Preliminary Data from the MARBLES Study. *Environ Health Perspect* **2018**, *126*, (11), 117004.

14. Gilbert-Diamond, D.; Emond, J. A.; Baker, E. R.; Korrick, S. A.; Karagas, M. R., Relation between in Utero Arsenic Exposure and Birth Outcomes in a Cohort of Mothers and Their Newborns from New Hampshire. *Environ Health Perspect* **2016**, *124*, (8), 1299-307.

15. Signes-Pastor, A. J.; Doherty, B. T.; Romano, M. E.; Gleason, K. M.; Gui, J.; Baker, E.; Karagas, M. R., Prenatal exposure to metal mixture and sexspecific birth outcomes in the New Hampshire Birth Cohort Study. *Environ Epidemiol* **2019**, *3*, (5).

|                                           |                         | Number of                          |                                   | Number of ar                         | nalytes (N=89)            |                                 |                |
|-------------------------------------------|-------------------------|------------------------------------|-----------------------------------|--------------------------------------|---------------------------|---------------------------------|----------------|
| Chemical group                            | Number of<br>chemicals* | Number of<br>parent<br>compounds** | Individual<br>parent<br>compounds | Composites<br>of parent<br>compounds | Individual<br>metabolites | Composites<br>of<br>metabolites | Sums<br>(Σ)*** |
| Total                                     | 103                     | 73                                 | 41                                | 2                                    | 38                        | 8                               |                |
| Bactericides                              | 1                       | 1                                  | 1                                 | 0                                    | 0                         | 0                               |                |
| Benzophenones                             | 6                       | 4                                  | 3                                 | 0                                    | 3                         | 0                               |                |
| Bisphenols                                | 7                       | 7                                  | 7                                 | 0                                    | 0                         | 0                               |                |
| Fungicides & herbicides                   | 11                      | 11                                 | 11                                | 0                                    | 0                         | 0                               |                |
| Insecticides                              | 19                      | 14                                 | 9                                 | 1                                    | 6                         | 1                               |                |
| Organophosphate esters                    | 11                      | 8                                  | 4                                 | 1                                    | 3                         | 1                               |                |
| Parabens                                  | 6                       | 6                                  | 6                                 | 0                                    | 0                         | 0                               |                |
| Phthalates &<br>phthalate<br>alternatives | 31                      | 18                                 | 0                                 | 0                                    | 25                        | 3                               | 4              |
| Polycyclic aromatic<br>hydrocarbons       | 11                      | 4                                  | 0                                 | 0                                    | 1                         | 3                               |                |

Table S2. Description of Measured Parent Compounds, Chemicals, Individual Analytes, Composite Analytes, and Sums

\*Number of chemicals is the number of parent compounds and metabolites represented by the 89 analytes.

\*\*Number of parent compounds is the number of parent compounds represented by the 89 analytes.

\*\*\*We calculated a weighted molar sum ( $\Sigma$ ) of metabolites for di-2-ethylhexyl phthalate (DEHP), di-isodecyl phthalate (DiDP), di-(2-propylheptyl) phthalate (DPHP), and di-iso-nonyl-cyclohexane-1,2-dicarboxylic acid (DINCH). The metabolites included in each sum were measured individually and subsequently summed for analysis because they are biomarkers of the same parent compound.

