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Supplementary S1

Empirical demonstration of relations between adjusted and unadjusted estimates

from a linear regression setup.
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Figure S1: Plot of the difference between adjusted and unadjusted estimates β̂unadj − β̂adj from linear regression against sample size. The distribution of this
difference is over 2, 500 independent replicate datasets for each simulation scenario. For a given parameter setting, this difference in effect estimates
stabilizes to a constant as sample size increases, regardless of the strength or direction of the exposure-response association β.
Note: The models used to generate binary exposure X and continuous response Y are respectively logit(P (X = 1)) = η0 + η1C1 + η2C2 and Y =
γ0 + γ1C1 + γ2C2 + βX + ε, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6), and random error ε ∼ N(0, 1). The default parameter settings here
assume strong confounder effects: Setting I η1 = η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 = γ2 = −2.
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Table S1: Mean of β̂unadj− β̂adj from linear regression for increasing sample size. In particular, we generate
exposure X and continuous response Y using X = η0+η1C1+η2C2+εx, εx ∼ N(0, 1) (if continuous)
or logit(P (X = 1)) = η0 +η1C1 +η2C2 (if binary) and Y = γ0 +γ1C1 +γ2C2 +βX+εa respectively,
where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6), and random error εa ∼ N(0, 1). Monte
Carlo estimates of the mean is obtained using 10, 000 independent replicate datasets for each simu-
lation scenario. As sample size increases, the difference in effect estimates stabilizes to a constant,
regardless of the strength or direction of the exposure-response association β.
Note: The parameter settings here assume intercepts η0 = 0 and γ0 = log(0.3/0.7) = −0.85 and
the following confounder effects: Setting I (weak) η1 = η2 = γ1 = γ2 = 0.5; Setting I (strong)
η1 = η2 = γ1 = γ2 = 2; Setting II (strong) η1 = η2 = γ1 = 2, γ2 = −2; and Setting III (strong)
η1 = η2 = 2, γ1 = γ2 = −2.

Parameter
choices Sample Setting I Setting II Setting III

distribution β size (n) weak strong strong strong

Y : normal;
X: normal;
C1: Bernoulli;
C2: Bernoulli

β
=
−

1.
1 50 0.07647 0.56996 −0.26801 −0.57129

500 0.07636 0.56958 −0.25912 −0.56893
2500 0.07623 0.56941 −0.25813 −0.56882
5000 0.07622 0.56895 −0.25873 −0.56897

β
=

0

50 0.07665 0.57206 −0.26315 −0.56946
500 0.0763 0.56883 −0.25981 −0.56926
2500 0.07621 0.56896 −0.25872 −0.56893
5000 0.07619 0.56902 −0.25869 −0.56908

β
=

1.
1 50 0.07577 0.57008 −0.26602 −0.57191

500 0.07603 0.56864 −0.26015 −0.56942
2500 0.07615 0.56889 −0.25869 −0.56883
5000 0.07624 0.56907 −0.25862 −0.56906

Y : normal;
X: Bernoulli;
C1: Bernoulli;
C2: Bernoulli

β
=
−

1.
1 50 0.07885 1.10329 −0.69597 −1.10421

500 0.08098 1.10701 −0.69842 −1.10793
2500 0.08087 1.10715 −0.69827 −1.10738
5000 0.081 1.10718 −0.69838 −1.10739

β
=

0

50 0.08352 1.10958 −0.69284 −1.10882
500 0.08099 1.10858 −0.69905 −1.10903
2500 0.08104 1.10756 −0.69832 −1.10734
5000 0.08112 1.10765 −0.69842 −1.10718

β
=

1.
1 50 0.08025 1.10336 −0.70269 −1.11129

500 0.08113 1.10856 −0.69828 −1.10807
2500 0.08104 1.10768 −0.69899 −1.10778
5000 0.08099 1.10704 −0.698 −1.10663
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Supplementary S2

Theoretical derivation of relations between adjusted and unadjusted estimates from

the linear regression. Consider a continuous response Y , a continuous exposure X and a

set of q continuous confounders C. Our interest lies in quantifying the exposure-outcome

association. Suppose, at the population-level, the following model holds:

Y = αadj + βadjX + γ ′C + εa, where εa ∼ N(0, σ2
adj) (True model)

X = η0 + η′C + εx, where εx ∼ N(0, σ2
x)

C = µ+ εc, where εc ∼ N(0,Ω)

A cohort, which randomly sampled n individuals from this population and measured Y , X and

C will consider a fully adjusted model to determine exposure-outcome association:

Y = αadj + βadjX + γ ′C + εa, where εa ∼ N(0, σ2
adj) (Adjusted model)

Here we are making two assumptions: (1) the same probability law [Y,X,C] (true model)

holds for all the populations underlying the different cohorts that employed a random-sampling

design; (2) the above fully adjusted model is a correctly specified model for the conditional

distribution [Y |X,C] at the population-level. The cohort may also consider a model without

any confounder adjustment:

Y = αunadj + βunadjX + εu, where εu ∼ N(0, σ2
unadj) (Unadjusted model)

Note that in the population (true model) all the variables Y , X and C are considered random. In

the sample (adjusted or unadjusted model), Y is treated as random while X and C are assumed

to be fixed. For simplicity of theoretical derivations below, we assume that αunadj = 0 = αadj,

which is satisfied when the variables in the models are centered around their means. For ease

of notation, we will use boldfaced lower-case letters to denote vectors or column matrices,

boldfaced upper case letters to denote matrices with >1 rows and >1 columns, and the prime

symbol (′) to denote transpose of a vector/matrix.

