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Figure S1: experimental pipeline (related to Figure 1). (A) IP/MS using FP capture. All mNG11 tagging constructs
also include an HRV-3C cleavable linker for optional release from the capture resin. (B) Justifying the choice of tag
insertion in engineered cell lines. To inform tag insertion sites, we used a combination of existing data from the literature
suggesting preservation of properties, 3D structures of protein complexes from the PDB and sequence analysis to
avoid important functional motifs. 4% of insertion sites were constrained by the topology of transmembrane protein
targets (fusion to cytosolic termini), and for 23% of targets no prior data was available. See details in Suppl. Table 1.
(C) Sensitivity of interaction proteomics detection on a timsTOF instrument. The number of interactors detected in
pull-downs from 6 different targets is shown, varying the amount of input material. To balance sensitivity and scalability,
0.8e6 cells were used for high-throughput assays (12 well-plate, wp). (D) Distribution of gene ontology annotations in
the OpenCell library (successful targets only) compared the whole proteome. Over- and under-represented terms are
outlined. Because organellar organization and transport between organelles are foundational to human cellular archi-
tecture, proteins in these groups are slightly enriched in our library. Under-represented groups are mostly comprised of
proteins in compartments that are not accessible to our tagging strategy (mitochondrial functions, extracellular matrix)
or proteins that are typically present at low copy numbers and therefore difficult to detect at endogenous levels (tran-
scription factors).
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Figure S2: cell line generation (related to Figure 1).
(A) Success rate for the generation and detection of
fluorescently tagged cell lines are compared for the whole
set of targets we attempted, and the subset of these that
are essential genes. (B) Correlation of protein and RNA
abundance in HEK293T cells (OpenCell). For comparison
purposes, RNA and protein abundances in our dataset
are compared to two external references: HEK293 cell
line RNASeq from the Human Protein Atlas, and the HeLa
proteome published in (7). In both cases, our data
correlates well with existing references. (C) Repeated
from Figure 1C. (D) Fluorescent detection success rates
for proteins at different percentiles of abundance in the
proteome. (E) For well-expressed proteins (top 50th
percentile of abundance), successful detection is
correlated with high rates of CRSIPR-mediated homolo-
gous recombination.
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Figure S3: cell library characterization and quality control (related to Figure 1). (A) Optimization of sorting strate-
gy. Polyclonal cell pools were sorted using gates of increasing fluorescence (left panel) and genotyped to quantify the
enrichment for mMNG11-inserted alleles (right panel, showing data for 6 different target genes). This informed our final
sorting strategy in which the top 1% of fluorescent cells (gate I) were selected. (B) Genotype analysis of the polyclonal
OpenCell library. A single allele is required for fluorescence, but our cell collection is enriched for homozygous inser-
tions. In total, mMNG11 insertions account for 61% (median) of alleles in a given cell pool across the full library (Boxes
represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile range). The median values of
mNG11 integrated alleles, wt alleles and other alleles are shown on the right. (C) Measurement of target protein abun-
dance in final selected cell pools vs. parental cell line, by quantitative Western blotting. (D) Measurement of target
protein abundance in final selected cell pools vs. parental cell line, by single-shot mass spectrometry. In these experi-
ments, tagged lines are measured in a single replicate and compared to 6 replicates of non-edited control cell lines.
Ouitliers targets are defined by an abundance that deviates by more than 2.5 standard deviations and by more than
2-fold of their abundance in the controls. The 5 outlier lines are outlined. (E) Distribution of Pearson correlation values
measuring the overall correlation of abundances for all cellular proteins in each tagged cell line vs. median control. (F)
For the outliers outlined in (D), correlation of abundances for all cellular proteins in the tagged cell line vs. median
control. The abundance correlations for two individual control repeats are shown for reference. (G) Examples of over-
expression artifacts. Single z-slice confocal images are shown (scale bar: 10 ym). Endogenously tagged lines and their
equivalent overexpression constructs were not imaged using the same laser power, so that signal intensities are not
directly comparable. Nuclei are shown as blue outlines (nuclei can be located in a different z-plane than the one
shown). “Masking effects” are defined as the loss of fine localization details upon overexpression.

