Hyperparameter Tunning

In every Machine Learning (ML) method, testing and defining hyperparameters, which is also called
as tunning hyperparameters, is one of the most challenging tasks to perform. The most commonly used
technique is grid search, in which the user defines a set of values for each parameter and then an
exhaustive test of stochastic combinations is tested. This approach can incur in a large number of runs,
turning it highly inefficient. Aiming to turn this task more methodological, a Design of Experiments (DOE)
is applied.

PhyloMissForest supports six parameters. In terms of the size of the bootstrap parameter, it only
has influence if the bootstrap parameter is set to true. The other four parameters are independent of the
bootstrap. Hence, we divide the study of the parameters in two parts: when bootstrap is set to false and
when bootstrap is set to true. Because of this division, in the first case, we only have four parameters
apart from the bootstrap one, whereas, in the second case, we have five parameters apart from the
bootstrap, since we have the size of the bootstrap parameter when bootstrap is set to true.

In order to be possible to build a DOE, we use a software powered by Tibco called Statistica, where
the range of values for each parameter has to be defined, more precisely, the software asks the user to
insert the lower and upper boundary values of each parameter. Therefore, before inputting the values
in the software, we perform a small test for each parameter, where we fix all the others and test a
range of values for this parameter. When the range for each parameter is already tested, we start with a
DOE, called factorial design of experiments, in order to understand which parameters are more
statistically significant in terms of our aim, that is to minimize the Normalized Robinson Foulds (NRF).
After that, we will select the three parameters that have the strongest statistical meaning and for
the excluded parameters, we fix a value based on the output reported by the software. With the three
parameters that remain to be defined, we begin another DOE called Box—Behnken design. The
difference between the DOE'’s is that in the second design, we not only test the boundaries of the
range, but also the centre point is included in the combinations tested. This way, we are increasing the
depth of our analysis for the parameters that are considered to influence more our goal. Moreover, by
testing three values for each parameter, we are performing a quadratic study, while in the first design
with just two values, the study is linear.

In conclusion, we divide our analysis in two cases: bootstrap = False, which we call non bootstrap
case and bootstrap = True, which we call bootstrap case. For each of the two versions presented

above, a study composed of three phases is performed:
1. Study parameter by parameter, aiming to understand reasonable ranges for each one;
2. Factorial DOE to filter which are the three parameters that have the strongest statistical meaning;

3. Box-Behnken design to define the values of the parameters that remain to define from the previous

design;

Using this methodology, in the first phase, we filter the range that makes sense to test for each

parameter. In the second phase, we perform a factorial DOE to filter which parameters should we



investigate deeper, and for the others (the ones that are not among this group), we fix values based on
the results. Finally, in the third phase, we perform a more complete design in order to determine the
values for the three parameters that pass to this phase.

Inspecting the list of possible values for each parameter, we conclude that there are parameters that
are defined based on the size of the dataset (size of the bootstrap and max features), while there are
other parameters that are not defined by connecting their values with the dataset in usage (min leaf,
max depth, number of tree and bootstrap). Since during the experimental evaluation of our algorithm
we use three datasets with different sizes, and we also want to fix a combination of parameters that fits
all datasets, for the parameters that are not yet defined in function of the size of the dataset, min leaf
and max depth, we define them taking it into account. With this methodology, only the number of trees
and the bootstrap are not defined in function of the size of the dataset in usage. When we say that we
are defining a parameter in function of the size of the dataset, it means that the value of the parameter
is going to be a floating point number, between 0 and 1, that is multiplied by the size of the dataset
to define the real value of this parameter. The expression used to calculate the presented process is
presented in (1.1), where the dim represents the dimension of the dataset and the perc represents the

percentage defined for the parameter.

Parameter = int(dim X perc) (1.1)

For example, if we are using the 37x37 dataset and we define that the min leaf parameter is 0.3, by
applying the expression (1.1), the value for min leaf that is inputted in the algorithm is 37x0.3 = 11.1.
However, the min leaf parameter only allows integer values greater than 0. To overcome this problem,

we introduce the integer value of the multiplication 37x0.3 that is 11.

