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Materials and Methods 

 

Cell culture and CRISPR engineering 

 

Cell culture. HEK-293T cells (ATCC CRL-3216) were cultured in DMEM high-glucose medium (Gibco, 

cat. #11965118) with 10% fetal bovine serum (Omega Scientific, cat. #FB-11), supplemented with 2mM gluta-

mine (Gibco, cat. #25030081), penicillin and streptomycin (Gibco, cat. #15140163). All cell lines were main-

tained at 37°C and 5% CO2 and routinely tested for the absence of mycoplasma.   

 

Fluorescent library design. mNeonGreen is monomeric green fluorescent protein ~2x brighter than GFP. 

We used the split-mNeonGreen2 system for functional tagging, which separates last mNeonGreen2 beta-strand 

(mNG11) from the rest of the fluorescent protein (mNG1-10)(20). Upon co-expression in the same cell, mNG1–

10 and mNG11 stably assemble and reconstitute a functional FP. A parental cell line constitutively expressing 

mNG1-10 was first generated by lentiviral transduction (from pSFFV_mNG21-10, Addgene #82610). All succes-

sive cell lines were generated from this parental HEK293TmNG1-10 cell line by incorporation of the mNG11 frag-

ment at either N- or C- terminus of the genomic sequence of a target protein via CRISPR/Cas9 based genome 

editing. Our mNG11 fusion constructs include a HRV 3C cleavable linker(91) that can be used optionally for 

elution from an affinity capture matrix (16 a.a. tag + 14 a.a. linker, full sequences in Table S1). To minimize the 

risk of functional perturbation, we stringently selected integration sites (N- or C-terminus) by systematically 

curating the literature for data supporting the functional integrity of fusion proteins (or by requesting advice from 

cell biology experts for specific proteins). We also used 3D PDB structures whenever available to identify sites 

that avoid protein-protein interaction interfaces. See Table S1 for details. Because our split-FP system does not 

enable detection in the lumen of organelles (this requires split constructs harboring appropriate signal se-

quences(23)), fusions with membrane proteins were restricted to cytoplasmic termini, ensuring first that no anno-

tated regulatory sequences (e.g., signal sequences) were compromised. In total, we used available supporting data 

to inform 62 % of insertion sites, and 3 % were constrained by membrane protein topology. In the absence of 

prior information, insertion choice was based on avoiding annotated regulatory sites. In the case of splice variants 

involving the terminus of choice, the main transcript expressed in HEK293T was used.  

 

Overall genome engineering pipeline. To enable the expression of fluorescent fusion from endogenous 

genomic loci, we used an established high-throughput CRISPR/Cas9 method for gene editing by homologous 

recombination (18). In brief, S. pyogenes Cas9/guide RNA complexes were pre-assembled in vitro, mixed with 

short single-stranded oligo-nucleotide homology donors and delivered into HEK293TmNG1-10 cells by electro-

poration in 96-well plates (see below). For each genomic insertion, the choice of guide RNA and associated 

homology donor sequence (which contains the mNG11 payload flanked by short sequences of genomic homology 

to the targeted insertion site) was automated using crispycrunch(92), an open-source CRISPR design software 

available at github.com/czbiohub/crispycrunch and as a web-app at crispycrunch.czbiohub.org/. crispycrunch se-

lects a guide RNA closest to a desired genomic insertion site while also minimizing any off-target guide RNA 

activity, and if needed introduces silent mutations to inactivate guide RNA biding and re-cutting after successful 

homologous recombination (92). gRNA and homology donor sequences for all targets are found in Table S1. 

 

Cell engineering and selection S. pyogenes Cas9 protein (pMJ915 construct, containing two nuclear local-

ization sequences) was expressed in E. coli and purified by the UC Berkeley Macrolab following protocols de-

scribed by Jinek et al(93). Cells were synchronized by nocodazole treatment (200ng/mL for 15-18h_ to enhance 

homologous recombination(25). RNP complexes were freshly assembled with 50 pmol Cas9 protein and 65 pmol 

gRNA prior to electroporation, and combined with HDR template in a final volume of 10 µL. First, 0.5 µL gRNA 

(130 µM stock) was added to 2.35 µL high-salt RNP buffer {580 mM KCl, 40 mM Tris-HCl pH 7.5, 20% v/v 

glycerol, 2 mM TCEP-HCl pH 7.5, 2 mM MgCl2, RNAse-free} and incubated at 70°C for 5 min. 1.25 µL of 

Cas9 protein (40 µM stock in Cas9 buffer, ie. 50 pmol) was then added and RNP assembly carried out at 37°C 

https://github.com/czbiohub/crispycrunch
https://crispycrunch.czbiohub.org/


for 10 min. Finally, HDR templates and sterile RNAse-free H2O were added to 10 µL final volume. Electro-

poration was carried out in Amaxa 96-well shuttle Nucleofector device (Lonza) using SF solution (Lonza) fol-

lowing the manufacturer’s instructions. Cells were washed with PBS and resuspended to 10,000 cells/µL in SF 

solution (+ supplement) immediately prior to electroporation. For each sample, 20 µL of cells (ie. 200,000 cells) 

were added to the 10 µL RNP/template mixture. Cells were immediately electroporated using the CM130 pro-

gram, after which 100µL of pre-warmed media was added to each well of the electroporation plate to facilitate 

the transfer of 25,000 cells to a new 96-well culture plate containing 150µL of pre-warmed media. Electroporated 

cells were cultured for >5 days and transferred to 12-well plates prior to selection by fluorescence-activated cell 

sorting (FACS). For each target, 1,200 cells from the top 1% fluorescent cell pool were isolated on a SH800 

instrument (Sony biotechnology) and collected in 96-well plates. 