Figure S3 (legend)
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Figure S4: interactome analysis (related to Figure 2). (A) Strategy for defining enrichment thresh-
old to define interactions. Our strategy builds upon methods described by Hein et al (7). Here we use
a quantitative approach to define enrichment thresholds dynamically for each replicate set, globally
constrained by the parameter o, . . (B) To optimize parameter choice, we measured how precision
(% co-localization) and recall (% CORUM coverage) of the corresponding interaction network varied
with o, . This informed a final value of 0.12. (C) Comparing interaction recall (% CORUM cover-
age) of OpenCell vs. other large-scale interactomes, including direct or 2nd-neighbor interactions (i.e.,
sharing a direct interactor in common). (D) Comparing interaction precision (% co-localization) of
OpenCell vs. other large-scale interactomes. CORUM interactions are shown as a reference. (E)
Direct comparison of OpenCell vs. Bioplex 3.0 on identical bait set. Both datasets use the same HEK-
293T cell line and share a large number (683) of baits in common. Precision and recall analysis by
varying threshold for interaction detection (o, . .. in OpenCell and pint in Bioplex) is shown for the
intersection set of 683 baits (dots represent values using thresholds used for final publication sets in
both studies). For these set of overlapping baits, OpenCell also includes many new measured interac-
tions for that intersection set of baits (right panel, top). Interestingly, the interactions unique to Open-
Cell have high precision values (right panel, bottom). (F) Compressibility analysis (31) of OpenCell vs.
other large-scale interactomes. (G) Number of interactions measured in OpenCell (in the full dataset)
that were also measured in Hein et al. (7) or BioPlex 3.0. (H) Distribution of GO annotation overlap
between protein pairs identified in low-stoichiometry and high-stoichiometry interactions. (I) MCL clus-
tering performance (F1 score) using stoichiometry-weighted or unweighted interaction graphs, derived
from CORUM interactions as described in Drew et al (89).

Figure S4 (legend)
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Figure S5: sequence analysis of orphan proteins (related
to Figure 2). (A) Amino-acid sequence alignment between
human NHSL1, NSHL2, KIAA1522 and NHS. (B) Correspon-
dence of RAVE complex members in S. cerevisiae, D. melano-
gaster and H. sapiens. Note that in S. cerevisiae RAVE also
includes Skp1, not depicted here.
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Figure S6: computer vision for automated microscopy acquisition (related to Figure 3). (A) To automate micros-
copy acquisition on 96-well plates and to limit experimental variability between imaging sessions (e.g., to limit variations
in cell density) we paired an acquisition script, written in Python, with a pre-trained machine learning model to select
field of views (FOVs) on-the-fly during the acquisition. A total of 25 FOVs are sampled per well in a single z-plane, and
desirable FOVs are selected for further 3D confocal acquisition on the basis of a score predicted by the pre-trained
model. (B) Microscopy automation workflow. Microscope hardware is controlled by a Python-based acquisition script
via an open-source MicroManager-Python bridge (mm2python; https://github.com/czbiohub/mm2python). This
approach enables us to combine custom acquisition logic with the rich ecosystem of Python-based machine-learning
packages. Here, we use the scikit-image package to extract features from each FOV snapshot, then use a pre-trained
random-forest regression model (scikit-learn) to predict a quality score for the FOV. This process is not computationally
expensive and requires less than a second; the FOV score can therefore be used immediately to determine whether
the script should acquire a z-stack or else move on to the next position. To maximize the quality of our confocal
z-stacks, however, we chose to visit and score all 25 FOVs in each well, then re-visit the top-scoring FOVs for confocal
z-stack acquisition.
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Figure S7: the OpenCell image dataset (related to
Figure 3). (A) Principle of graded localization annotation
(manual annotations). (B) Fraction of multi-localization
between cellular compartments. Complete localization
annotations can be found in Suppl. Table 6. (C) Compari-
son of annotated localization for proteins in OpenCell and
Human Protein Atlas (HPA, version v20) datasets for which
annotations are inconsistent. (D) Extensive literature cura-
tion allows to resolve 77% of OpenCell/HPA discrepancies
(full details in Suppl. Table 8). Here “direct evidence” refers
to proteins for which localization has been directly mea-
sured in published studies, while “functional evidence”
refers to proteins for which localization might not have been
directly measured, but for which literature establishes a
function that is predictive of a specific localization. For
example, SCFD1 is a protein whose main known function is
to regulate transport between ER and Golgi. This qualifies
as “functional evidence”. It is annotated as localized in the
ER and Golgi in OpenCell, and in the nucleoplasm (main)
and cytosol (additional) in HPA. (E) Comparison of annotat-
ed localization for 350 orthologous proteins in OpenCell
and S. cerevisiae yeast (from LoQate (46)). Note that in
yeast Golgi and vesicles are difficult to distinguish.
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Figure S9: full hierarchical structure of interactome and localization datasets (related
to Figure 5). Dendrograms represent the hierarchical relationships connecting (A) the full set
of protein communities identified in the interactome (see Fig. 2) or (B) the full set of high-reso-
lution clusters identified in the image collection (see Fig. 4C). For each dataset, an intermedi-
ate layer of hierarchy separates 18-19 modules, while an upper hierarchical layer delineates
three separate branches. Modules and branches are annotated on the basis of gene ontology
enrichment analysis (see Suppl. Tables 5 & 9). Right-hand panels present the topological
arrangement of branches (top) and modules (bottoms) in each dataset, highlighted from the
full graph of connections between interaction communities (“interactome”, see Fig. 2D) or
from the localization UMAP (“localization”, see Fig. 4C). The color codes between interactome
and localization datasets are not directly comparable (i.e. same colors are not meant to
represent the same exact set of proteins). (C) The hierarchical structures derived from
interactome (left) and localization (right) datasets are compared to the hierarchical structures
derived from “scrambled” controls — that is, to the hierarchical structure that is expected by
chance given the proteins present in our dataset. Controls are generated by randomly
shuffling the membership of each protein between spatial clusters or interaction communities.
The number of proteins in each cluster or community was preserved from the original data.
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Figure S10: biophysical & ontology analysis of the main branches from interactome and localization hierarchies
(related to Figures 5 and S9). (A) The three branches derived from the image-based hierarchy (see Figure S9A). (B)
Enrichment analysis of GO annotations in the hierarchical branches, testing GO term enrichment of proteins in each
branch against all proteins in the interactome (Fisher’s exact test, showing annotations enriched at p < 10'° and excluding
near-synonymous annotations). (C) The three branches derived from the interactome hierarchy (see Figure S9B). (D), (E)
Enrichment analysis of GO annotations in the hierarchical branches, testing GO term enrichment of proteins in each
branch against all proteins in the interactome (Fisher’s exact test, showing annotations enriched at p < 10-'° and excluding
near-synonymous annotations). (F) Heat-map representing significance testing of biophysical properties of protein
sequences in the 3 branches. P-values were obtained using Student’s t-test comparing proteins belonging to a specific
hierarchical branch against all proteins in the three branches. (G) Box plots representing the significance testing of
biophysical properties described in (F). Boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x
inter-quartile ranges. Median is represented by a white line. ** p < 10 (Student’s t-test), exact p-values are shown.