Non Bootstrap Configuration

The first step of this study is to understand the range of values that are reasonable to give to the
software in the next phase. To do this, we vary parameter by parameter while keeping all the others with

their default values. The range of values tested for each parameter is available in Table 1.1.

Table 1.1: Range of parameters tested in the first phase of the study of non bootstrap case

Parameter Range Tested
Bootstrap 0 = non bootstrap
Number of Trees | 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Max Features 0.25, 0.5, 0.75, 1
Max Depth 0.1, 0.25, 0.5, 0.75, 1
Min Leaf 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1

As it was described, the idea is to go parameter by parameter and try to understand the range
of values that is reasonable to test. For example, when testing the max features parameter, aiming
to understand its own behaviour, all the others are fixed to the values their default values, while max
features is tested between the values defined in Table 1.1. Note that the bootstrap parameter is the

only parameter that is not going to vary, since we divide the study between non bootstrap and bootstrap.



Furthermore, the size of the bootstrap is also not present, as in the non bootstrap case the value of
this particular parameter is irrelevant. We tested each parameter in the three datasets with percentages
varying between 5% and 20% of missing data, with increments of 5%. Since this version is performed
only to have an idea of the suitable parameter ranges, we only test one matrix per percentage. In
conclusion, the values of NRF presented in Figure 1.1 are the average of the NRF of the twelve matrices

herein tested (3 files x 4 percentages x 1 matrix per percentage).
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Figure 1.1: Results of the first phase of the non bootstrap case.

In order to define the ranges for each parameter, we analyse the plots present in Figure 1.1. Starting
from the plot on the left, we have the three parameters that are defined as a percentage of the size of
the dataset. As it is pictured, the parameter min leaf is the only one that has a clear behaviour, since,
with the increase of the referred parameter, the value of the NRF increases. This behaviour is reported
by the shape of the blue line, where we can see that the values of NRF are worse when the value of the
min leaf parameter increases. Hereupon, we define the range of the min leaf between 0.01 and 0.25.
Regarding the other two parameters, max depth and max features, there is not a clear behaviour for both
of them. As our aim with this first phase is to cut the range tested, only if possible, and here we have
a situation where it is not possible to do this, we define that: the range of the max features is between
0.25 and 1 and the range of the max depth is between 0.1 and 1. In terms of the plot on the right of
Figure 1.1, with the exception of the random forest with 50 trees, it appears that with an increase of the
number of trees in each random forest, there is an increase of the NRF. Due to that fact, we define the
range of the number of trees between 10 and 50.

Finished the process of defining the ranges for each parameter, the second phase of the hyperpa-
rameter study begins. In this phase, the first DOE is going to be built. Since we have 4 parameters in
this study, we build a design of 16 combinations(2*~°). Recall that this design only tests the boundary
values, so in order to give information of the central values, 4 central points are tested. A central point
is a point where all the parameters are defined with the central value of their range. We insert in the
software four central points, as our algorithm introduces some degree of randomness and because of

that, running four times the same combinations of parameters does not give the same results, yet they



should be close.

We run each combination of parameters in the three datasets with percentages of missing data
between 5% and 20%, with increments of 5%. For each percentage of missing data, 5 matrices are
generated. Therefore, we are running each combination in 3 files, with 4 different percentages of missing
data and with 5 matrices per percentage, which turns into a total of 60 matrices. Since we defined each
parameter in function of the size of the dataset, we can sum the NRF of all the matrices and input this
value in the software, as the NRF for each combination. The 16 combinations plus the 4 centre points
and each NRF value are presented in Table 1.3.

When inputting in the software the NRF value for each combination, a statistical test called ANOVA,
with an interval of confidence of 95%, is performed. ANOVA is a statistical method that analyses the
effect of various factors on some response. A Pareto chart that shows the standardized effect estimate
not only for each parameter, but also for the interaction between each pair of parameters, is presented
in Figure 1.2. The standardized effect estimate is a statistical measure of the influence of each pa-
rameter or interaction between each pair of parameters, in the goal variable, in our case NRF. A more
detailed report of the study can be found in Table 1.4, where the parameters or interactions between two
parameters that obtained a p-value lower than 0.05 (interval of confidence of 95%) are in bold.