Following properties of linear model and some matrix algebra (including block matrix in-
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version and Sherman–Morrison–Woodbury matrix identity), the adjusted and the unadjusted

estimates of the effect of exposure on outcome (as reported by linear regression functions from

standard statistical software) are

β̂adj = (x′(I − P C)x)
−1
x′(I − P C)y

β̂unadj = (x′x)
−1
x′y

where y is the n× 1 vector of outcomes on n individuals, x is the corresponding n× 1 vector

of exposure values, C is the corresponding n× q matrix of confounders (assumed to be of full

column rank q), I is an identity matrix of order n, and P C = C(C ′C)−1C ′ is the projection

matrix of confounder matrix C. As proved below, under the true model,

β̂unadj − β̂adj
P−→ η′Ωγ

σ2
x + η′Ωη

as n→∞ (S1)

where
P−→ denotes convergence in probability. In other words, the difference of the effect

estimates are independent of the true exposure-outcome effect size (βadj) and also of the sample

size (n) for a large enough cohort.

Derivation of limiting form of the difference of effect estimates from the linear

regression.

Proof. Using properties of linear model and matrix algebra, we have

E[Y |X,C]

(
β̂adj

)
= (x′(I − P C)x)

−1
x′(I − P C) E[Y |X,C](y)

= (x′(I − P C)x)
−1
x′(I − P C)[xβadj +Cγ]

= βadj, since (I − P C)C = O

and, E[Y |X,C]

(
β̂unadj

)
= (x′x)

−1
x′ E[Y |X](y)

Under the true model, the distribution of Y given X can be obtained as

[Y |X] =

∫
C
[Y,C|X] =

∫
C
[Y |X,C] [C|X]
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While we know the distribution [Y |X,C], we need to obtain distribution [C|X] from the joint

distribution [X,C]. For i-th individual, xi = η′Ci + εx,i, where Ci
iid∼ Nq(0,Ω) and εx,i

iid∼

N(0, σ2
x) ∀ i = 1, 2, ..., n. This gives E(xi) = 0, Var(xi) = Var(η′Ci) + Var(εx,i) = η′Ωη + σ2

x

and Cov(Ci, xi) = Cov(Ci,η′Ci) = Ωη. Thus, the marginal distribution [X] is xi
iid∼ N(0, σ2

x +

η′Ωη) ∀ i and the joint distribution [X,C] is

Ci

xi

 iid∼ Nq+1


0

0

 ,
 Ω Ωη

η′Ω σ2
x + η′Ωη


 ∀ i

Using conditional distribution property of multivariate normal distribution, we get [C|X]:

Ci
∣∣∣xi ind∼ Nq

(
Ωη

σ2
x + η′Ωη

xi , Ω− Ωηη′Ω

σ2
x + η′Ωη

)
∀ i (S2)

For the i-th individual, given xi, we have yi = βadjxi+γ
′Ci+εa,i, where Ci has the distribution

from equation (S2) and εa,i
iid∼ N(0, σ2

adj) ∀ i. The required distribution [Y |X] is then

Yi

∣∣∣xi ind∼ N

([
βadj +

γ ′Ωη

σ2
x + η′Ωη

]
xi , σ

2
adj + γ ′

[
Ω− Ωηη′Ω

σ2
x + η′Ωη

]
γ

)

Thus, in the true underlying population,

Etrue

(
β̂adj

)
= E[Y,X,C]

(
β̂adj

)
= E[X,C]

(
E[Y |X,C]

(
β̂adj

))
= βadj (S3)

and, Etrue

(
β̂unadj

)
= E[Y,X,C]

(
β̂unadj

)
= E[X,C]

(
E[Y |X,C]

(
β̂unadj

))
= E[X,C]

(
(x′x)

−1
x′ E[Y |X](y)

)
= βadj +

γ ′Ωη

σ2
x + η′Ωη

(S4)

Side note: in the econometrics literature, ‘omitted variable bias’ refers to the term

E[Y |X,C]

(
β̂unadj

)
− βadj = (x′x)

−1
x′ E[Y |X](y)− βadj =

γ ′Ωη

σ2
x + η′Ωη

and it is 0 when γ = 0 or when Cov(C, X) = Ωη = 0. Finally, using weak law of large numbers
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and properties of convergence in probability,

β̂unadj − β̂adj
P−→Etrue

(
β̂unadj

)
− Etrue

(
β̂adj

)
=

γ ′Ωη

σ2
x + η′Ωη

as n→∞

�

Empirical proof of the limiting forms when the underlying data generating mech-

anism is the same as the assumed true model. Refer Figure S2 and Table S2.

Proof of non-negative covariance between adjusted and unadjusted effect estimates

from the linear regression.