 

Genotype analysis. For each polyclonal pool of engineered cells, the genotype of CRISPR-edited alleles 

was characterized by amplicon sequencing. Gene-specific primers were designed using Primer3, with a target 

amplicon length of 270bp and a maximum at 500bp. gDNA was first extracted by cell lysis using QuickExtract 

DNA Extraction Solution (Lucigen). From a confluent culture in 96-well plate, media was removed, cells were 

washed 1x in DPBS and resuspended in 50 µL QuickExtract. The cell layer was detached by repeated pipetting 

and transferred to a PCR plate for incubation. The lysate was incubated as follows {65°C for 20 min, 98°C for 

5min, 4°C final}. gDNA was used directly from this preparation. Amplicon Libraries were created using a two-

step PCR protocol: the first PCR amplifies the target genomic locus and adds universal amplification handle 

sequences, while the second PCR introduces index barcodes using the universal handles. PCR1: this PCR uses a 

“reverse touchdown” method designed to accommodate a number of different annealing temperatures for a num-

ber of different targets. 50-µL PCR reactions were set using 2x KAPA HiFi Hotstart reagents (Roche) with 2µL 

extracted gDNA, 80pmol each primer and betaine to 0.8M final concentration. PCR conditions: 95°C 3min; 3 

cycles of {98°C for 20s, 63°C for 15s, 72°C for 20s},  3 cycles of {98°C for 20s, 65°C for 15s, 72°C for 20s}, 3 

cycles of {98°C for 20s, 67°C for 15s, 72°C for 20s}; 17 cycles {98°C for 20 s, 69°C for 15 s, 72°C for 20s} then 

72°C for 1min;  4°C final. PCR2: amplicons were diluted 1:100 and 1 µL was used into a 40-µL barcoding 

reaction using 20 µL 2x KAPA HiFi Hotstart reagents (Roche) and 80pmol each barcoded primer. PCR condi-

tions: 95°C 3min and 12 cycles of {98°C for 20s, 68°C for 15s, 72°C for 12s} then 72°C for 1min; 4°C final. 

Barcoded amplicons were analyzed using capillary electrophoresis (Fragment Analyzer, Agilent), pooled and 

purified using magnetic beads.  Sequencing was performed on an Illumina Miseq V3 platform (paired-end 

2x300bp) using standard P5/P7 primers. Genotype analysis was performed using CRISPRESSO2, which allowed 

to quantify three classes of alleles for each targeted locus: un-modified (wild-type), alleles integrated with mNG11 

by homologous recombination, and alleles containing non-functional mutations as a result of competing DNA 

repair mechanisms. Primer sequences and genotype analysis for all targets are found in Table S1. Despite multiple 

attempts, genotyping PCR could not be successfully performed for 70 targets (5% of the total set), most often 

involving genes with extreme GC content or highly repetitive sequences. 

 

Immuno-precipitation / mass-spectrometry 

 

Overall strategy. mNG11-tagged proteins were isolated from digitonin-solubilized lysates using anti-

mNeonGreen nanobody capture. Triplicate protein samples were digested “on-bead” for bottom-up proteomics 

analysis(28), and peptides were quantified using label-free mass spectrometry on a timsTOF Pro instrument 

(Bruker Daltonics).  

 

Sample preparation. Confluent 12-well cultures (0.8x106 cells/sample) were washed twice with 1 ml of D-

PBS (no divalent). 200 µl ice-cold lysis buffer A {50 mM HEPES pH 7.5, 150 mM KOAc, 5 mM NaCl, 2 mM 

MgOAc, 1 mM CaCl2, 15% Glycerol, 1.5 % Digitonin (high purity, Calbiochem), Protease- and Phosphatase 

inhibitor (Halt, Pierce), 0.1% benzonase (Millipore Sigma)} were added to each well, cells were lysed by strong 

pipetting and the solution was transferred into a pre-chilled 96-well PCR plate. Per 96-well plate, 330 µl magnetic 

mNG-Trap slurry (magnetic agarose, Chromotek) was washed three times with buffer B {50 mM HEPES pH 7.5, 

150 mM KOAc, 5 mM NaCl, 2 mM MgOAc, 1 mM CaCl2, 15% Glycerol, 0.1 % Digitonin} and resuspended in 



2,150 µl Buffer A. The cell lysate was incubated for 1h at 4°C, rotating. The insoluble cell fraction was pelleted 

for 30 min at 1800xg in a table-top centrifuge at 4°C, followed by supernatant transfer into a new plate pre-loaded 

with 20 µl of the washed bead slurry per well. Tagged proteins were captured by incubation for 2h at 4°C, rotating. 

Following capture and using a 96-well magnet, beads were washed (per well) with 200 µl buffer B (incubation 

for 5 min at 4°C, rotating), 2x 200 µl buffer B (no incubation) and a final 1x 200 µl buffer C to remove digitonin 

{50 mM HEPES pH 7.5, 150 mM KOAc, 5 mM NaCl, 15% Glycerol, 0.01% glyco-diosgenin (Avanti)}. Super-

natant was removed and 50 µl of digestion buffer 1 {6 M Urea, 50 mM Tris-HCl, pH 8.5, 1 mM DTT, 2 ng/µl 

LysC protease (Wako Chemicals)} was added to each well, followed by overnight digestion at 30°C on a ther-

momixer, gently shaking. The next day, 100 µl digestion buffer 2 {50 mM Tris-HCl, pH 8.5, 8.25 mM iodoa-

cetamide, 2 ng/µl LysC} was added to each well and incubated for ~6 hours at 30°C on a thermomixer in the 

dark, gently shaking. The digestion was finally quenched with 15 µl of 10 % TFA. Quenched samples were 

vortexed, flash-frozen and stored at -80 °C until further use for LC-MS analysis preparation.  

 

EvoSep chromatography. We used the EvoSep liquid chromatography system for sample processing(94). 

EvoTips (EvoSep Gmbh) were activated for 5 min with 1-Propanol at RT, followed by a wash step with 50 µl 

Buffer A (99.9 % ddH2O, 0.1 % Formic Acid) and centrifugation at 600 xg for 1 min at RT. The flow-through 

was discarded and activated EvoTips were placed in an EvoTip-box reservoir filled with Buffer A. After on-bead 

digestion, captured protein samples were thawed for 5 min at 600 rpm and 25°C on a thermal shaker and placed 

on a 96-well magnet holder to remove magnetic beads. The whole sample (~150 µl) was transferred to activated 

EvoTips, followed by two consecutive centrifugation steps at 600xg for 1 min and RT, discarding flow-through 

after the first spin. Peptide-loaded EvoTips were washed once with 50 µl Buffer A and centrifuged at 600xg for 

1 min at RT. The flow-through was discarded and 150 µl of Buffer A was added to each EvoTip followed by a 

centrifugation step for 20 sec at 600xg RT. Loaded EvoTips were then transferred into the 96-well EvoTip-box 

reservoir filled with Buffer A and transferred onto the EvoSep autosampler for LC-MS analysis. Pulldowns were 

acquired in triplicates and injected to the mass spectrometer while spacing replicates to prevent any bias.  