|                 |                | Repli   | Replicate pooled aliquots |                        |        | Duplicate sample<br>aliquots |                   |
|-----------------|----------------|---------|---------------------------|------------------------|--------|------------------------------|-------------------|
| Chemical group  | Chemical class | Analyte | QC pool                   | # of valid<br>QC pairs | CV (%) | # of valid<br>pairs          | Median<br>RPD (%) |
| Bactericide     | Bactericide    | TCC     | A                         | 0                      | NC     | 0                            | NC                |
| Dactericiue     | Dactericiue    | ICC     | В                         | 0                      | NC     |                              |                   |
| Benzophenones   | Benzophenones  | BP2     | А                         | 0                      | NC     | < 5                          | 7.3               |
| Delizophenolies | Denzophenones  | DI 2    | В                         | 0                      | NC     |                              |                   |
| Benzophenones   | Benzophenones  | BP8     | А                         | 0                      | NC     | 11                           | 30.8              |
| Delizophenolies | Denzophenones  | DI 0    | В                         | 0                      | NC     |                              |                   |
| Benzophenones   | Benzophenones  | 4-OHBP  | А                         | 5                      | 12     | 27                           | 21.8              |
| Delizophenolies | Denzophenones  | 4-OIIDI | В                         | 6                      | 4      |                              |                   |
| Benzophenones   | Benzophenones  | BP1     | А                         | 6                      | 4      | 32                           | 12.6              |
| Denzophenones   | Denzophenones  | DII     | В                         | 6                      | 3      |                              |                   |
| Benzophenones   | Benzophenones  | BP3     | А                         | 6                      | 9      | 32                           | 26.9              |
| Denzophenones   | Denzophenones  | DIJ     | В                         | 6                      | 8      |                              |                   |
| Bisphenols      | Bisphenols     | BPA     | А                         | 6                      | 16     | 14                           | 70.8              |
| Displicitois    | Displicitois   | DIT     | В                         | 6                      | 11     |                              |                   |
| Bisphenols      | Bisphenols     | BPAF    | А                         | 0                      | NC     | 0                            | NC                |
| Displicitois    | Displicitois   | DIT     | В                         | 0                      | NC     |                              |                   |
| Bisphenols      | Bisphenols     | BPB     | А                         | 0                      | NC     | 0                            | NC                |
| Displicitois    | Displicitois   | DID     | В                         | 0                      | NC     |                              |                   |
| Bisphenols      | Bisphenols     | BPF     | А                         | 0                      | NC     | 5                            | 38.4              |
| Displicitois    | Displicitois   | DIT     | В                         | 0                      | NC     |                              |                   |
| Bisphenols      | Bisphenols     | BPS     | А                         | 6                      | 5      | 28                           | 18.3              |
| Displicitois    | Displicitois   | DIS     | В                         | 6                      | 2      |                              |                   |
| Bisphenols      | Bisphenols     | BPZ     | А                         | 0                      | NC     | n < 5                        | 58.7              |
| *               | Displicitois   |         | В                         | 0                      | NC     |                              |                   |
| Fungicides &    | Fungicides     | 2,4,5-T | А                         | 0                      | NC     | 18                           | 16.1              |
| herbicides      | Tungiciues     | 2,7,3-1 | В                         | 0                      | NC     |                              |                   |
| Fungicides &    | Fungicides     | PNP     | А                         | 0                      | NC     | 15                           | 53.1              |
| herbicides      | -              |         | В                         | 0                      | NC     |                              |                   |
| Fungicides &    | Fungicides     | MET     | А                         | 0                      | NC     | 0                            | NC                |

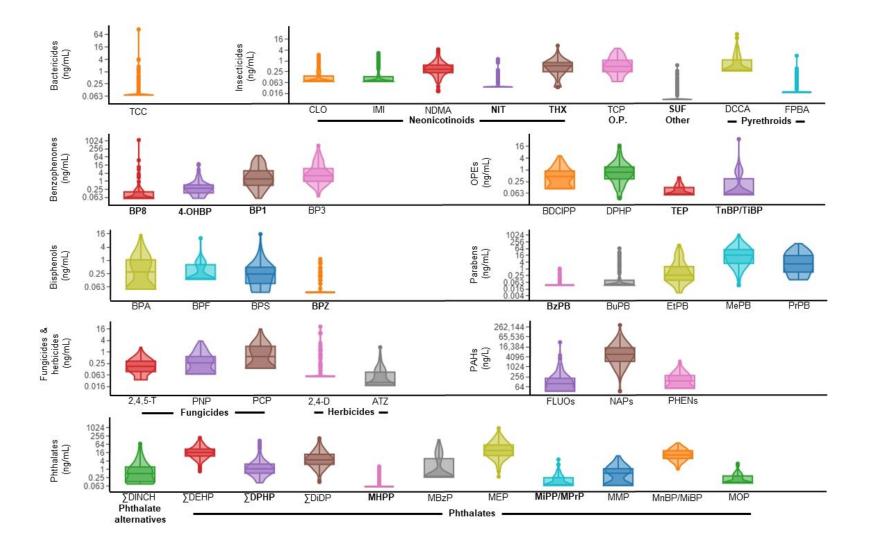
**Table S3.** Coefficients of Variation (CVs) of Quality Control (QC) Pooled Samples (A and B) and Median Relative Percent Differences (RPDs) of Blinded Duplicate Pairs.

