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S1 Daily average vaccination rates in California

The average weekly doses of COVID-19 vaccines administered in California have been
decreasing since April 11, 2021, coincidentally the week with the highest number of
doses administered (Fig S1). In April 11, 2021, the average daily total doses of vaccine
administrated were 400,358. The daily average in May 18, 2021, was 222,218. This
represents a 44.5% reduction in vaccine uptake compared with the highest rate
documented. In the week of April 11, a daily average of 253,785 new doses and
211,898-second doses were administered. In May 18, 2021, the average of first doses
administrated decreased by 64% and second doses decreased by 34%, compared to the
vaccine rates on April 11. Based on this vaccination trajectory for California, we
proposed scenarios on the reduction and uptake of vaccination rates of 30%.

S2 Bayesian analysis

To conduct parameter estimation, we work with a decoupled model, explained below.
Once the parameters are estimated, the model described in the main text (Eq 1) is used
to simulate the different scenarios.

S2.1 Vaccine coverage model

To model future vaccination coverage, we proposed a compartmental model that
includes the dynamics between the not vaccinated population, those who got the first
vaccine dose and those who are fully vaccinated. Let W be the not vaccinated people at
time t. We assume that no vaccines have been administered at t = 0, which implies
W (0) = N . Then, by assuming that we vaccinate individuals at a constant rate for both
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Fig S1. Moving average of administrated doses in California. We use a 7-day
moving average to visualize the number of administrated doses. This average is
calculated for each day by averaging the values of that day and the six days before.
This approach helps prevent significant events (such as changing reporting methods)
from skewing the data.

first dose and second dose proportional to the current population, we have W (t), V1(t)
and V2(t) that satisfy,

Ẇ = −λv1W
V̇1 = λv1W − λv2V1
V̇2 = λv2V1

(1)

where W (0) = N , V1(0) = 0, and V2(0) = 0. We stored the cumulative vaccinated
population with at least one dose as:

Ȧ = λ1W.

Since real-world vaccination rates (λv1 , λv1) have changed since the start of the
vaccination, we used the prior 30 days of real-world vaccination data to adjust our
model rates. Information on fully vaccinated people and people with at least one dose is
required to find the value of λv1 and λv2 .

S2.1.1 Observational model and data

The observed data used to fit the model (1) are based on the records of people with at
least one dose and people fully vaccinated. We consider daily data from the first dose of
vaccines administered ai and its theoretical expectation that is estimated in terms of
the dynamical model as

µA = A(ti)−A(ti−1).

Analogously, we consider daily second doses administered ui, and its theoretical
expectation given by

µV2
= V2(ti)− V2(ti−1).

S2.1.2 Estimation of model parameters with MCMC

To carry out a likelihood-based analysis, we postulate that the number of both at least
one dose and fully vaccinated doses administered follows a Poisson distribution, Pois.
For data, yi, we let

yi ∼ Pois(µ(ti)).
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We assume conditional independence in the data, therefore from the Poisson model, we
obtain a likelihood. Our parameters are λv1 and λv2 . Regarding the elicitation of the
parameters prior distribution, we use a Gamma distribution with scale 3 and shape
parameter 10. To sample from the posterior, we resort to MCMC using ”t-walk” generic
sampler [2].

S2.1.3 Posterior distribution and vaccine coverage model results

Estimation of vaccination rates is used to predict vaccine coverage as well as the
dynamics of SARS-CoV-2. We displayed the results using the data reported 30 days
prior of May 18, 2021. We ran 10,000 iterations of the t-walk and after a burn-in period
of 1,000 iterations, the chain seems to be sampling from the equilibrium distribution
(i.e., the posterior distribution) (Fig S2C and S2D). Fig S2A and S2B correspond to the
marginal posterior distribution for λv1 and λv2 . The histograms are reported with 9,000
samples since the first (burn-in) 1,000 are discarded.

(a) (b)

(c) (d)

Fig S2. Marginal posterior. After 10,000 MCMC samples, (A)-(B) the marginal
posterior distribution for the vaccinate rates λv1 , λv2 and its prior distribution (red).
(C) Trace plot of the logarithm of the posterior distribution and (D) Trace plot of the
logarithm of the posterior distribution without a burn-in of 1,000 iterations.

S2.2 Transmission model

To have more realistic scenarios, we estimate the parameters involved in the dynamical
of the SARS-CoV-2 transmission using the Bayesian Sequential Forecasting Method
(BSFM) proposed in [1].