 

Liquid-chromatography. For separating peptides by hydrophobicity and eluting them into the mass spec-

trometer, we used an EvoSep One1 liquid chromatography system (EvoSep, Gmbh) and analyzed purified petides 

with a standard 21 min method (60 samples per day). We used a 15 cm × 150 μm ID column with 1.9 μm C18 

beads (PepSep) coupled to a 20 µm ID electrospray emitter (Bruker Daltonics). Mobile phases A and B were 0.1 

% FA in water and 0.1 % FA in ACN, respectively. The EvoSep system was coupled online to a trapped ion 

mobility spectrometry quadrupole time-of-flight mass spectrometer(95) (timsTOF Pro, Bruker Daltonics) 

equipped with via a Captive nano-electrospray ion source.  

 

Mass spectrometry. Mass spectrometric analysis was performed in a data-dependent (dda) PASEF mode. 

For ddaPASEF, 1 MS1 survey TIMS-MS and 4 PASEF MS/MS scans were acquired per acquisition cycle. The 

cycle overlap for precursor scheduling was set to 2. Ion accumulation and ramp time in the dual TIMS analyzer 

was set to 50 ms each and we analyzed the ion mobility range from 1/K0 = 1.3 Vs cm-2 to 0.8 Vs cm-2. Precursor 

ions for MS/MS analysis were isolated with a 2 Th window for m/z < 700 and 3 Th for m/z >700 in a total m/z 

range of 100-1,700 by synchronizing quadrupole switching events with the precursor elution profile from the 

TIMS device. The collision energy was lowered linearly as a function of increasing mobility starting from 59 eV 

at 1/K0 = 1.6 VS cm-2 to 20 eV at 1/K0 = 0.6 Vs cm-2. Singly charged precursor ions were excluded with a 

polygon filter (otof control, Bruker Daltonics). Precursors for MS/MS were picked at an intensity threshold of 

2,000 arbitrary units (a.u.) and re-sequenced until reaching a ‘target value’ of 24,000 a.u. considering a dynamic 

exclusion of 40 s elution. Capillary voltage was set to 1,750 V and dry gas temperature to 180°C.  

 

Raw Data Processing. MS raw files were processed using MaxQuant (v1.6.10.43)(96, 97), which extracts 

features from four-dimensional isotope patterns and associated MS/MS spectra, on a computing cluster (SUSE 

Linux Enterprise Server 15 SP2) utilizing UltraQuant. Files were processed in several batches of appriximately 

1000 files each and searched against the human Uniprot databases (UP000005640_9606.fa, 

UP000005640_9606_additional.fa). False-discovery rates were controlled at 1% both on peptide spectral match 



(PSM) and protein levels. Peptides with a minimum length of seven amino acids were considered for the search 

including N-terminal acetylation and methionine oxidation as variable modifications and cysteine carbamido-

methylation as fixed modification, while limiting the maximum peptide mass to 4,600 Da. Enzyme specificity 

was set to LysC cleaving c-terminal to lysine. A maximum of two missed cleavages were allowed. Maximum 

precursor and fragment ion mass tolerance were searched as default for TIMS-DDA data and the main search 

tolerance was reduced to 20 ppm. Peptide identifications by MS/MS were transferred by matching four-dimen-

sional isotope patterns between the runs (MBR) with a 0.7-min retention-time match window and a 0.05 1/K0 ion 

mobility window. Protein quantification was performed by label-free quantification using a minimum ratio count 

of 1.  

 

Data availability. All mass spectrometry raw data and MaxQuant output tables are deposited to the Proteo-

meXchange Consortium(98) via the PRIDEpartner repository and will be publicly available upon final publica-

tion (accession PXD024909). 

 

Whole-cell abundance measurement by mass-spectrometry 

 

Peptide preparation. HEK293T cells were grown in triplicate 15cm-plates, washed 2x in ice-cold PBS and 

lysed in { 2.5% SDS sodium dodecyl-sulfate; 50 mM Tris pH 8.1 }. Lysis was performed at 95˚C for 5 min, 

followed by probe sonication. Lysates were cleared by centrifugation, protein amount was measured by BCA 

assay, and lysates were precipitated with 5 volumes of acetone. Pellets were resuspended in 50 mM Tris pH 8.1 

containing 8 M urea, reduced with 1 mM DTT and alkylated with 5 mM IAA before initiation of digestion over-

night with LysC at an enzyme-to-protein ratio of 1:100. The digest mixture was diluted four-fold, and trypsin was 

added at an enzyme-to-protein ratio of 1:100 for 6 h, followed by an additional aliquot of trypsin overnight. The 

digestion reaction was stopped by acidifying the sample adding TFA to 1%, placed on ice for 10min and centri-

fuged at 4 degree C, 21000g for 20min. The resulting peptide supernatant was then desalted using mixed mode 

Strata-XC SPE cartridge. Briefly, the cartridge was prepared by activating with methanol, conditioning with 80% 

acetonitrile/0.1% TFA and equilibrated with 0.2% TFA. The acidified peptides were then added, washed with 

99% isopropanol/0.1% TFA, 2 x 0.2% TFA washes, 1x 0.1% formic acid and eluted with 60% acetonitrile/0.5% 

ammonium hydroxide. The eluted peptides were flash frozen and then dried down. 

 

Fractionation. To obtain achieve measurement depth, peptides from the triplicate experiment were further 

separated in 24 fractions using C18 chromatography. Peptides were resuspended in buffer A (10 mM ammonium 

bicarbonate) and injected onto a 4.6 × 250-mm 3.5-μm Zorbax 300 Extend-C18 column. Peptides were separated 

on a non-linear gradient as described in (99), using the following composition of buffer B (10 mM ammonium 

bicarbonate, 90% acetonitrile). Peptide fractions were frozen at −80 °C before centrifugal evaporation. 

 

Mass spectrometry. Peptides were resuspended in 2% ACN with 0.1% TFA before loading onto a 25 cm x 

75 µm ID, 1.6 µm C18 column (IonOpticks) maintained at 40°C. Peptides were separated with an EASY-nLC 

1200 system (Thermo Fisher Scientific, San Jose, CA) at a flow rate of 300 nl min-1 using a binary buffer system 

of 0.1% FA (buffer A) and 80% acetonitrile with 0.1% FA (buffer B) in a two-step gradient, from 3% to 27% B 

in 105 min and from 27% to 40% B in 15min. All fractions were analyzed on a Fusion Lumos mass spectrometer 

(Thermo Fisher Scientific, San Jose, CA) equipped with a nanoFlex ESI source operated at 1550 volts, RF lens 

set to 30%, operated in data dependent acquisition mode with a duty cycle time of 1 sec. Full MS scans were 

acquired with a m/z scan range of 375-1500 m/z in the Orbitrap mass analyzer (FTMS) with a resolution of 240k. 