Proof. The form for covariance in the true underlying population is

Covtrue(β̂unadj, β̂adj) = E[Y,X,C](β̂unadjβ̂adj)− E[Y,X,C](β̂unadj) E[Y,X,C](β̂adj)

where the individual expectation terms have been obtained in equations (S3) and (S4). Now,

E[Y,X,C](β̂unadj β̂adj)

= E[X,C]

{
E[Y |X,C]

(
x′(I − P C)y

x′(I − P C)x
× x

′y

x′x

)}
= E[X,C]

{
1

x′(I − P C)x x′x
E[Y |X,C]

(
y′ (I − P C)xx′ y

)}
= E[X,C]

{
1

x′(I − P C)x x′x

[
tr
(
(I − P C)xx′ σ2

adjIn
)

+ βadjx
′(I − P C)x (βadjx

′x+ x′Cγ)

]}
(using the form for expectation of a quadratic form)

= E[X,C]

{
1

x′(I − P C)x x′x

[
σ2
adj x

′(I − P C)x+ βadjx
′(I − P C)x (βadjx

′x+ x′Cγ)

]}
= σ2

adj E[X,C]

(
1

x′x

)
+ β2

adj + βadj E[X,C]

(
x′Cγ

x′x

)

which leads to

Covtrue(β̂unadj, β̂adj) =

[
σ2
adj E[X,C]

(
1

x′x

)
+ β2

adj + βadj E[X,C]

(
x′Cγ

x′x

)]
−
[
βadj +

γ ′Ωη

σ2
x + η′Ωη

]
βadj

= σ2
adj E[X,C]

(
1

x′x

)
+ βadj

[
E[X,C]

(
x′Cγ

x′x

)
− γ ′Ωη

σ2
x + η′Ωη

]
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To obtain E[X,C]

(
x′Cγ
x′x

)
= E[X]

(
1
x′x

E[C|X](x
′Cγ)

)
, note that we can write Cγ =


C′1γ

...

C′nγ


where γ ′Ci

∣∣xi ind∼ N
(

γ′Ωη
σ2
x+η

′Ωη
xi , γ

′
{

Ω− Ωηη′Ω
σ2
x+η

′Ωη

}
γ
)
∀ i = 1, 2, ..., n using the conditional

distribution [C|X] derived before. Consequently,Cγ ∼ Nq

(
γ′Ωη

σ2
x+η

′Ωη
x , γ ′

{
Ω− Ωηη′Ω

σ2
x+η

′Ωη

}
γIn

)
and E[C|X](x

′Cγ) = γ′Ωη
σ2
x+η

′Ωη
x′x. Therefore,

Covtrue(β̂unadj, β̂adj) = σ2
adj E[X,C]

(
1

x′x

)
≥ 0

since x′x is a positive random variable (note, given C, x′x has a scaled non-central χ2 distri-

bution). �
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Figure S2: Plot of the difference between adjusted and unadjusted estimates β̂unadj − β̂adj from linear regression against sample size when the data generating
mechanism is the same as the true model assumed in above theoretical proofs. In particular, we generate continuous exposure X and continuous
response Y using X = η0 + η1C1 + η2C2 + εx and Y = γ0 + γ1C1 + γ2C2 + βX + εa respectively, where confounders C1 and C2 are generated from a
bivariate normal distribution with means 0, variances 1 and correlation 0.7; and random errors εx ∼ N(0, 1) and εa ∼ N(0, 1). The distribution of this

difference β̂unadj − β̂adj is over 2, 500 independent replicate datasets for each simulation scenario. For a given parameter setting, this difference in effect
estimates stabilizes to a constant as sample size increases, regardless of the strength or direction of the exposure-response association β.
Note: The default parameter settings here assume zero intercepts (η0 = 0, γ0 = 0) and strong confounder effects: Setting I η1 = η2 = γ1 = γ2 = 2; Setting

II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 = γ2 = −2. The dashed horizontal line corresponds to the theoretical limiting value η′Ωγ
σ2
x+η′Ωη ,

which equals 0.93 (Setting I), 0 (Setting II) or −0.93 (Setting III) respectively.
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Table S2: Mean squared deviation of β̂unadj − β̂adj from the theoretical limit we obtained for linear regres-
sion with the data generating mechanism same as the true model assumed in above
theoretical proofs. In particular, we generate continuous exposure X and continuous response
Y using X = η0 + η1C1 + η2C2 + εx and Y = γ0 + γ1C1 + γ2C2 + βX + εa respectively, where
confounders C1 and C2 are generated from a bivariate normal distribution with means 0, variances
1 and correlation 0.7; and random errors εx ∼ N(0, σ2

x) and εa ∼ N(0, σ2
adj). Monte Carlo esti-

mates of the mean squared deviation is obtained using 10, 000 independent replicate datasets for
each simulation scenario. For a given parameter setting, the ideal cell value is 0. As sample size
increases, we observe nearly 0 deviation, indicating the difference in effect estimates stabilizes to

the theoretical limit η′Ωγ
σ2
x+η′Ωη (a constant), regardless of the strength or direction of the exposure-

response association β.
Note: The parameter settings here assume zero intercepts (η0 = 0, γ0 = 0) and the following con-
founder effects: Setting I (weak) η1 = η2 = γ1 = γ2 = 0.5; Setting I (strong) η1 = η2 = γ1 = γ2 = 2;
Setting II (strong) η1 = η2 = γ1 = 2, γ2 = −2; and Setting III (strong) η1 = η2 = 2, γ1 = γ2 = −2.