| 1                            |                   |                                         | D | 0 |          |       |                      |
|------------------------------|-------------------|-----------------------------------------|---|---|----------|-------|----------------------|
| herbicides                   |                   |                                         | В | 0 | NC       | 10    | <i><b>Г</b>( 1</i> ) |
| Fungicides &                 | Fungicides        | РСР                                     | A | 0 | NC       | 19    | 56.4                 |
| herbicides                   | C                 |                                         | В | 0 | NC       | 0     | NG                   |
| Fungicides &                 | Fungicides        | PYRM                                    | A | 0 | NC       | 0     | NC                   |
| herbicides                   | C                 |                                         | В | 0 | NC       | - 5   | 71.0                 |
| Fungicides &                 | Herbicides        | 2,4-D                                   | A | 0 | NC       | n < 5 | 71.2                 |
| herbicides                   |                   |                                         | В | 0 | NC       | 10    | (0.1                 |
| Fungicides &                 | Herbicides        | ATZ                                     | A | 6 | 7        | 13    | 60.1                 |
| herbicides                   |                   |                                         | В | 6 | 10<br>NC | 0     | NC                   |
| Insecticides                 | Neonicotinoids    | 6-CNA                                   | A | 0 | NC       | 0     | NC                   |
|                              |                   |                                         | В | 0 | NC       | 0     | NG                   |
| Insecticides                 | Neonicotinoids    | ACE                                     | A | 0 | NC       | 0     | NC                   |
|                              |                   |                                         | В | 0 | NC       | - 5   | 17.5                 |
| Insecticides                 | Neonicotinoids    | CLO                                     | A | 0 | NC       | n < 5 | 17.5                 |
|                              |                   |                                         | В | 0 | NC       |       | 00.1                 |
| Insecticides                 | Neonicotinoids    | IMI                                     | A | 0 | NC       | n < 5 | 82.1                 |
|                              |                   |                                         | В | 0 | NC       | 2.1   | 22.4                 |
| Insecticides                 | Neonicotinoids    | NDMA                                    | A | 6 | 1        | 31    | 32.4                 |
|                              |                   |                                         | В | 6 | 2        |       |                      |
| Insecticides                 | Neonicotinoids    | NIT                                     | A | 0 | NC       | NC    | NC                   |
|                              |                   |                                         | B | 0 | NC       | • 0   |                      |
| Insecticides                 | Neonicotinoids    | THX                                     | A | 6 | 3        | 28    | 45.1                 |
| 1110 • • • • • • • • • • •   |                   |                                         | В | 6 | 5        | _     |                      |
| Insecticides                 | Organochlorine    | 2,4,5-/2,4,6-TCP                        | A | 0 | NC       | 0     | NC                   |
| 1110 • • • • • • • • • • •   |                   | _,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | В | 0 | NC       |       |                      |
| Insecticides                 | Organophosphate   | ТСР                                     | Α | 6 | 3        | 31    | 16.2                 |
| 1110 • • • • • • • • • • • • | 018micphiciphiate |                                         | В | 6 | 1        | _     |                      |
| Insecticides                 | Other             | SUF                                     | Α | 0 | NC       | n < 5 | 25.2                 |
| motorioratos                 | 0 ther            | 501                                     | В | 0 | NC       |       |                      |
| Insecticides                 | Pyrethroids       | DCCA                                    | А | 0 | NC       | n < 5 | 23                   |
| msecticides                  | i yreunolus       | Deen                                    | В | 0 | NC       |       |                      |
| Insecticides                 | Pyrethroids       | PBA                                     | А | 6 | 8        | n < 5 | 23                   |
| 1115001101005                | i yiemotus        | 1 D/1                                   | В | 6 | 12       |       |                      |
| Insecticides                 | Pyrethroids       | FPBA                                    | А | 0 | NC       | n < 5 | 9.1                  |
|                              | •                 |                                         | В | 0 | NC       |       |                      |
| Organophosphate              | Organophosphate   | BDCIPP                                  | А | 0 | NC       | 20    | 35.1                 |