Selected precursor ions were subjected to fragmentation using higher-energy collisional dissociation (HCD) with 

a quadrupole isolation window of 0.7 m/z, and normalized collision energy of 31%. HCD fragments were ana-

lyzed in the Ion Trap mass analyzer (ITMS) set to Turbo scan rate. Fragmented ions were dynamically excluded 

from further selection for a period of 45 sec. The AGC target was set to 1,000,000 and 10,000 for full FTMS and 

ITMS scans, respectively. The maximum injection time was set to Auto for both full FTMS and ITMS scans. 

 

 



Live-cell imaging 

 

Sample preparation. Live-cell imaging was performed on 96-well glass-bottom plates (Greiner Bio One, 

cat. #655891) coated with 50µg/ml fibronectin (Corning, cat. #356008). Cells were seeded on an imaging plate 

28-32 hours before imaging at 15,000 cells per.  Before imaging, cells were counter-stained with the live-cell 

DNA dye Hoechst 33342 (Invitrogen, cat. #H3570) by incubation for 30 minutes at 37°C in 150 µl of Hoechst 

diluted to 1µg/mL in culture media. Media was then replaced with phenol-free DMEM (Gibco, cat. #21063029) 

supplemented with 10% FBS. Hoechst staining was performed three to four hours prior to imaging to provide the 

cells time to recover from any mechanical stress due to medium changes. 

 

Live-cell fluorescence microscopy. Cells were imaged on a DMI-8 inverted microscope (Leica) equipped 

with a Dragonfly spinning-disk confocal system (Andor), a 63x 1.47NA oil objective (Leica), and a 16-bit iXon 

Ultra 888 EMCCD camera (Andor, pixel size: 13x13 µm2). A pinhole size of 40μm was used with an EM gain of 

400. Cells were maintained at 37°C and 5% CO2 during image acquisition by a stage-top incubator (Okolab, 

H101-K-Frame). The microscope was controlled using the open-source microscope-control software MicroMan-

ager (version 1.4.22).  

 

Automated confocal acquisition. We automated the imaging of 96-well plates using a custom acquisition 

script, written in Python, combined with a custom MicroManager plugin (mm2python; github.com/czbio-

hub/mm2python) to expose the MicroManager APIs in a Python environment. This script selected optimal fields 

of view (FOVs) at which to acquire confocal z-stacks by using a pre-trained machine-learning model to assign a 

quality score to the FOVs at a set of different positions in each well. Briefly, at each position, the script acquired 

a single 2D snapshot of the Hoechst staining, segmented the nuclei in the snapshot, and calculated an array of 

features associated with the distribution of nuclei within the FOV. The script then used a pre-trained random-

forest regression model (see below) to predict a quality score for the FOV from this set of features. This process 

was repeated at each of 25 different positions in each well, and then the script selected the positions with the 

highest-scoring FOVs to revisit for confocal z-stack acquisition. At each of these selected positions, the focal 

plane was centered on the cell layer using a laser-based Adaptive Focus Control system (Leica) and confocal z-

stacks, consisting of 110 z-slices at a spacing of 0.2μm, were acquired. The exposure settings for the mNeonGreen 

channel were determined dynamically for each target using a custom auto-exposure algorithm that iteratively 

adjusted the exposure time and laser power until the maximum pixel intensity was just below or just above an 

intensity of 215 (half of the full dynamic range of the camera). For dim targets for which this condition could not 

be met, the script fell back to a hard-coded absolute maximum exposure time and laser power to minimize both 

acquisition time and photobleaching. The exposure settings for the Hoechst stain were manually selected and held 

constant for all targets. The random-forest regression model used by the script to predict the FOV quality scores 

was trained prior to acquisition using a set of 3800 FOV snapshots that were manually assigned to one of three 

grades: “poor,” “mediocre,” or “good.” These grades were mapped to a continuous response variable by assigning 

the values of -1, 0, and 1, respectively, and a random forest regression model (scikit-learn) was trained to predict 

this value. The out-of-bag estimated R2 was 0.86 and scores predicted for a withheld set of test snapshots were 

also evaluated by manual inspection.  The trained model was cached and imported at acquisition time by the 

acquisition script. The acquisition script, trained FOV-scoring model, autoexposure algorithm, and other associ-

ated microscope-control methods are available online at github.com/czbiohub/2021-opencell-microscopy-auto-

mation. 

 

Data analysis – proteomics 

 

Statistical detection of protein interactions. Statistical analysis was performed according to methods de-

scribed in Hein et al. (7), with modifications. Protein identifications were filtered, removing common contami-

nants, hits to the reverse decoy database as well as proteins only identified by modified peptides. We required that 

each protein be quantified in all replicates from the IP-MS samples of at least one cell line and used log2 

MaxQuant LFQ intensities for all analyses. Rather than imputing missing values, robust null control sets were 

https://github.com/czbiohub/mm2python
https://github.com/czbiohub/mm2python
http://github.com/czbiohub/2021-opencell-microscopy-automation
http://github.com/czbiohub/2021-opencell-microscopy-automation


generated for statistical enrichment analysis of each protein group by pooling triplicate data from an average of 

349 unrelated samples. In this approach, rather than using a single control we measure enrichment in a specific 

sample against an entire cohort of ~349 unrelated tagged cell lines. We have previously described (7, 28) how 

this enables a better estimation of the null distribution and leads to more robust identification of interactions. The 

null control sets might contain triplicate samples that are outliers and would be considered significant interactions. 

The presence of these samples lead to underestimation of enrichment and could mask  some significant interac-

tions. We systematically removed these outliers from the negative control sets using a Student’s t-test and exclud-

ing any sample of triplicates that had a p-value < 0.001. From the filtered pool, we approximated the true mean 

and the true standard deviation of the null set by bootstrapping via sampling with replacement. The approximated 

mean and standard deviation of the null set was then used for the final Student’s t-test to calculate the statistical 

significance of the triplicate means. Any missing values in the triplicate sample set were then replaced with the 

mean of the null set. Enrichment was calculated by subtracting the mean of the triplicates from the mean of the 

null set, and was normalized to account for variability within each protein through division by the standard devi-

ation of the null control set. Our statistical strategy to define significant interactors is described in Figure S4A-B 

and supported by a quantitative estimation of precision and recall.    