Parameter
choices Sample Setting I Setting II Setting III

(σx, σadj) β size (n) weak strong strong strong

σx = 1,
σadj = 1

β
=
−

1.
1 50 0.0161 0.02268 0.02481 0.02252

500 0.00141 0.00198 0.00219 0.002
2500 0.00029 0.0004 0.00044 0.0004
5000 0.00014 0.0002 0.00022 0.0002

β
=

0

50 0.01622 0.02265 0.0243 0.02241
500 0.00142 0.00199 0.0022 0.00201
2500 0.00029 0.00041 0.00045 0.00041
5000 0.00015 0.0002 0.00022 0.0002

β
=

1.
1 50 0.01629 0.02261 0.02495 0.02247

500 0.0014 0.00198 0.0022 0.00199
2500 0.00028 0.0004 0.00044 0.0004
5000 0.00014 0.0002 0.00022 0.0002

σx = 3,
σadj = 2

β
=
−

1.
1 50 0.00444 0.01129 0.00851 0.01137

500 0.00033 0.001 0.00074 0.00102
2500 0.00007 0.0002 0.00015 0.0002
5000 0.00003 0.0001 0.00007 0.0001

β
=

0

50 0.00465 0.0113 0.00832 0.0113
500 0.00034 0.00101 0.00076 0.00103
2500 0.00006 0.00021 0.00015 0.00021
5000 0.00003 0.0001 0.00008 0.0001

β
=

1.
1 50 0.00459 0.01137 0.00862 0.0114

500 0.00034 0.001 0.00075 0.00104
2500 0.00007 0.0002 0.00015 0.0002
5000 0.00003 0.0001 0.00008 0.0001

σx = 0.5,
σadj = 2

β
=
−

1.
1 50 0.28868 0.35746 0.36087 0.35689
500 0.02503 0.03146 0.03176 0.03149
2500 0.00505 0.00635 0.00641 0.00636
5000 0.00249 0.00315 0.00318 0.00314

β
=

0

50 0.28795 0.3571 0.35861 0.35653
500 0.02528 0.03164 0.03194 0.03168
2500 0.00512 0.00645 0.00651 0.00646
5000 0.00261 0.00321 0.00323 0.0032

β
=

1.
1 50 0.28764 0.356 0.36029 0.35561

500 0.02486 0.0314 0.03173 0.03142
2500 0.00506 0.00638 0.00645 0.00638
5000 0.00253 0.00317 0.0032 0.00318
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Supplementary S3

Empirical demonstration of relations between adjusted and unadjusted estimates

from a logistic regression setup.
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Figure S3: Plot of the difference between adjusted and unadjusted estimates β̂unadj− β̂adj = log(ÔRunadj)− log(ÔRadj) from logistic regression against sample size.
The distribution of this difference is over 2, 500 independent replicate datasets for each simulation scenario. For a given parameter setting, this difference
in effect estimates stabilizes to a constant as sample size increases, regardless of the strength or direction of the exposure-outcome association β.
Note: The models used to generate binary exposure X and binary outcome Y are respectively logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 +
γ2C2 + βX, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). The default parameter settings here assume strong confounder effects: Setting I
η1 = η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 = γ2 = −2.
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Table S3: Mean of β̂unadj−β̂adj from logistic regression for increasing sample size. In particular, we generate
exposure X and binary response Y using X = η0 + η1C1 + η2C2 + εx, εx ∼ N(0, 1) (if continuous)
or logit(P (X = 1)) = η0 + η1C1 + η2C2 (if binary) and logit(P (Y = 1)) = γ0 + γ1C1 + γ2C2 + βX
respectively, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). Monte Carlo estimates of
the mean is obtained using 10, 000 independent replicate datasets for each simulation scenario. For
a given exposure-response association β, the difference in effect estimates stabilizes to a constant
as sample size increases.
Note: The parameter settings here assume intercepts η0 = 0 and γ0 = log(0.3/0.7) = −0.85 and
the following confounder effects: Setting I (weak) η1 = η2 = γ1 = γ2 = 0.5; Setting I (strong)
η1 = η2 = γ1 = γ2 = 2; Setting II (strong) η1 = η2 = γ1 = 2, γ2 = −2; and Setting III (strong)
η1 = η2 = 2, γ1 = γ2 = −2.