Pareto Chart of Standardized Effects; Variable: NRF
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Figure 1.2: Pareto chart of the standerdized effect estimate of each parameter and interaction between parameters
for the non bootstrap case.

Recurring to the Pareto chart in Figure 1.2, we can observe that both min leaf and max features have
a strong effect on the NRF value, since both are in the right side of the p-value 0.05 line. Therefore, both
remain to study in a deeper perspective in the last phase of the non bootstrap study. The box-behnken
design of the third phase requires a minimum of three parameters to be built. Therefore, we need to
select a third parameter between the number of trees and the max depth. Among those two, we select
the number of trees, not only because the effect of this parameter is higher than the max depth, but also

because the interactions between the number of trees parameter with the other parameters have more



influence in the NRF than the interactions promoted by the max depth parameter.

Finished the process of choosing the three parameters to build the last design, the values of the
parameters that are not going to pass to the next phase, in our case max depth, need to be fixed. As it is
depicted in Figure 1.3, by varying this parameter between 0.1 and 1, the difference between the results
is not clear. Additionally, the standard deviation (boundaries bars in the plot) is also huge, which turns
this parameter into a parameter with less statistical meaning than the others. With this information and
knowing that by setting this parameter to 0.1 we are limiting the growth of the decision trees, while by
setting it to 1 we are not imposing any restriction on the way the trees are growing, it was decided to fix

max depth to 1.
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Figure 1.3: Effect of the max depth parameter in the NRF.

Finished the first DOE, with the three parameters that remain undefined, a new design called box-
behnken is built. With this design we aim to include, not only the boundaries of the range, but also the
central points in the combinations. All the combinations of parameters are tested in the same datasets
of the first design. The referred combinations accompanied with the resultant sum of NRF of all matrices
are presented in Table 1.5.

As it was explained before, during this second design, the objective is to define the value for each
one of the parameters. In order to accomplish this objective, the evolution of the NRF for the three values
tested in each parameter is presented in Figure 1.4.

Starting from the upper left graphic in Figure 1.4, which depicts the effect of the max features in the
NRF, this parameter confirms its effect in the Pareto chart of the first design. We can see that with
the decrease of the value of the max features, there is an increase in the performance, since the NRF
decreases. Therefore, the value fixed for max features is 0.25. In terms of the upper right graphic in
Figure 1.4, which depicts the effect of min leaf in the NRF, the behaviour of this parameter is clear and
also confirms the results of the first phase of the study, where we saw that the NRF increases with
the increase of the min leaf. Because of this behaviour, this was in the first DOE, the parameter with
strongest standardized effect, since by varying it, we have significant differences in the NRF values.

From the results, the final value of this parameter is 0.01. Finally, the number of trees parameter, which
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Figure 1.4: Results of the second design for the non bootstrap case.

is presented in the bottom graphic of Figure 1.4, confirmed by the shape of the line in the plot to be,
among the three parameters in study during this final stage, the parameter where the results are less
clear. Despite this, we can observe that we have less standard deviation and better NRF value with 30
trees. Hence, this value is the final one for this parameter.

Throughout the three phases of the study of the non bootstrap case, decisions about the ranges and
values of the parameters were taken. The main objective of this study was to select a combination of
parameters optimal for our datasets. In conclusion, the final values for the non bootstrap configuration

are: bootstrap = False; humber of trees = 30; max depth = 1; min leaf = 0.01; max features = 0.25.

Bootstrap Configuration

Similarly to the non bootstrap case, we study the same three phases for the bootstrap case. Starting
in the first phase, we are going to test parameter by parameter in order to have an idea of the reasonable
ranges for each one. Note that in this case, we join the size of the bootstrap parameter to the list of

parameters in study. The range of values tested for each parameter is present in Table 1.2.