 

Precision / recall analysis of the interactome. For a quantitative evaluation of our statistical approach, and 

to compare the quality of OpenCell against reference interactome datasets, we created a framework the precision 

and recall in interaction data. In the absence of established ground truth for human protein interactions, we indi-

rectly derived measurements of precision and recall. For recall, we calculated the coverage in a given dataset of 

interactions curated in the human CORUM database(30), as a percentage of all possible CORUM interactions 

given the set of baits in that dataset. For calculating precision, we used the assumption that two interactors should 

have localization patterns that at least partially overlap. As an independent ground truth set for protein localiza-

tion, we used the quantitative analysis of the HeLa proteome from Itzhak et al. (31). Using these annotations, we 

categorized localization into four broad classes: exclusively nuclear, exclusively cytoplasmic, exclusively orga-

nellar, and multi-localizing (i.e., any non-exclusive localization). To calculate precision, we consider any two 

interactors that overlap in exclusive localization to be true positives, and those that do not overlap localization 

annotations at all to be false positives, with multi-localizing proteins allowed to interact agnostically (Fig. S4B).  

 

Protein stoichiometry measurements. Calculation of interaction stoichiometries was performed as in Hein 

et al by dividing LFQ intensities by the number of theoretically observable peptides for each protein. We defined 

the “interaction stoichiometry” as the stoichiometry of the abundance of a given interactor, relative to the abun-

dance of the corresponding bait, in a given pull-down. We also defined a “cellular abundance stoichiometry” as 

the stoichiometry of the abundance of a given interactor, relative to the abundance of the corresponding bait, in a 

whole cell lysate. For proteins that were not detected in whole cell lysates (due to lack of measurable peptides, 

for example in the absence of lysine residues), protein abundances were imputed from RNA-Seq data by interpo-

lating from a linear regression of RNA-Seq tpm vs. protein abundance measured by mass spectrometry in our 

dataset.  

 

Network Analysis. For graph-based clustering of the entire interactome network, we weighted edges using 

the interaction stoichiometry between each pair of interacting proteins. We utilized Markov clustering(34) at 

various inflation parameters and evaluated clustering performance using the k-clique method described in Drew 

et al(100) using CORUM complexes as the ground truth. To eliminate complexes with many shared proteins, the 

Jaccard distance was calculated between all pairs of complexes, and pairs of complexes were merged if the dis-

tance was below 0.6. Our final clustering analysis used an inflation parameter of 3.0 (Fig. S4I). The clusters were 

pruned to remove any node included in a cluster on the basis of a single edge. The resulting clusters correspond 

to the protein “communities” described in the text. We then utilized another round of MCL clustering to identify 

core-clusters within each community by considering only highly stoichiometric interactions (interaction stoichi-

ometries between 0.05 and 10, and cellular abundance stoichiometry between 0.1 and 10). The resulting core-

clusters represented highly stable core clusters within the original communities.  

 



Measurement of biophysical properties of proteins. Biophysical properties were calculated using the Pro-

teinAnalysis package from BioPython(101). Hydrophobicity scores were calculated using the gravy method of 

that module to compute the Gravy index.  Calculation of disorder in protein regions was performed using the 

IUPred2A algorithm(89) or metapredict, a recent agglomerative algorithm (90). Scores were averaged across the 

sequences of each protein. Scores computed across the whole proteome are included in Table S2.  

 

 

Data analysis – imaging 

 

Consensus localization encodings. Protein localization patterns were encoded from the raw confocal im-

ages using a customized variant of the vector-quantized autoencoder architecture VQ-VAE-2(102). The image 

preprocessing, autoencoder architecture, and model training are described in detail in an accompanying manu-

script(52). Briefly, confocal z-stacks were reduced to two dimensions by a maximum-intensity z-projection and 

normalized to control for variation in intensity. Regions of interest 200x200 pixels in size were centered on indi-

vidual nuclei and cropped from each z-projection to generate a set of 50-200 cropped images for each tagged 

protein. These images were randomly partitioned into a training set and a test set. After training the model on the 

images in the training set, the images in the test set were encoded, and the resulting latent-space vectors from the 

VQ2 layer of the network were flattened to obtain a localization encoding for each image in the test set as a 9216-

dimensional vector. The encodings of all images for each tagged protein were then averaged to obtain a single 

consensus encoding for each tagged protein. The matrix of consensus encodings for all OpenCell targets are 

available on Figshare at: 

https://figshare.com/articles/dataset/Consensus_protein_localization_encodings_for_all_OpenCell_tar-

gets/16754965 

 

 

Comparison of OpenCell and Human Protein Atlas (HPA) localization annotations. The v20 dataset of 

HPA localization annotations was first obtained from the HPA website (https://v20.proteinatlas.org/down-

load/subcellular_location.tsv.zip). To compare OpenCell localization annotations to HPA annotations, it was nec-

essary to reconcile the OpenCell and HPA localization categories as the ontologies used to annotate the two 

datasets vary slightly. To do so, a set of ‘consensus’ annotation categories were defined for the most common 

localization categories, as described in Table S7 (see sheet: “annotation-definitions”). 

Because wide-spread multi-localization of proteins complicates direct comparisons, we focused first on com-

paring the “main” localization annotations provided by each dataset. After mapping to these consensus categories, 

grade-2 and grade-3 OpenCell annotations were compared to their corresponding HPA ‘main location’ annota-

tions and categorized as either exact matches, partial matches, or entirely discrepant. Exact matches were targets 

whose sets of consensus annotations were identical in the OpenCell and HPA datasets; partial matches were 

targets with at least one of the same consensus annotations in the OpenCell and HPA datasets. The list of exact 

and partial matches, and the sets of consensus OpenCell and HPA annotations, are provided in Table S7.  

To refine the list of proteins that did not share any matching annotation across the datasets, minor localization 

annotations were considered (grade 1 in OpenCell, “additional” localization in HPA), as well localization between 

closely related organelles (for example, ER and Golgi), which could explain differences between the datasets as 

they probe localization in different cell lines. As a result, a final list of 147 proteins for which the two dataset 

were fully discrepant was obtained. The full analysis of proteins from that list using literature curation is presented 

in Table S8.  

 

Analysis of image localization encodings. The matrix of consensus localization encodings for all OpenCell 

targets was analyzed using the scanpy package(103). Briefly, the dimensionality of the consensus encodings was 

reduced using PCA and the first 200 PCs, which captured 96% of the variance, were retained for downstream 

analysis. The UMAP algorithm (53) was used to embed the encodings in two-dimensional space using 10 nearest 

neighbors, the Euclidean distance metric, and a minimum embedding distance of zero. The encodings were clus-

tered using the Leiden graph-based clustering algorithm(55) with a resolution parameter of 30 and the weighted 

https://figshare.com/articles/dataset/Consensus_protein_localization_encodings_for_all_OpenCell_targets/16754965
https://figshare.com/articles/dataset/Consensus_protein_localization_encodings_for_all_OpenCell_targets/16754965


adjacency matrix calculated by the UMAP algorithm (again with 10 nearest neighbors). Finally, the Pearson cor-

relation coefficient between the top 200 PCs of the localization encodings was used to quantify the localization 

similarity between OpenCell targets. 