Parameter
choices Sample Setting I Setting II Setting III

distribution β size (n) weak strong strong strong

Y : Bernoulli;
X: normal;
C1: Bernoulli;
C2: Bernoulli

β
=

lo
g

1 3 50 0.1709 0.76841 −0.00256 −0.2265
500 0.09741 0.63152 −0.16071 −0.38805
2500 0.09232 0.62289 −0.16467 −0.39216
5000 0.09151 0.62159 −0.16647 −0.39293

β
=

lo
g

1 50 0.08151 0.58704 −0.21792 −0.52686
500 0.07648 0.54461 −0.20021 −0.51571
2500 0.07532 0.5413 −0.19954 −0.51154
5000 0.07544 0.54085 −0.19908 −0.5109

β
=

lo
g

3 50 −0.00013 0.47773 −0.53895 −0.7544
500 0.05406 0.53742 −0.44531 −0.63836
2500 0.05794 0.53586 −0.43778 −0.62874
5000 0.05841 0.53722 −0.43722 −0.62797

Y : Bernoulli;
X: Bernoulli;
C1: Bernoulli;
C2: Bernoulli

β
=

lo
g

1 3 50 0.22026 2.3338 0.87365 −0.51835
500 0.10349 1.20115 −0.26778 −0.79768
2500 0.09842 1.18244 −0.27437 −0.79766
5000 0.09809 1.18002 −0.27696 −0.79764

β
=

lo
g

1 50 0.09168 1.1915 −0.41034 −0.84504
500 0.08077 0.98065 −0.49172 −0.89175
2500 0.08001 0.97122 −0.49224 −0.88865
5000 0.08 0.96917 −0.49174 −0.88799

β
=

lo
g

3 50 −0.00034 0.73776 −0.95603 −1.22719
500 0.05497 0.76418 −0.75791 −1.06999
2500 0.05779 0.76125 −0.7513 −1.06165
5000 0.0585 0.76231 −0.7507 −1.06135
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Figure S4: Plot of estimated covariance between unadjusted and adjusted estimates against the number of cohorts with complete confounder information used to

estimate the covariance. Sample size for each cohort is 150. The distribution of estimated Cov
(
β̂unadj, β̂adj

)
is over 2, 500 independent replicate datasets for

each simulation scenario. The horizontal dashed line correspond to the theoretical lower limit of this covariance for the linear regression case. The number
of complete cohorts needed to estimate this covariance depends on the strengths and directions of the confounder effects as well as the exposure-outcome
association.
Note: The models used to generate binary exposure X and binary outcome Y are respectively logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 +
γ2C2 + βX, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). The default parameter settings here assume strong confounder effects: Setting I
η1 = η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 = γ2 = −2. Only Setting I “weak” assumes weak confounder
effects: η1 = η2 = γ1 = γ2 = 0.5.
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Figure S5: Plot of Pearson’s correlation coefficient between unadjusted and adjusted effect estimates against the number of cohorts with complete confounder informa-

tion used to estimate the covariance in CIMBAL. Sample size for each cohort is 150. The distribution of estimated
(
β̂unadj, β̂adj

)
is over 2, 500 independent

replicate datasets for each simulation scenario. The number of complete cohorts needed to estimate this covariance depends on the strengths and directions
of the confounder effects as well as the exposure-outcome association.
Note: The models used to generate binary exposure X and binary outcome Y are respectively logit(X) = η0 + η1C1 + η2C2 and logit(Y ) =
γ0 + γ1C1 + γ2C2 + βX, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). The default parameter settings here assume strong confounder
effects: Setting I η1 = η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 = γ2 = −2. Only Setting I “weak” assumes
weak confounder effects: η1 = η2 = γ1 = γ2 = 0.5.
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Figure S6: Influence of per-cohort sample size as well as the number of cohorts with complete confounder information on estimated correlation coefficient between
unadjusted and adjusted effect estimates. Sample size for each cohort is 300 in one scenario, 150 in another, and much smaller at 30 in yet another scenario.

The distribution of estimated
(
β̂unadj, β̂adj

)
is over 2, 500 independent replicate datasets for each simulation scenario. The number of complete cohorts

needed to estimate this covariance depends on the strengths and directions of the confounder effects as well as the exposure-outcome association.
Note: The models used to generate binary exposure X and binary outcome Y are respectively logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 +
γ1C1 + γ2C2 + βX, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). The parameters for Setting I “weak” assumes weak confounder effects:
η1 = η2 = γ1 = γ2 = 0.5.
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Supplementary S4

Additional proofs, figures and tables. .

Proof of Result 3. We begin by noting that here β̂unadj and β̂adj are the maximum likelihood

estimates of exposure-outcome association from the unadjusted and the fully adjusted gen-

eralized linear models respectively. Under certain regularity conditions (including identifi-

ability, smoothness, and boundedness conditions), large sample theory says that β̂unadj and

β̂adj have asymptotic normal distributions (see classic textbooks such as Ferguson (1996),

Lehmann (1999), DasGupta (2008)). In particular, if βunadj and βadj are the true popula-

tion parameters in the unadjusted and the adjusted likelihood functions respectively, then

√
n
(
β̂unadj − βunadj

)
L−→ N

(
0, I−1(βunadj)

)
as n→∞

√
n
(
β̂adj − βadj

)
L−→ N

(
0, I−1(βadj)

)
as n→∞

where
L−→ denotes convergence in law (or convergence in distribution) and I(.) is the Fisher’s

information. Thus, one can write

β̂unadj = βunadj +
1√
n
Zu, where Zu ∼ N

(
0, I−1(βunadj)

)
β̂adj = βadj +

1√
n
Za, where Za ∼ N

(
0, I−1(βadj)