| esters                    | esters          |             | В      | 0      | NC     |       |      |
|---------------------------|-----------------|-------------|--------|--------|--------|-------|------|
| Organophosphate           | Organophosphate | DBuP/DiBP   | А      | 0      | NC     | 0     | NC   |
| esters                    | esters          | DDur/DIDr   | В      | 0      | NC     |       |      |
| Organophosphate           | Organophosphate | DPHP        | А      | 6      | 2      | 32    | 10   |
| esters                    | esters          | DI III      | В      | 6      | 6      |       |      |
| Organophosphate           | Organophosphate | TEP         | Α      | 0      | NC     | 6     | 44.2 |
| esters                    | esters          | 1121        | В      | 0      | NC     |       |      |
| Organophosphate           | Organophosphate | TnBP/TiBP   | А      | 0      | NC     | n < 5 | 32.2 |
| esters                    | esters          |             | В      | 0      | NC     | _     |      |
| Organophosphate           | Organophosphate | TCEP        | A      | 0      | NC     | 0     | NC   |
| esters                    | esters          |             | В      | 0      | NC     |       | 110  |
| Parabens                  | Parabens        | BzPB        | A      | 0      | NC     | 0     | NC   |
|                           |                 |             | В      | 0      | NC     | 7     | 40.5 |
| Parabens                  | Parabens        | BuPB        | A      | 0      | NC     | 6     | 43.5 |
|                           |                 |             | В      | 0      | NC     | 24    | 10.5 |
| Parabens                  | Parabens        | EtPB        | A<br>B | 6      | 9      | 26    | 18.5 |
|                           |                 |             |        | 6      | 8<br>1 | 33    | 17.2 |
| Parabens                  | Parabens        | MePB        | A<br>B | 6<br>6 | 4      | 33    | 17.2 |
|                           |                 |             | ь<br>А | 0<br>6 | 4      | 28    | 9.8  |
| Parabens                  | Parabens        | PrPB        | B      | 6      | 4      | 28    | 9.0  |
| Phthalates &              |                 |             |        |        | 2      | 17    | 13.8 |
| phthalate                 | Phthalate       | МСОСН       | А      | 6      | 2      | 1 /   | 13.8 |
| alternatives              | alternatives    | 1100011     | В      | 6      | 1      |       |      |
| Phthalates &              |                 |             | А      | 1      | 1      | 20    | 9.7  |
| phthalate                 | Phthalate       | MHNCH       |        |        |        | 20    | 2.1  |
| alternatives              | alternatives    |             | В      | 1      | 1      |       |      |
| Phthalates &              | Phthalate       |             | А      | 6      | 1      | 5     | 11.9 |
| phthalate                 | alternatives    | MONCH       |        |        | -      | e e   |      |
| alternatives              | ancinatives     |             | В      | 6      | 2      |       |      |
| Phthalates &              | Dh4h - 1 - 4    |             | А      | 0      | NC     | 28    | 19.9 |
| phthalate<br>alternatives | Phthalates      | MCMHP/MCHPP | В      | 0      | NC     |       |      |
| Phthalates &              |                 |             | А      | 6      | 4      | 33    | 10.6 |
| phthalate                 | Phthalates      | MEHHP       |        | 0      |        | 33    | 10.0 |
| alternatives              |                 |             | В      | 6      | 2      |       |      |