 

Image-based clustering. OpenCell targets were clustered on the basis of their consensus encodings using 

the Leiden graph-based clustering algorithm (55) and the weighted adjacency matrix calculated by the UMAP 

algorithm with 10 nearest neighbors. The Leiden algorithm depends upon a single ‘resolution’ hyperparameter 

that determines the number of clusters. To quantify clustering performance as a function of this hyperparameter, 

the Adjusted Rand Index (88) was used to compare the Leiden clusters to ground-truth datasets. The ARI is near 

zero for random clustering and is equal to one when clustering perfectly matches the ground-truth labels. Three 

different ground-truth datasets were used that capture biological relationships at three different scales: manual 

OpenCell localization annotations (organelle scale), KEGG pathways (https://www.genome.jp/kegg/ (104)), and 

CORUM complexes (http://mips.helmholtz-muenchen.de/corum/ (30). OpenCell targets that were in more than 

one ground-truth cluster were excluded from this analysis, as the ARI is defined only for hard clustering (that is, 

sample-cluster assignments that are one-to-one). The ARI was calculated with respect to each of the ground-truth 

datasets at a range of values of the Leiden resolution hyperparameter; the global maxima in the resulting ARI 

curves correspond to the clustering resolutions that best capture the information in each ground-truth dataset. To 

control for the stochasticity of the Leiden algorithm, the ARI curve was calculated from the average of the curves 

for nine random seeds. 

 

Hierachical analysis of interactions and localization patterns.  

 

Hierarchical clustering of interactome and image-localization clusters. To explore the relationships be-

tween the 182 localization clusters or the 300 interactome communities, we employed the Paris algorithm, an 

agglomerative graph-based hierarchical clustering algorithm(105). The algorithm was initialized with a network 

of nodes representing the initial clusters (either the localization clusters or the interactome communities) and edge 

weights between the initial clusters were calculated according to the definition of the cluster pair sampling ratio 

used in the Paris algorithm.  

 

Gene Ontology enrichment analysis. To analyze enrichment of GO terms in a given hierarchical protein 

group, we utilized the PANTHER gene list analysis API (106) using Fisher exact test for significance testing. 

Enrichment of GO terms was tested against a reference set of either all OpenCell targets for the imaging dataset, 

or all proteins found in communities for the interactome dataset.  

 

 

OpenCell web portal development 

 

The OpenCell web portal is a full-stack web application. The frontend (that is, the web interface itself) is 

written with React, a modern JavaScript library for building modular user interfaces. The backend is a PostgreSQL 

database paired with a REST API written in Python using Flask and SQLAlchemy. Together, the database and 

API provide the metadata, protein interaction data, and the confocal image data required to populate the frontend. 

For efficiency, the 3D confocal stacks are transferred to the client as two-dimensional tiled arrays of confocal 

slices, saved as compressed JPEG images to enable fast download times. To maximize responsiveness, the web 

app makes API requests dynamically and asynchronously so that it loads, in parallel, only the data required to 

update the state of the app in response to a given user input. Both the backend and frontend are built using many 

open-source packages. In particular, the 3D rendering of confocal stacks relies on Three.js, the interactive scat-

terplots are built with d3.js, and the interaction networks are built with Cytoscape.js. The backend is built with 

SQLAlchemy and Flask and also leverages the Python data-science stack, including pandas, NumPy, SciPy, and 

scikit-image. All source code for the application is available on GitHub at github.com/czbiohub/opencell-portal-

pub 

 

https://github.com/czbiohub/opencell-portal-pub
https://github.com/czbiohub/opencell-portal-pub


 

Figure generation 

 

Data analysis was performed in Python. Figures were generated in Python using matplotlib or seaborn, with 

the exception of the protein-protein interactions / network visualizations, which were generated using Cytoscape. 

The code and data used to generate the figures can be found on GitHub at github.com/czbiohub/2021-opencell-

figures. 

 

 

Data and materials availability 

 

Mass spectrometry raw data and associated MaxQuant output tables are deposited to the ProteomeXchange 

Consortium via the PRIDEpartner repository (accession PXD024909 for interactome data, and accession 

PXD029191 for whole-cell abundance data). Bulk RNA-seq raw data and associated kallisto transcript abun-

dance tables are available on GEO (accession GSE186192). Raw microscopy images are hosted by AWS’s 

Open Datasets Program at https:// registry.opendata.aws/czb-opencell/.  
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Fig. S1: Experimental pipeline (related to Fig. 1). (A) IP-MS using FP capture. All mNG11 tagging constructs 

also include an HRV-3C cleavable linker for optional release from the capture resin. (B) Justifying the choice of 

tag insertion in engineered cell lines. To inform tag insertion sites, we used a combination of existing data from 

the literature suggesting preservation of properties, 3D structures of protein complexes from the PDB and se-

quence analysis to avoid important functional motifs. 4% of insertion sites were constrained by the topology of 

transmembrane protein targets (fusion to cytosolic termini), and for 23% of targets no prior data was available. 

See details in Table S1. (C) Sensitivity of interaction proteomics detection on a timsTOF instrument. The number 

of interactors detected in pull-downs from 6 different targets is shown, varying the amount of input material. To 

balance sensitivity and scalability, 0.8e6 cells were used for high-throughput assays (12 well-plate, wp). (D) Dis-

tribution of gene ontology annotations in the OpenCell library (successful targets) compared the whole proteome. 

Over- and under-represented terms are outlined. Because organellar organization and transport between orga-

nelles are foundational to human cellular architecture, proteins in these groups are slightly enriched in our library. 

Under-represented groups are mostly comprised of proteins in compartments that are not accessible to our tagging 

strategy (mitochondrial functions, extracellular matrix) or proteins that are typically present at low copy numbers 

and therefore difficult to detect at endogenous levels (transcription factors).  