)
Consequently, as n→∞, the bias β̂unadj − β̂adj

P−→ E(β̂unadj − β̂adj) = βunadj − βadj, which is a

constant independent of sample size n. �
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Proof of Result 4. In the context of CIMBAL, we have two sets of estimates:
(
β̃1,adj, s̃e1,adj

)
corresponding to cohort 1 with no confounder information and

(
β̂2,adj, ŝe2,adj

)
corresponding

to cohort 2 with full confounder information. Although cohorts 1 and 2 are independent, the

CIMBAL-imputed estimate β̃1,adj and the fully adjusted estimate β̂2,adj are correlated due to

borrowing of information between cohorts. In particular,

Covb(β̃1,adj, β̂2,adj) = Covb(β̂2,adj − β̂2,unadj + β̂1,unadj, β̂2,adj) = Var(β̂2,adj)− Cov(β̂2,unadj, β̂2,adj)

where Covb(.) denotes between-cohort covariance, to differentiate from Cov(.) that captures

within-cohort co-variability. To meta-analyze adjusted estimates from cohorts 1 and 2, we find

the linear combination with the smallest asymptotic variance among all linear estimators of

the common exposure-outcome association effect. We consider linear combinations of the form

w1β̃1,adj + w2β̂2,adj and, assuming w1 + w2 = 1, attempt to minimize its variance:

Var
(
w1β̃1,adj + (1− w1)β̂2,adj

)
= Var

(
β̂2,adj + w1(β̂1,unadj − β̂2,unadj)

)
= w2

1

(
ŝe21,unadj + ŝe22,unadj

)
− 2w1Cov(β̂2,unadj, β̂2,adj) + ŝe22,adj

Since ŝe21,unadj + ŝe22,unadj > 0, a unique minimizer of this variance exists at ŵ1 =
Cov(β̂2,unadj,β̂2,adj)

ŝe21,unadj+ŝe22,unadj

and the minimum variance is ŝe22,adj −
Cov(β̂2,unadj,β̂2,adj)

2

ŝe21,unadj+ŝe22,unadj
.

[Recall elementary calculus: a quadratic polynomial ax2 + bx + c has a unique minimum iff

a > 0, in which case the minimum occurs at x = − b
2a

and the minimum value is c− b2

4a
.]

�

19



Figure S7: Comparison of CIMBAL with complete case meta-analysis approach and gold standard (oracle)
approach for parameter Setting I with weak confounder effects and across different simulation
scenarios. The log-odds estimate of the exposure-outcome association (β̂ = log(ÔR)) and its SE(

ŜE =

√
V̂ar(β̂)

)
from the combined cohort over 2500 independent replicate datasets are plotted

for each scenario: (1) fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no
confounder information than with complete confounder information. The horizontal dashed line
in the β̂-plots correspond to the true β = 0.
Note: The models used to generate binary exposure X and binary outcome Y are respectively
logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 + γ2C2 + βX, where confounders C1 ∼
Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). Only parameter Setting I with weak confounder effects (η1 =
η2 = γ1 = γ2 = 0.5) are considered here.
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Figure S8: Comparison of CIMBAL with complete case meta-analysis approach and gold standard (oracle)
approach for parameter Setting I and across different simulation scenarios. The log-odds esti-

mate of the exposure-outcome association (β̂ = log(ÔR)) and its SE

(
ŜE =

√
V̂ar(β̂)

)
from the

combined cohort over 2500 independent replicate datasets are plotted for each scenario: (1) fewer
cohorts or (2) equal number of cohorts or (3) more cohorts with no confounder information than

with complete confounder information. The horizontal dashed line in the β̂-plots correspond to
the true β. Regardless of the true association, meta-analysis using CIMBAL is closer to the oracle
than other meta-analysis approaches across different scenarios.
Note: The models used to generate binary exposure X and binary outcome Y are respectively
logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 + γ2C2 + βX, where confounders
C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). All parameter settings here assume strong confounder
effects: Setting I η1 = η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III
η1 = η2 = 2, γ1 = γ2 = −2.
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Figure S9: Meta-analysis using CIMBAL boils down to meta-analysis of only complete cohorts when there

are not enough complete cohorts to estimate Cov
(
β̂unadj, β̂adj

)
. The log-odds estimate of the

exposure-outcome association (β̂) and its SE from the combined cohort over 2500 independent
replicate datasets are plotted across different simulation settings. We assume a scenario where 45
out of 60 cohorts have missing confounder information, and deem that 15 complete cohorts are
not enough to estimate the covariance, so CIMBAL assumes 0 covariance. The horizontal dashed
line in the β̂-plots correspond to the true β = 0.
Note: The models used to generate binary exposure X and binary outcome Y are respectively
logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 + γ2C2 + βX, where confounders C1 ∼
Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). All parameter settings here assume strong confounder effects:
Setting I η1 = η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III
η1 = η2 = 2, γ1 = γ2 = −2.
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Figure S10: Sensitivity analysis I: Comparison of CIMBAL with complete case meta-analysis approach and
gold standard (oracle) approach when the underlying joint distribution is heterogenous. The log-

odds estimate of the exposure-outcome association (β̂ = log(ÔR)) and its SE

(
ŜE =

√
V̂ar(β̂)