Table 1.2: Range of parameters tested in the first phase of the study of bootstrap case.

Parameter Range Tested
Bootstrap 1 = bootstrap enabled
Size of the Bootstrap | 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Number of Trees 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Max Features 0.25, 0.5, 0.75, 1
Max Depth 0.1, 0.25, 0.5, 0.75, 1
Min Leaf 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1

During the first phase of the study of the bootstrap case, we use the same procedure employed in



the non bootstrap case. The results of this first phase of study are illustrated in Figure 1.5.
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Figure 1.5: Results of the first phase of the bootstrap case.

Starting from the upper left plot in Figure 1.5, we can see a similar behaviour of the parameters
included in it. For max depth and max features, as the shape of their curves is not clear, we can not cut
the range tested for each one. Therefore, for max features, the range that is going to the next phase
is between 0.25 and 1, whereas for max depth parameter, the range is between 0.1 and 1. In terms of
the upper right graphic in Figure 1.5, we can see a different behaviour when comparing with the non
bootstrap case. Here, we can conclude that with an increase in the number of regression trees of each
random forest, the NRF decreases. Hence, we set the number of trees between 50 and 100. In order
to analyse the size of the bootstrap parameter, we should inspect the bottom plot of Figure 1.5, where
it is depicted the influence of this parameter in the NRF value. Analysing the referred graphic, we can
observe that with the increase of the size of the bootstrapped datasets, we have an improvement in the
performance of our algorithm, since the mean value of the NRF decreases. From these results, it can

be defined the range of this parameter between 0.6 and 1.

Finished the process of defining the ranges for each parameter, we move to the second phase of the
study, where the first DOE is going to be built. In this case we have 5 parameters in study, so a DOE of
25-0 would give 32 combinations. Since this is a large number, and in this phase we only want to filter
which parameters should we study in a more deeper perspective, we only test 16 combinations, which
gives a DOE of (2°~!). For the same reasons presented in the non bootstrap case, we inputted into the
software 4 central points. We run each combination generated by the software in the same datasets as
the non bootstrap case. As we defined each parameter in function of the size of the dataset, we can sum
the NRF of all the matrices and input this value as the NRF for each combination. The 16 combinations

plus the 4 centre points and each NRF value are presented in Table 1.6.
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Inputting into the software the results of the sum of NRF value for each combination, the statistical
study applied in the non bootstrap case is again applied to the bootstrap one. The Pareto chart that
shows the standardized effect estimate, not only for each parameter, but also for the interaction between
each pair of parameters, is given by Figure 1.6. A more detailed report of the study is available in Table
1.7, where the parameters or interaction between two parameters that obtained a p-value lower than

0.05 (interval of confidence of 95%) are in bold.
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Figure 1.6: Pareto chart of the standerdized effect estimate of each parameter and interaction between parameters
for the bootstrap case.

From the Pareto chart presented in Figure 1.6, it can be observed that both size of the bootstrap
and min leaf standardize effects reach the right side of the 0.05 p-value line. Moreover, the interaction
between these two also achieved a p-value lower than 0.05. Due to that fact, these two parameters
are kept with undefined value for the final stage of the study. Immediately after the parameters or
connections that reached a p-value less than 0.05, it can be found the max features parameter. The
interactions between this parameter and the others are also in the top of the list of the connections, in
terms of standardized effect. Combining these two facts, max features is the third parameter that moves
to the box-behnken design.

For the parameters that will not move to the next phase, in this case max depth and the number of
trees, their values needs to be fixed. Aiming to accomplish this task, the effect of these two parameters
in the NRF is shown in Figure 1.7. Starting with max depth, which is represented in the left side of Figure
1.7, we can identify a similar behaviour when comparing to the non bootstrap case. Hence, for the same
reasons previously discussed in the non bootstrap case, it is established the value of this parameter to
1. In terms of the number of trees parameter, depicted in the right plot of Figure 1.7, by varying this
parameter between 50 and 100, we can observe better results when using 50 regression trees in each
random forest. Therefore, in the next phase, the number of trees is fixed to 50.