 

  



  



Fig. S2: Cell line generation (related to Fig. 1). (A) Success rate for the generation and detection by imaging 

of fluorescently tagged cell lines are compared for the whole set of targets we attempted, and the subset of these 

that are essential genes. (B) Correlation of protein and RNA abundance in HEK293T cells (OpenCell). For com-

parison purposes, RNA and protein abundances in our dataset are compared to two external references: HEK293 

cell line RNASeq from the Human Protein Atlas, and the HeLa proteome published in (7). In both cases, our data 

correlates well with existing references. (C) Repeated from Fig. 1C. (D) Fluorescent detection success rates for 

proteins at different percentiles of abundance in the proteome. (E) To evaluate the influence of CRISPR editing 

efficiency on the ability to successfully select fluorescently tagged cells, we genotyped 432 cell lines from our 

library before FACS sorting (these lines were randomly selected). After FACS sorting (top 1% fluorescent cells, 

see Fig. S3A), all lines were imaged by fluorescence microscopy. Within this set, no fluorescence could be de-

tected in 99 lines (23% of total). For well-expressed proteins (top 50th percentile of abundance in the whole pro-

teome), un-successful detection is correlated with low rates of CRISPR-mediated homologous recombination 

before FACS selection. A low rate of homologous recombination likely prevents the successful selection of a 

fluorescent pool by FACS.  

 

  



  



Fig. S3: Cell library characterization and quality control (related to Fig. 1). (A) Optimization of sorting 

strategy. Polyclonal cell pools were sorted using gates of increasing fluorescence (left panel) and genotyped to 

quantify the enrichment for mNG11-inserted alleles (right panel, showing data for 6 different target genes). This 

informed our final sorting strategy in which the top 1% of fluorescent cells (gate I) were selected. (B) Genotype 

analysis of the polyclonal OpenCell library. A single allele is required for fluorescence, but our cell collection is 

enriched for homozygous insertions. In total, mNG11 insertions account for 61% (median) of alleles in a given 

cell pool across the full library (Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x 

interquartile range). The median values of mNG11 integrated alleles, wt alleles and other alleles are shown on the 

right. (C) Measurement of target protein abundance in final selected cell pools vs. parental cell line, by quantita-

tive Western blotting. (D) Measurement of target protein abundance in final selected cell pools vs. parental cell 

line, by single-shot mass spectrometry. In these experiments, tagged lines are measured in a single replicate and 

compared to 6 replicates of non-edited control cell lines. Outliers targets are defined by an abundance that deviates 

by more than 2.5 standard deviations and by more than 2-fold of their abundance in the controls. The 5 outlier 

lines are outlined. (E) Distribution of Pearson correlation values measuring the overall correlation of abundances 

for all cellular proteins in each tagged cell line vs. median control. (F) For the outliers outlined in (D), correlation 

of abundances for all cellular proteins in the tagged cell line vs. median control. The abundance correlations for 

two individual control repeats are shown for reference. (G) Examples of overexpression artifacts. Single z-slice 

confocal images are shown (scale bar: 10 µm). Endogenously tagged lines and their equivalent overexpression 

constructs were not imaged using the same laser power, so that signal intensities are not directly comparable. 

Nuclei are shown as blue outlines (nuclei can be located in a different z-plane than the one shown). “Masking 

effects” are defined as the loss of fine localization details upon overexpression.  

 

  



  



Fig. S4: Interactome analysis (related to Fig. 2). (A) Strategy for defining enrichment threshold to define in-

teractions. Our strategy builds upon methods described by Hein et al (7). Here we use a quantitative approach to 

define enrichment thresholds dynamically for each replicate set, globally constrained by the parameter athreshold. 

(B) To optimize parameter choice, we measured how precision (% co-localization) and recall (% CORUM cov-

erage) of the corresponding interaction network varied with athreshold. This informed a final value of 0.12. (C) 

Comparing interaction recall (% CORUM coverage) of OpenCell vs. other large-scale interactomes, including 

direct or 2nd-neighbor interactions (i.e., sharing a direct interactor in common). (D) Comparing interaction preci-

sion (% co-localization) of OpenCell vs. other large-scale interactomes. CORUM interactions are shown as a 

reference. (E) Direct comparison of OpenCell vs. Bioplex 3.0 on identical bait set. Both datasets use the same 

HEK293T cell line and share a large number (683) of baits in common. Precision and recall analysis by varying 

threshold for interaction detection (athreshold in OpenCell and pInt in Bioplex) is shown for the intersection set of 

683 baits (dots represent values using thresholds used for final publication sets in both studies). For these set of 

overlapping baits, OpenCell also includes many new measured interactions for that intersection set of baits (right 

panel, top). The interactions unique to OpenCell have high precision values (right panel, bottom). (F) Compress-

ibility analysis (32) of OpenCell vs. other large-scale interactomes. (G) Number of interactions measured in 

OpenCell (in the full dataset) that were also measured in Hein et al. (7) or BioPlex 3.0. (H) Distribution of GO 

annotation overlap between protein pairs identified in low-stoichiometry and high-stoichiometry interactions. (I) 

MCL clustering performance (F1 score) using stoichiometry-weighted or unweighted interaction graphs, derived 

from CORUM interactions as described in Drew et al (90).  

 

  



  



Fig. S5: Sequence analysis of orphan proteins (related to Fig. 2). (A) Amino-acid sequence alignment between 

human NHSL1, NSHL2, KIAA1522 and NHS. (B) Correspondence of RAVE complex members in S. cerevisiae, 

D. melanogaster and H. sapiens. Note that in S. cerevisiae RAVE also includes Skp1, not depicted here.  

 

  



  



Fig. S6: Computer vision for automated microscopy acquisition (related to Fig. 3). (A) To automate micros-

copy acquisition on 96-well plates and to limit experimental variability between imaging sessions (e.g., to limit 

variations in cell density) we paired an acquisition script, written in Python, with a pre-trained machine learning 

model to select field of views (FOVs) on-the-fly during the acquisition. A total of 25 FOVs are sampled per well 

in a single z-plane, and desirable FOVs are selected for further 3D confocal acquisition on the basis of a score 

predicted by the pre-trained model. (B) Microscopy automation workflow. Microscope hardware is controlled by 

a Python-based acquisition script via an open-source MicroManager-Python bridge (mm2python; 

https://github.com/czbiohub/mm2python). This approach enables us to combine custom acquisition logic with the 

rich ecosystem of Python-based machine-learning packages. Here, we use the scikit-image package to extract 

features from each FOV snapshot, then use a pre-trained random-forest regression model (scikit-learn) to predict 

a quality score for the FOV. This process is not computationally expensive and requires less than a second; the 

FOV score can therefore be used immediately to determine whether the script should acquire a z-stack or else 

move on to the next position. To maximize the quality of our confocal z-stacks, however, we chose to visit and 

score all 25 FOVs in each well, then re-visit the top-scoring FOVs for confocal z-stack acquisition. 