| Phthalates &                 |             |        | A | 6 | 5  | 32    | 12   |
|------------------------------|-------------|--------|---|---|----|-------|------|
| phthalate                    | Phthalates  | MEOHP  | В | C | 2  |       |      |
| alternatives                 |             |        | В | 6 | 2  |       |      |
| Phthalates &                 |             |        | А | 0 | NC | n < 5 | 22.9 |
| phthalate                    | Phthalates  | MHPP   | В | 0 | NC |       |      |
| alternatives                 |             |        |   | - |    |       |      |
| Phthalates &                 |             | MOOLID | А | 6 | 5  | 32    | 9.5  |
| phthalate                    | Phthalates  | MPCHP  | В | 6 | 5  |       |      |
| alternatives<br>Phthalates & |             |        |   |   |    |       |      |
| phthalate                    | Phthalates  | MPHHP  | А | 6 | 3  | 5     | 12   |
| alternatives                 | Phinalates  | МРННР  | В | 6 | 2  |       |      |
| Phthalates &                 |             |        |   | - |    | 07    | 0.0  |
| phthalate                    | Phthalates  | MPOHP  | А | 6 | 3  | 27    | 9.8  |
| alternatives                 | 1 Infilates |        | В | 6 | 1  |       |      |
| Phthalates &                 |             |        | А | 6 | 4  | 34    | 10   |
| phthalate                    | Phthalates  | MECPP  | A | 0 | 4  | 34    | 10   |
| alternatives                 |             |        | В | 6 | 3  |       |      |
| Phthalates &                 |             |        | А | 6 | 15 | 23    | 42.8 |
| phthalate                    | Phthalates  | MCOMOP |   |   |    | 25    | 12.0 |
| alternatives                 |             |        | В | 6 | 3  |       |      |
| Phthalates &                 |             |        | А | 0 | NC | 10    | 14.5 |
| phthalate                    | Phthalates  | MBzP   | D | 0 |    |       |      |
| alternatives                 |             |        | В | 0 | NC |       |      |
| Phthalates &                 |             |        | А | 6 | 3  | 32    | 11.1 |
| phthalate                    | Phthalates  | MCiNP  | В | 6 | 1  |       |      |
| alternatives                 |             |        | D | 0 | 1  |       |      |
| Phthalates &                 |             | MC'OD  | А | 6 | 2  | 33    | 10.1 |
| phthalate                    | Phthalates  | MCiOP  | В | 6 | 1  |       |      |
| alternatives                 |             |        |   |   |    |       |      |
| Phthalates &                 | Phthalates  | MEHP   | А | 6 | 5  | 32    | 30.2 |
| phthalate<br>alternatives    | Prinalates  | MEHP   | В | 6 | 1  |       |      |
| Phthalates &                 |             |        |   |   |    | a :   | 0.5  |
| phthalate                    | Phthalates  | MEP    | Α | 6 | 1  | 34    | 8.3  |
| alternatives                 | rinnalates  | NIEF   | В | 6 | 1  |       |      |
| ancillatives                 |             |        | _ |   | -  |       |      |

| Phthalates &                 |                     | MILIDD    | А | 6 | 4    | 32    | 16.4         |
|------------------------------|---------------------|-----------|---|---|------|-------|--------------|
| phthalate                    | Phthalates          | MHiDP     | В | 6 | 4    |       |              |
| alternatives<br>Phthalates & |                     |           |   |   |      |       | <b>-</b> 0 c |
| phthalate                    | Phthalates          | MiPP/MPrP | А | 0 | NC   | 13    | 50.6         |
| alternatives                 | T initialates       |           | В | 0 | NC   |       |              |
| Phthalates &                 |                     |           | А | 0 | NC   | 18    | 41.9         |
| phthalate                    | Phthalates          | MMP       | А | 0 |      | 18    | 41.9         |
| alternatives                 |                     |           | В | 0 | NC   |       |              |
| Phthalates &                 |                     |           | А | 6 | 1    | 34    | 11.1         |
| phthalate                    | Phthalates          | MnBP/MiBP |   |   |      | 51    | 11.1         |
| alternatives                 |                     |           | В | 6 | 1    |       |              |
| Phthalates &                 |                     |           | А | 0 | NC   | 7     | 60.4         |
| phthalate                    | Phthalates          | MOP       | В | 0 | NC   |       |              |
| alternatives                 |                     |           | В | 0 | NC   |       |              |
| Phthalates &                 |                     |           | А | 0 | NC   | n < 5 | 25.4         |
| phthalate<br>alternatives    | Phthalates          | MPeP      | В | 0 | NC   |       |              |
| Phthalates &                 |                     |           |   |   |      | 0     |              |
| phthalate                    | Terephthalates      | MBzTP     | А | 0 | NC   | 0     | NC           |
| alternatives                 | rerepititidides     | NIDZ I I  | В | 0 | NC   |       |              |
| Phthalates &                 |                     |           | А | 0 | NC   | 0     | NC           |
| phthalate                    | Terephthalates      | METP      |   | - |      | 0     | ne           |
| alternatives                 | *                   |           | В | 0 | NC   |       |              |
| Phthalates &                 |                     |           | А | 0 | NC   | < 5   | 17.3         |
| phthalate                    | Terephthalates      | MTBTP     | В | 0 | NC   |       |              |
| alternatives                 |                     |           | D | 0 | INC. |       |              |
| Polycyclic aromatic          | Polycyclic aromatic | FLUO      | А | 6 | 3    | 16    | 25.5         |
| hydrocarbons                 | hydrocarbons        | FLUOs     | В | 6 | 1    |       |              |
|                              |                     |           | А | 6 | 3    | 34    | 11.4         |
| Polycyclic aromatic          | Polycyclic aromatic | NAPs      |   |   |      | 34    | 11.4         |
| hydrocarbons                 | hydrocarbons        |           | В | 6 | 2    |       |              |
| Polycyclic aromatic          | Polycyclic aromatic |           | А | 0 | NC   | 17    | 20.1         |
| hydrocarbons                 | hydrocarbons        | PHENs     | В | 0 | NC   |       |              |
|                              | J                   |           | D | U | INC  |       |              |