S2.2.1 Bayesian Sequential Forecasting Method

The BSFM updates the evolution of the dynamic system from the posterior distribution
of both model parameters and state variables as new epidemic records become available.
New prior models are defined from the current parameters and state variables posterior
distributions on a sliding time window. Within each sliding window, posterior
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(a) (b)

(c) (d)
Fig S3. Vaccine coverage model trajectory with median posterior values.
(A) people not vaccinated, (B) people with at least one dose, (C) fully vaccinated, and
(D) cumulative total of people taking at least one dose at time t.

distributions are computed beyond the available epidemic records to produce the
forecasts.
Let x(t) = (S(t), E(t), I(t), ...)T denote the time–dependent vector of state variables.
We shall assume that the epidemic and transmission models are coded in a dynamic
system

ẋ(t) = f(x(t), θk)

x(tk) = xk,
(2)

where tk and xk denote the initial time and state in the forecasting window
[tk, tk +L+D+F ] respectively, θk is a vector of model parameters (e.g., contact rate β,
effective population size ω, etc.) used to calibrate the model (2), L is the learning
period size, F is the number of days to forecast, n is the number of days to move the
forecasting window, and D is the number of the delays days. We denoted p(k) := (xk, θk)
as the joint vector of initial conditions and model parameters to be inferred.
The initial forecasting, k = 0, is done as a usual Bayesian inference problem, we
postulate

• A prior distribution, πP (k)(p(k)).

• A likelihood, πZ(k)|P (k)(z(k)|p(k)), where zk represents epidemic records in tk to
tk+1 + L (e.g., confirmed cases, deaths, etc.).

• We use equation (2) and samples obtained through Markov Chain Monte Carlo of
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the corresponding posterior distribution, πP |Z(p(k)|z(k)) to make a probabilistic
prediction of x(t) in the forecasting period t ∈ [tk + L+D, tk + L+D + F ].

To the next forecasting k > 0, we update the forecasting window by setting
tk+1 = tk + n. The new forecasting window is [tk+1, tk+1 + L+D + F ]. The prior
distribution of p(k) = (xk, θk) is set using the MCMC output of the period k − 1:

• For the k−initial state (xk), the MCMC output of the state variable x(t) at time
t0 + nk obtained with equation (2) is fitted with a known distribution.

• For the model parameters θk, the MCMC output of θk−1 is fitted a known
distribution.

• Finally, we set k ← k + 1 and repeat the above process to create a new forecast.

The central part of BSFM is that the time dependence of the transmission model
parameters is introduced by updating sequential forecasts reported on the history of the
outbreak using the posterior distributions as prior distributions for the parameters in
the current forecast. Thus, our transmission model becomes a non-autonomous dynamic
system, with the same amount of parameters in time and data, capable of capturing
changes in outbreak behavior produced by human and virus trend changes.

tk tk +1 = tk + n tk + L + D tk + L + D + F

training period delay period  forecasting period

new training period

Fig S4. Bayesian sequential data assimilation. The Bayesian filtering method
predicts along the dynamical system (2) evaluated in sample points of the posterior
distribution πP (k)|Z(k)(p(k)|z(k)) in the current forecasting window [tk, tk + L+D + F ].

S2.2.2 Application to California data

The parameter estimation is carried out with model (3), without the vaccination
transitions.

Ṡ = −λS
Ė = λS − fσE − (1− f)σE

Ȯ = fσE − γoO − (1− g)γoO

U̇ = (1− f)σE − γuU
Ṙ = (1− g)γoO + γuU

Ḋ = γogO.

(3)

Using data of confirmed cases and deaths, we estimate the contact rate (β), the
proportion of the effective population (ω), the fraction of individuals infected that are
deceased (g), and the initial conditions for all compartments, except for the susceptible
ones, which are set as S(t0) = ω ·N − (E(t0) +O(t0) + U(t0) +R(t0)) + V1(t0) + V2(t0).
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We consider records of confirmed cases and deaths from January 25, 2020, until May
10, 2021. These data are smoothing using a weekly moving average, which is calculated
for each day by averaging the values of that day and the six days before. This approach
helps prevent significant events (such as changing reporting methods) from skewing the
data. Using the BFSM for California data, we forecast every eight days with the most
recent data. Fig S5 shows the forecasts from December 6 to May 18, 2021, for both
confirmed cases and deaths. Fig S6 shows the trajectory of ω, θ, and g for the pandemic
period. The public response to long-term mitigation measures for the pandemic is
reflected in the evolution of β and ω parameters.

The β contact rate takes a high value at the beginning of the pandemic but declines
after the first intervention in California (March 12, 2021) and stabilizes around 0.35.
The value of ω has shown greater variability over time. Like β, it takes high values at
the beginning of the pandemic and declines with the first intervention carried out in
California in March. In July and December, we observed an increase in the values of
this parameter that coincides with the waves that California had in the same months.
The proportion of observed deaths (g) decreases with time, probably due to experience
gained over time in caring for patients and expanding hospital capacity. After a while,
this value stabilizes and remains close to 0.03.

For the vaccination model (Eq 1 main text), we use the posterior median in the last
forecast for initial conditions, contact rate β, effective population ω, and proportion of
deaths g. We take the initial condition for vaccination like the current vaccine and
redefine S(t0) = ωN0 − V0 − E0 − U0 −O0 −R0 −D0.