Finally, a new box-behnken design, is built with the aim of defining the values of the three parameters
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Figure 1.7: Results of the first phase of the bootstrap case.

that revealed to be the ones with most influence in the NRF. With this design we can verify, not only the

boundaries of the range, but also the central points in the combinations. We test all the combinations

in the same datasets of the first DOE. The referred combinations accompanied with the resultant sum

of NRF of all matrices is presented in Table 1.8. As it was explained before, during this second design

the objective is to define the value for each of the three parameters, and in order to accomplish this

objective, the evolution of the NRF for the three values tested in each parameter is presented in Figure

1.8.
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Figure 1.8: Results of the second design for the bootstrap case.

Starting from the upper left graphic, we can see that, when max features parameter increases, the

performance of our algorithm also improves. More precisely, we get the minimum value of cumulative

NRF, when max features is set to 1. Due to that fact, we set max features to 1. Moving to the upper right



graphic in Figure 1.8, the behaviour of the min leaf parameter in the three points tested is represented.
As we can see, the min leaf parameter obtains less cumulative NRF when is set to 0.13 and therefore,
the value of this parameter is fixed to 0.13. Finally, in the bottom part of Figure 1.8, it can be observed
that, if we increase the size of the bootstrapped datasets, we attain a decrease in the NRF value, and
therefore, an improvement on the performance. The results of this parameter confirmed the results of

the first phase shown in Figure 1.5. Hence, we fix the value of the size of the bootstrap parameter to 1.

Across the three phases of the study of the bootstrap case, decisions about the ranges and values
of the parameters were taken. The main idea is to select an optimal combination of parameters for our
datasets in the study. In conclusion, the final values for the bootstrap case are: bootstrap = True; size

of bootstrap = 1; number of trees = 50; max depth = 1; min leaf = 0.13; max features = 1.

Appendix Tables

Across this section there are tables that supplement the hyperparameter study.

Table 1.3: Combinations and accumulated NRF results of the first DOE for the non bootstrap case.

Combination | N2 of Trees | Max Depth | Max Features | Min Leaf | NRF
1 10 0.100 0.250 0.010 390

2 50 0.100 0.250 0.010 329

3 10 1.000 0.250 0.010 379

4 50 1.000 0.250 0.010 374

5 10 0.100 1.000 0.010 375

6 50 0.100 1.000 0.010 384

7 10 1.000 1.000 0.010 372

8 50 1.000 1.000 0.010 400

9 10 0.100 0.250 0.250 402
10 50 0.100 0.250 0.250 427
11 10 1.000 0.250 0.250 368
12 50 1.000 0.250 0.250 402
13 10 0.100 1.000 0.250 418
14 50 0.100 1.000 0.250 451
15 10 1.000 1.000 0.250 439
16 50 1.000 1.000 0.250 455
17-C 30 0.550 0.625 0.130 423
18-C 30 0.550 0.625 0.130 432
19-C 30 0.550 0.625 0.130 419
20-C 30 0.550 0.625 0.130 406
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Table 1.4: Summary of the ANOVA results of the first DOE for the non bootstrap case.

Factor Effect Std.Err t p-value
(1)MinLeaf 44.8750 | 10.67008 | 4.20568 | 0.002287
(2)Max Features 27.8750 | 10.67008 | 2.61244 | 0.028158
(3)Max Depth 1.6250 | 10.67008 | 0.15229 | 0.882314
(4)Number of Trees | 9.8750 | 10.67008 | 0.92548 | 0.378861
1by2 13.1250 | 10.67008 | 1.23007 | 0.249852
1by3 -10.1250 | 10.67008 | -0.94891 | 0.367447
1by4 17.1250 | 10.67008 | 1.60495 | 0.142967
2by3 7.8750 | 10.67008 | 0.73804 | 0.479288
2by 4 11.6250 | 10.67008 | 1.08949 | 0.304246
3by4 8.3750 | 10.67008 | 0.78490 | 0.452674

Table 1.5:

Combinations and accumulated NRF results of the second DOE for the non bootstrap case.