| Polycyclic aromatic | Polycyclic aromatic | 1 OUD | А | 0 | NC | n < 5 | 18.3 |
|---------------------|---------------------|-------|---|---|----|-------|------|
| hydrocarbons        | hydrocarbons        | 1-OHP | В | 0 | NC |       |      |

2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid; 4-OHBP, 4-hydroxybenzophenone; ATZ, atrazine; BDCIPP, bis(1,3-dichloro-2-propyl) phosphate; BP1, benzophenone-1; BP3, benzophenone-3; BP8, 2,2'-dihydroxy-methoxybenzophenone; BPA, bisphenol A; BPF, bisphenol F; BPS, bisphenol S; BPZ, bisphenol Z; BuPB, butyl paraben; BzPB, benzyl paraben; CLO, clothianidin; DCCA, 3-(2,-di-chlorovinyl)-2,2-dimethyl-cyclopropane-1carboxylic acid;  $\sum$ DEHP, molar sum of di-2-ethylhexyl phthalate metabolites;  $\sum$ DiDP, molar sum of di-iso-decyl phthalate metabolites;  $\sum$ DINCH, molar sum of di-iso-nonyl-cyclohexane-1,2-dicarboxylic acid metabolites;  $\sum$ DPHP, molar sum of di-(2-propylheptyl) phthalate metabolites; DPHP, diphenyl phosphate; EtPB, ethyl paraben; FLUOs, composite of 2-, 3-, and 9-hydroxyfluorene; FPBA, 4-fluoro-3-phenoxybenzoic acid; IMI, imidacloprid; MBzP, monobenzyl phthalate; MEP, monoethyl phthalate; MePB, methyl paraben; MHPP, mono-2-heptyl phthalate; MiPP/MPrP, composite of mono-isopropyl phthalate; MOP, mono-n-octyl phthalate; NAPs, composite of 1- and 2-hydroxynaphthalene; NDMA, N-desmethyl acetamiprid; NIT, nitenpyram; PCP, pentachlorophenol; PHENs, composite of 1-, 2-, 3-, , 4-, and 9-hydroxyphenanthrene; PNP, 4-nitrophenol; PrPB, propyl paraben; SUF, sulfoxaflor; TCC, triclocarban; TCP, 3,5,6-trichloro-2-pyridinol; TEP, triethyl phosphate; THX, thiamethoxam; TnBP/TiBP, composite of tri-n-butyl phosphate and tri-iso-butyl phosphate. Table S4. Sociodemographic characteristics of pregnant women in the study sample, 9 participating cohorts, and 68 ECHO cohorts. All statistics

are sample size (%) unless noted otherwise.