)
from the combined cohort over 2500 independent replicate datasets are plotted for each scenario:
(1) fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no confounder infor-

mation than with complete confounder information. The horizontal dashed line in the β̂-plots
correspond to the true β = 0. Regardless of outcome-confounder and exposure-confounder asso-
ciations, meta-analysis using CIMBAL is closer to the oracle than other meta-analysis approaches
across different scenarios.
Note: The models used to generate binary exposure X and binary outcome Y are respectively
logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 + γ2C2 + βX. Cohorts with no infor-
mation on confounders are drawn from a population where confounders C1 ∼ Bin(1, 0.1) and
C2 ∼ Bin(1, 0.6). The remaining cohorts (those with complete information) are drawn from a
separate population with C1 ∼ Bin(1, 0.2) and C2 ∼ Bin(1, 0.7). This changes the mean as
well as the variance of the joint distribution [Y,X,C1, C2]. All parameter settings here assume
strong confounder effects in both populations: Setting I η1 = η2 = γ1 = γ2 = 2; Setting II
η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 = γ2 = −2.
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Figure S11: Sensitivity analysis II: Comparison of CIMBAL with complete case meta-analysis approach and
gold standard (oracle) approach when the homogeneity of confounding bias across cohorts is

violated. The log-odds estimate of the exposure-outcome association (β̂ = log(ÔR)) and its SE(
ŜE =

√
V̂ar(β̂)

)
from the combined cohort over 2500 independent replicate datasets are plotted

for each scenario: (1) fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no
confounder information than with complete confounder information. The horizontal dashed line
in the β̂-plots correspond to the true β = 0.
Note: The models used to generate binary exposure X and binary outcome Y are respectively
logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 + γ2C2 + βX, where confounders C1 ∼
Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). Cohorts without any confounder information are drawn from
a population where the parameter settings assume strong confounder effects: Setting I η1 =
η2 = γ1 = γ2 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2; and Setting III η1 = η2 = 2, γ1 =
γ2 = −2. The remaining cohorts (those with complete confounder information) are drawn from
a separate population where confounding effects are assumed to be considerably weaker: Setting
I η1 = η2 = γ1 = γ2 = 0.5; Setting II η1 = η2 = γ1 = 0.5, γ2 = −0.5; and Setting III
η1 = η2 = 0.5, γ1 = γ2 = −0.5. This ensures that the joint distributions [Y,X,C1, C2] are the
same across cohorts but the confounding biases are not.
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Table S4: Sensitivity analysis I & II: Evaluation of CIMBAL along with complete case meta-analysis approach and gold standard (oracle) approach using multiple
metrics across different simulated data scenarios. The metrics MSE (mean squared error), rel. MSE (relative MSE compared to oracle meta-analysis
approach), mean width of 95% CI, and type I error inflation factor at 5% significance level (ratio of type I error estimate to 0.05) are estimated using 2, 500
independent replicate datasets for each scenario: (1) fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no confounder information than
with complete confounder information. Ideal rel. MSE value is 1× and larger values indicate departure from oracle. Ideal type I error inflation value is 1;
larger than 1 indicates inflation, smaller than 1 indicates conservativeness. The underlying data generative model assumes there is no exposure-outcome
association (true β = 0).

Scenario 1 (fewer) Scenario 2 (equal) Scenario 3 (more)
Method MSE mean type I MSE mean type I MSE mean type I

(rel. MSE) width error IF (rel. MSE) width error IF (rel. MSE) width error IF

S
e
n
si
ti
v
it
y
A
n
a
ly
si
s
I

S
e
tt
in
g

I

M: complete only 0.007 (1.4×) 0.33 0.95 0.009 (2.3×) 0.39 0.89 0.014 (3.5×) 0.47 0.82
M: CIMBAL (v0.7) 0.005 (1.0×) 0.29 0.86 0.006 (1.5×) 0.31 0.94 0.009 (2.3×) 0.35 1.09
M: fully adjusted (oracle) 0.005 (1×) 0.26 1.05 0.004 (1×) 0.26 1.08 0.004 (1×) 0.25 1.02

S
e
tt
in
g

II

M: complete only 0.010 (1.7×) 0.40 1.01 0.013 (2.2×) 0.46 0.86 0.020 (3.3×) 0.56 1.01
M: CIMBAL (v0.7) 0.013 (2.2×) 0.34 2.90 0.019 (3.2×) 0.37 4.13 0.027 (4.5×) 0.41 4.70
M: fully adjusted (oracle) 0.006 (1×) 0.31 1.03 0.006 (1×) 0.30 1.06 0.006 (1×) 0.29 1.08

S
e
tt
in
g

II
I

M: complete only 0.011 (1.6×) 0.42 1.02 0.015 (2.1×) 0.48 0.93 0.022 (3.7×) 0.59 0.99
M: CIMBAL (v0.7) 0.009 (1.3×) 0.34 1.27 0.012 (1.7×) 0.36 1.93 0.018 (3.0×) 0.39 2.97
M: fully adjusted (oracle) 0.007 (1×) 0.32 1.18 0.007 (1×) 0.31 1.16 0.006 (1×) 0.30 1.12