N¢ of Trees | Max Features | Min Leaf | NRF
10 0.25 0.13 388
50 0.25 0.13 415
10 1.00 0.13 442
50 1.00 0.13 404
10 0.63 0.01 357
50 0.63 0.01 434
10 0.63 0.25 414
50 0.63 0.25 439
30 0.25 0.01 413
30 1.00 0.01 359
30 0.25 0.25 360
30 1.00 0.25 448
30 0.63 0.13 400
30 0.63 0.13 411
30 0.63 0.13 396

Table 1.6: Combinations and accumulated NRF results of the first DOE for the bootstrap case.

ombination | N2 of Trees | Size of the Bootstrap | Min Leaf | Max Depth | Max Features | NRF
1 50 0.600 0.010 0.100 1.000 338

2 100 0.600 0.010 0.100 0.250 430

3 50 1.000 0.010 0.100 0.250 379

4 100 1.000 0.010 0.100 1.000 359

5 50 0.600 0.250 0.100 0.250 522

6 100 0.600 0.250 0.100 1.000 492

7 50 1.000 0.250 0.100 1.000 380

8 100 1.000 0.250 0.100 0.250 402

9 50 0.600 0.010 1.000 0.250 407
10 100 0.600 0.010 1.000 1.000 410
11 50 1.000 0.010 1.000 1.000 350
12 100 1.000 0.010 1.000 0.250 377
13 50 0.600 0.250 1.000 1.000 499
14 100 0.600 0.250 1.000 0.250 491
15 50 1.000 0.250 1.000 0.250 400
16 100 1.000 0.250 1.000 1.000 387
17-C 75 0.800 0.130 0.550 0.625 402
18-C 75 0.800 0.130 0.550 0.625 386
19-C 75 0.800 0.130 0.550 0.625 371
20-C 75 0.800 0.130 0.550 0.625 402
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Table 1.7: Summary of the ANOVA results of the first DOE for the bootstrap case.

Factor Effect Std.Err t p-value

(1)Max Features -24.1250 | 12.40026 | -1.94552 | 0.123591
(2)Max Depth 2.3750 | 12.40026 | 0.19153 | 0.857441
[ (3)MinLeaf 65.3750 | 12.40026 | 5.27207 | 0.006203
(4)Size of the bootstrap | -69.3750 | 12.40026 | -5.59464 | 0.005009
(5)Number of trees 9.1250 | 12.40026 | 0.73587 | 0.502630
1by2 16.8750 | 12.40026 | 1.36086 | 0.245185
1by3 9.8750 | 12.40026 | 0.79635 | 0.470417
1by 4 3.6250 | 12.40026 | 0.29233 | 0.784568
1by5 11.1250 | 12.40026 | 0.89716 | 0.420351
2by3 -7.1250 | 12.40026 | -0.57458 | 0.596342
2by 4 -3.8750 | 12.40026 | -0.31249 | 0.770279
2by5 -6.8750 | 12.40026 | -0.55442 | 0.608825
3 by 4 -39.3750 | 12.40026 | -3.17534 | 0.033685
3by5 -16.3750 | 12.40026 | -1.32054 | 0.257144
4by5 -5.1250 | 12.40026 | -0.41330 | 0.700585

Table 1.8: Combinations and accumulated NRF results of the second DOE for the bootstrap case.

Size of the Bootstrap | Max Features | Min Leaf | NRF
0.6 0.625 0.010 404
1.0 0.625 0.010 402
0.6 0.625 0.250 491
1.0 0.625 0.250 364
0.6 0.250 0.130 446
1.0 0.250 0.130 401
0.6 1.000 0.130 367
1.0 1.000 0.130 360
0.8 0.250 0.010 436
0.8 0.250 0.250 410
0.8 1.000 0.010 394
0.8 1.000 0.250 416
0.8 0.625 0.130 376
0.8 0.625 0.130 383
0.8 0.625 0.130 394
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