| Demographic characteristics                                  | Study sample | Participating cohorts |
|--------------------------------------------------------------|--------------|-----------------------|
|                                                              | (n = 171)    | (n = 7, 420)          |
| Age at delivery (years); mean (SD)                           | 29.5 (5.3)   | 30.7 (5.5)            |
| Missing                                                      | 0            | 1,192                 |
| Age at delivery category                                     |              |                       |
| < 25                                                         | 35 (20)      | 945 (15)              |
| 25  to < 30                                                  | 51 (30)      | 1,572 (25)            |
| 30  to < 35                                                  | 47 (28)      | 2,096 (34)            |
| $\geq$ 35                                                    | 38 (22)      | 1,615 (26)            |
| Missing                                                      | 0            | 1,192                 |
| Race/ethnicity                                               |              |                       |
| Non-Hispanic White                                           | 57 (34)      | 3,300 (46)            |
| Non-Hispanic Black/African American                          | 34 (20)      | 786 (11)              |
| Non-Hispanic Other or multiple race                          | 11 (6)       | 436 (6)               |
| Hispanic                                                     | 68 (40)      | 2,599 (37)            |
| Missing                                                      | 1            | 299                   |
| Highest educational attainment                               |              |                       |
| Less than high school                                        | 16 (10)      | 413 (7)               |
| High school degree, GED, or equivalent                       | 28 (17)      | 972 (17)              |
| Some college, Associate's degree, or trade/vocational school | 45 (27)      | 1,293 (23)            |
| Bachelor's degree                                            | 36 (22)      | 1,638 (29)            |
| Master's, professional, or doctorate degree                  | 39 (24)      | 1,393 (24)            |
| Missing                                                      | 7            | 1,711                 |
| Marital status                                               |              |                       |
| Single; partnered, not living together                       | 45 (27)      | 1,045 (18)            |
| Widowed; separated; divorced                                 | 8 (5)        | 325 (6)               |
| Married or living with a partner                             | 112 (68)     | 4,388 (76)            |
| Missing                                                      | 6            | 1,662                 |
| Pre- or early pregnancy BMI (kg/m <sup>2</sup> ); mean (SD)  | 26.4 (6.5)   | 26.4 (6.4)            |
| Missing                                                      | 12           | 1,667                 |
| Year of delivery                                             |              |                       |
| 1980 – 1989                                                  | 0 (0)        | 0 (0)                 |

| 1990 – 1999 | 0 (0)         | 0 (0)      |
|-------------|---------------|------------|
| 2000 - 2009 | < 5 (< 2%)    | 204 (3)    |
| 2010 - 2021 | > 166 (> 98%) | 7,152 (97) |
| Missing     | 0             | 64         |



**Figure S1.** Violin plot of  $\log_2$ -transformed urinary analyte concentrations measured among 171 pregnant women in ECHO. Includes analytes detected in at least three cohorts and 10% of the overall study sample. Values below the limit of detection (LOD) were set to the LOD/ $\sqrt{2}$ . Bolding indicates analytes not previously included in NHANES biomonitoring. 2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid; 4-OHBP, 4-hydroxybenzophenone; ATZ, atrazine; BDCIPP, bis(1,3-dichloro-2-propyl) phosphate; BP1, benzophenone-1; BP3, benzophenone-3; BP8, 2,2'-dihydroxy-methoxybenzophenone; BPA, bisphenol A; BPF, bisphenol F; BPS, bisphenol S; BPZ, bisphenol Z; BuPB, butyl paraben; BzPB, benzyl paraben; CLO, clothianidin; DCCA, 3-(2,-di-

chlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid;  $\sum$ DEHP, molar sum of di-2-ethylhexyl phthalate metabolites;  $\sum$ DiDP, molar sum of di-iso-decyl phthalate metabolites;  $\sum$ DINCH, molar sum of di-iso-nonyl-cyclohexane-1,2-dicarboxylic acid metabolites;  $\sum$ DPHP, molar sum of di-(2-propylheptyl) phthalate metabolites; DPHP, diphenyl phosphate; EtPB, ethyl paraben; FLUOs, composite of 2-, 3-, and 9-hydroxyfluorene; FPBA, 4-fluoro-3-phenoxybenzoic acid; IMI, imidacloprid; MBzP, monobenzyl phthalate; MEP, monoethyl phthalate; MePB, methyl paraben; MHPP, mono-2-heptyl phthalate; MiPP/MPrP, composite of mono-isopropyl phthalate and mono-propyl phthalate; MMP = monomethyl phthalate; MnBP/MiBP = composite of mono-n-butyl phthalate and mono-iso-butyl phthalate; MOP, mono-n-octyl phthalate; NAPs, composite of 1- and 2-hydroxynaphthalene; NDMA, N-desmethyl acetamiprid; NIT, nitenpyram; PCP, pentachlorophenol; PHENs, composite of 1-, 2-, 3-, 4-, and 9-hydroxyphenanthrene; PNP, 4-nitrophenol; PrPB, propyl paraben; SUF, sulfoxaflor; TCC, triclocarban; TCP, 3,5,6-trichloro-2-pyridinol; TEP, triethyl phosphate; THX, thiamethoxam; TnBP/TiBP, composite of tri-n-butyl phosphate and tri-iso-butyl phosphate