S2.2.3 Prediction interval coverage

We have the probabilistic one-, two-, three-, and four-week ahead forecasts of the total
number of confirmed cases and deaths due to COVID-19 from January 13, 2020, to May
18, 2021, and every eight days after that for California. We evaluated our forecast error
with the calibration of the prediction interval coverage (80% and 50%). The prediction
interval coverage is calculated by determining the frequency with which the prediction
interval contained the eventually observed outcome. We do this for all prediction
intervals calculated from January 13, 2020, to May 18, 2021, and calculate the average
of these. In a model that accurately characterizes uncertainty, the prediction interval
level will correspond closely to the frequency of eventually observed outcomes that fall
within that prediction interval. For example, finally observed values should be within
the 50% prediction interval approximately 50% of the time.

Table S1. Observed prediction interval coverage.

Cases Deaths
Observed Prediction Interval Observed Prediction Interval

Forecast Horizon (weeks ahead) Forecast Horizon (weeks ahead)
Measure week 1 week 2 week 3 week 4 week 1 week 2 week 3 week 4

50% Coverage 0.60 0.56 0.52 0.49 0.59 0.64 0.66 0.67
80% Coverage 0.83 0.80 0.76 0.73 0.94 0.94 0.93 0.91

The observed prediction interval coverage for confirmed cases / deaths from January 28, 2020 to
May 18, 2021 in California was calculated by taking the average coverage of the prediction
intervals observed in the sequential prediction for California.

The forecasts were well-calibrated, with prediction intervals covering the observed
data with the expected frequency (Table S1). The 50% prediction intervals captured
48-60% of observations for all forecast horizons for confirmed cases and 58-66% for
deaths. The 80% prediction intervals captured only 73-83% of confirmed cases and
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(a) (b)

(c) (d)

Fig S5. California outbreak analysis. Data from April 8 to May 18, 2021 is used.
(A) Confirmed cases (B) Confirmed deaths. Central red lines indicate the median
incidence forecast. The darker shaded region indicates the interquartile forecast range,
and the lighter shaded region indicates the 5–95th percentile range. All displayed
forecast duration’s are ten days from the point of prediction. California total population
39,512,223.

91-94% for deaths. The intervals were better calibrated for confirmed death due that
the record of Covid-19 deaths is more reliable than records of confirmed cases. The last
one depends directly on the number of tests applied.

S3 Other results

These results are similar to the results described in the main text, but instead of
reducing the current vaccination rate by 30%, we consider the scenario where this value
decreases by 60%.
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(a) (b)

(c)
Fig S6. The trajectory of the parameters during the pandemic period.
From left to right, contact rate after lockdown (β), proportion of the effective
population (ω), and the fraction of infected dying (g). Central red lines indicate median
incidence forecast. Darker shaded region indicates forecast interquartile range, and
lighter shaded region indicates 5–95th percentile range.

Table S2. Parameters values for the baseline scenario correspond to the posterior
median value βbase = 0.31, ωbase = 0.12, λv1 = 0.00598, λv2 = 0.032; β = 0.4, 0.5, and
ω = 0.3, 0.5 were selected according to historical data in CA (Fig. S6).

Vaccination rate assumptions
Current

vaccination
rate

Current
vaccination

rate decrease
60%

Current
vaccination

rate increase
30%

Current
vaccination

rate

Current
vaccination

rate decrease
60%

Current
vaccination

rate increase
30%

Increase or prevention percentage in cases Increase or prevention percentage in deaths
Parameters 15 days after opening 15 days after opening
βbase = 0.31 11429∗ 80.4 -26.1 429∗ 50.7 -17.9
β1 = 0.4 21.8 122.6 -10.5 4.4 61.1 -14.6
β2 = 0.5 48.5 172.5 8.4 9.6 73.5 -10.8

ωbase = 0.12 9829∗ 77.5 -25.6 402∗ 52.0 -16.4
ω1 = 0.3 51.5 139.1 22.7 12.2 65.8 -5.1
ω2 = 0.5 68.9 159.9 37.6 15.6 69.2 -2.7
∗Base scenario values (total cases and deaths between June 15 and June 30, 2021). All percentages are calculated
based on these values.
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(a) (b)

(c) (d)

Fig S7. Scenarios.The dashed vertical line indicates the opening day, June 15.
Reported data are shown in gray (bars). The black line corresponds to the baseline
scenario, the cyan line corresponds to the projection assuming a 60 % decrease in the
current vaccination rate, and the magenta line corresponds to the projection assuming a
30% increase in the current vaccination rate. After June 15, the red, blue, and black
lines correspond to the projection with the different values of ω, cases (A) and deaths
(B) and changes in β (C) cases and (D) deaths, with the current vaccination rate.
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