 

  

https://github.com/czbiohub/mm2python


  



Fig. S7: The OpenCell image dataset (related to Fig. 3). (A) Principle of graded localization annotation (manual 

annotations). (B) Fraction of multi-localization between cellular compartments. Complete localization annota-

tions can be found in Table S6. (C) Comparison of annotated localization for proteins in OpenCell and Human 

Protein Atlas (HPA, version v20) datasets for which annotations are inconsistent. (D) Extensive literature curation 

allows to resolve 77% of OpenCell/HPA discrepancies (full details in Table S8). Here “direct evidence” refers to 

proteins for which localization has been directly measured in published studies, while “functional evidence” refers 

to proteins for which localization might not have been directly measured, but for which literature establishes a 

function that is predictive of a specific localization. For example, SCFD1 is a protein whose main known function 

is to regulate transport between ER and Golgi. This qualifies as “functional evidence”. It is annotated as localized 

in the ER and Golgi in OpenCell, and in the nucleoplasm (main) and cytosol (additional) in HPA. (E) Comparison 

of annotated localization for 350 orthologous proteins in OpenCell and S. cerevisiae yeast (from LoQaTe (47)). 

Note that in yeast Golgi and vesicles are difficult to distinguish. 

 

  



  



Fig. S8: high-resolution image clusters (related to Fig. 4C). (A) Size of clusters C (number of proteins in each 

cluster) as a function of clustering resolution. Shaded regions show standard deviations calculated from 9 separate 

repeat rounds of clustering, and average values are shown as a solid line. (B), (C) Examples of clusters of cyto-

plasmic (B) and nuclear (C) proteins.  

 

  



  



Fig. S9: Full hierarchical structure of interactome and localization datasets (related to Fig. 5). Dendrograms 

represent the hierarchical relationships connecting (A) the full set of protein communities identified in the in-

teractome (see Fig. 2) or (B) the full set of high-resolution clusters identified in the image collection (see Fig. 

4C). For each dataset, an intermediate layer of hierarchy separates 18-19 modules, while an upper hierarchical 

layer delineates three separate branches. Modules and branches are annotated on the basis of gene ontology en-

richment analysis (see Suppl. Tables 5 & 9). Right-hand panels present the topological arrangement of branches 

(top) and modules (bottoms) in each dataset, highlighted from the full graph of connections between interaction 

communities (“interactome”, see Fig. 2D) or from the localization UMAP (“localization”, see Fig. 4C). The color 

codes between interactome and localization datasets are not directly comparable (i.e. same colors are not meant 

to represent the same exact set of proteins). (C) The hierarchical structures derived from interactome (left) and 

localization (right) datasets are compared to the hierarchical structures derived from “scrambled” controls – that 

is, to the hierarchical structure that is expected by chance given the proteins present in our dataset. Controls are 

generated by randomly shuffling the membership of each protein between spatial clusters or interaction commu-

nities. The number of proteins in each cluster or community was preserved from the original data.  

 

  



  



Fig. S10: Biophysical & ontology analysis of the main branches from interactome and localization hierar-

chies (related to Fig.s 5 and S9). (A) The three branches derived from the image-based hierarchy (see Fig. S9A). 

(B) Enrichment analysis of GO annotations in the hierarchical branches, testing GO term enrichment of proteins 

in each branch against all proteins in the interactome (Fisher’s exact test, showing annotations enriched at p < 10-

10 and excluding near-synonymous annotations). (C) The three branches derived from the interactome hierarchy 

(see Fig. S9B). (D), (E) Enrichment analysis of GO annotations in the hierarchical branches, testing GO term 

enrichment of proteins in each branch against all proteins in the interactome (Fisher’s exact test, showing anno-

tations enriched at p < 10-10 and excluding near-synonymous annotations). (F) Heat-map representing significance 

testing of biophysical properties of protein sequences in the 3 branches. P-values were obtained using Student’s 

t-test comparing proteins belonging to a specific hierarchical branch against all proteins in the three branches. (G) 

Box plots representing the significance testing of biophysical properties described in (F). Boxes represent 25th, 

50th, and 75th percentiles, and whiskers represent 1.5x inter-quartile ranges. Median is represented by a white 

line. ** p < 10-3 (Student’s t-test), exact p-values are shown.  

 

  



  



Fig. S11: Unique properties of RNA-binding proteins (RNA-BPs, related to Fig. 5). (A) Distribution of dis-

order score (IUPRED2) for RNA-BPs vs. non-RNA-BPs across the whole proteome. (B) Distribution of protein 

abundance for RNA-BPs vs non-RNA-BPs across the whole proteome (left) and across OpenCell targets only 

(right). (C) Distribution of number of interactors for RNA-BPs vs non-RNA-BPs across OpenCell targets. (D) 

For each OpenCell target, the number of interactors is plotted as a function of protein abundance. The subset of 

targets that are RNA-BPs is highlighted on the right-hand panel. Note: for boxplots in (A), (B), (C) and (D), boxes 

represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile range. Median is represented 

by a white line. (E) Distribution of hydrophobicity score (gravy) across spatial clusters, comparing our data to a 

control in which the membership of proteins across clusters was randomized 1,000 times. Lines indicate parts of 

the distribution over-represented in our data vs control (**: p < 2x10-3, Fisher’s exact t-test). (F) Distribution of 

high-hydrophobicity spatial clusters (average hydrophobicity score > -0.1) in the UMAP embedding from Fig. 

3D (left), and ontology enrichment analysis of proteins contained in these clusters (right). Enrichment compares 

to the whole set of OpenCell targets (p-value: Fisher’s exact test). 

 

  



  



Fig. S12: Interactive data exploration at opencell.czbiohub.org. (A) The three principal pages of the OpenCell 

web app. From left to right: the target page, interactor page, and gallery page. (B) The target page consists of 

three columns. The leftmost column contains the functional annotation for the target from UniProt, links to other 

databases, our manually-assigned localization annotations, and measures of protein expression. The middle col-

umn contains the image viewer, and the rightmost column the interaction network. (C) The image viewer allows 

the user to scroll through the confocal z-slices using a slider or to visualize the z-stack in 3D as a volume render-

ing. In either mode, the user can pan and zoom by clicking, dragging, and scrolling. (D) The interaction network 

can be toggled with two alternative, complementary visualizations of the target’s protein interactions: a volcano 

plot of relative enrichment vs. p-value and a scatterplot of interaction stoichiometry vs. cellular abundance stoi-

chiometry. In both the network view and the scatterplots, the user can click on an interactor to open the target or 

the interactor page for the corresponding protein.  
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