S
e
n
si
ti
v
it
y
A
n
a
ly
si
s
II

S
e
tt
in
g

I

M: complete only 0.003 (1.0×) 0.22 0.97 0.004 (1.3×) 0.26 0.95 0.006 (2.0×) 0.31 0.94
M: CIMBAL (v0.7) 0.064 (21.3×) 0.19 20.0 0.154 (51.3×) 0.20 20.0 0.296 (98.7×) 0.20 20.0
M: fully adjusted (oracle) 0.003 (1×) 0.20 0.99 0.003 (1×) 0.21 1.03 0.003 (1×) 0.22 1.06

S
e
tt
in
g

II

M: complete only 0.004 (1.3×) 0.25 1.05 0.005 (1.3×) 0.29 0.98 0.008 (2.0×) 0.35 0.98
M: CIMBAL (v0.7) 0.019 (6.3×) 0.22 12.7 0.043 (10.8×) 0.22 18.7 0.083 (20.8×) 0.24 20.0
M: fully adjusted (oracle) 0.003 (1×) 0.22 1.06 0.004 (1×) 0.23 1.01 0.004 (1×) 0.25 0.97

S
e
tt
in
g

II
I

M: complete only 0.004 (1.3×) 0.25 1.14 0.005 (1.3×) 0.29 1.06 0.008 (2.0×) 0.36 0.92
M: CIMBAL (v0.7) 0.044 (14.7×) 0.22 18.9 0.108 (27.0×) 0.23 20.0 0.219 (54.8×) 0.25 20.0
M: fully adjusted (oracle) 0.003 (1×) 0.22 1.01 0.004 (1×) 0.24 1.11 0.004 (1×) 0.25 0.92
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Figure S12: Sensitivity analysis III: Comparison of CIMBAL with complete case meta-analysis approach and
gold standard (oracle) approach when there is an unmeasured confounder. The log-odds esti-

mate of the exposure-outcome association (β̂ = log(ÔR)) and its SE

(
ŜE =

√
V̂ar(β̂)

)
from

the combined cohort over 2500 independent replicate datasets are plotted for each scenario: (1)
fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no confounder information
than with complete confounder information. Here, true β = 0. All meta-analysis approaches
are extremely biased when there is an unmeasured strong confounder. However, meta-analysis
using CIMBAL is still closer to the oracle than other meta-analysis approaches across different
scenarios.
Note: The models used to generate binary exposure X and binary outcome Y are respectively
logit(X) = η0 + η1C1 + η2C2 + η3C3 and logit(Y ) = γ0 + γ1C1 + γ2C2 + γ3C3 + βX, where
confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6) are measured while C3 ∼ N(0, 1) is unmea-
sured in every cohort. All parameter settings here assume strong confounder effects: Setting I
η1 = η2 = γ1 = γ2 = 2, η3 = γ3 = 2; Setting II η1 = η2 = γ1 = 2, γ2 = −2, η3 = γ3 = 2; and
Setting III η1 = η2 = 2, γ1 = γ2 = −2, η3 = γ3 = 2.
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Table S5: Evaluation of CIMBAL and complete case meta-analysis approach with gold standard (oracle) approach using multiple metrics for Setting I with weak
confounder effects. The metrics MSE (mean squared error), rel. MSE (relative MSE compared to oracle meta-analysis approach), mean width of 95%
confidence interval, and type I error inflation factor at 5% significance level (ratio of type I error estimate to 0.05) are estimated using 2, 500 independent
replicate datasets for each scenario: (1) fewer cohorts or (2) equal number of cohorts or (3) more cohorts with no confounder information than with complete
confounder information. Ideal rel. MSE value is 1× and larger values indicate departure from oracle. Ideal type I error inflation value is 1; larger than 1
indicates inflation, smaller than 1 indicates conservativeness.
Note: The models used to generate binary exposure X and binary outcome Y are respectively logit(X) = η0 + η1C1 + η2C2 and logit(Y ) = γ0 + γ1C1 +
γ2C2 + βX, where confounders C1 ∼ Bin(1, 0.1) and C2 ∼ Bin(1, 0.6). Setting I here assumes weak confounder effects: η1 = η2 = γ1 = γ2 = 0.5 and that
there is no exposure-outcome association (β = 0).

Scenario 1 (fewer) Scenario 2 (equal) Scenario 3 (more)
Method MSE mean type I MSE mean type I MSE mean type I

(rel. MSE) width error IF (rel. MSE) width error IF (rel. MSE) width error IF

S
e
tt
in
g

I
(w

ea
k
) M: complete only 0.003 (1.5×) 0.22 0.97 0.004 (2.0×) 0.26 0.95 0.006 (3.0×) 0.31 0.94

M: CIMBAL (v0.7) 0.002 (1.0×) 0.18 1.11 0.002 (1.0×) 0.19 1.04 0.002 (1.0×) 0.19 1.13
M: fully adjusted (oracle) 0.002 (1×) 0.18 1.10 0.002 (1×) 0.18 1.10 0.002 (1×) 0.18 1.10

Abbreviations: IF, inflation factor; M, meta-analysis of 60 cohorts
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