Figure S10
Fig.p. 19



1.0

A N B s 5, g C 5 30,
0.8 8 41 5? 4] §: 2.5
o > 34 =
S 06 i E3 5 20|
@ © 2 ® <]
3 g 4 8 ) & 1.5
i I o5 .
g 04 g < g 10|
2 3 0+ 3, o
5 | 4
0.2 g 14 a% % 0.5
o) ©
oo i g2l gol g 001
. s S ' ' €
T g & T &L & &
S ¥ ¥ N J¥ N ¥
¥ ¥ S & S S &
S & & & S
S < < <
<&
(across whole proteome) (whole proteome) (OpenCell targets) (OpenCell targets)
D = 30 3.0 1
8 all OpenCell RNA-BPs N
= L)
£ 2.5 2.5 1 only . .h}. '.‘-.- .
“6 (1]
& 2.0 2.0 “l o. C,:.:! °
L]
PR
S 1.01 # 1.0 1 %, el N W
g o RaNGT e
2 051 oo 0.5 t e ‘e e
"‘6 > - e L L] aams e® o L]
g (none)y ol @i . ® (none) can wemw o
< 0 1.0 2.0 3.0 4.0 0 1.0 2.0 3.0 4.0
protein abundance (nM, log, ) protein abundance (nM, log, )
E F nucleus S
it $ (
|
0.25 | ; : j
i |
| |
0.20 | ! l !
> spatial clusters ! | |
= iched in hydrophobici !
% 0.15 4 enriched in hydrophobicity ‘ : :
Qo | ek
[< ‘ |
20.10 1 *x *% | P &g &0
0.05 - | 2
|
0.00 L—=1 ; ‘ ‘ ‘ Dt
-1.5 -1.0 -0.5 0.0 0.5 | L »
. membrane ! o5
average hydrophobicity score organelles \\ 4

in each spatial cluster

cytoplasm

plasma membrane
membrane
endoplasmic reticulum membrane

GO enrichment: cellular compartment

nucleus

-15 -10 -
dis-enriched

10 15

5
enriched

GO enrichment: molecular function

transmembrane transporter activity
ion transmembrane transport

RNA binding
nucleic acid binding

8 6
dis-enriched

4 2 0 2

4 6 8 -logP
enriched

-log P

Figure S11: unique properties of RNA-binding proteins (RNA-BPs, related to Figure 5). (A) Distribution of disorder score
(IUPRED2) for RNA-BPs vs. non-RNA-BPs across the whole proteome. (B) Distribution of protein abundance for RNA-BPs vs
non-RNA-BPs across the whole proteome (left) and across OpenCell targets only (right). (C) Distribution of number of interac-
tors for RNA-BPs vs non-RNA-BPs across OpenCell targets. (D) For each OpenCell target, the number of interactors is plotted
as a function of protein abundance. The subset of targets that are RNA-BPs is highlighted on the right-hand panel. Note: for
boxplots in (A), (B), (C) and (D), boxes represent 25th, 50th, and 75th percentiles, and whiskers represent 1.5x interquartile
range. Median is represented by a white line. (E) Distribution of hydrophobicity score (gravy) across spatial clusters, comparing
our data to a control in which the membership of proteins across clusters was randomized 1,000 times. Lines indicate parts of
the distribution over-represented in our data vs control (**: p < 2x1073, Fisher’s exact t-test). (F) Distribution of high-hydropho-
bicity spatial clusters (average hydrophobicity score > -0.1) in the UMAP embedding from Fig. 3D (left), and ontology enrich-
ment analysis of proteins contained in these clusters (right). Enrichment compares to the whole set of OpenCell targets (p-val-
ue: Fisher’s exact test).
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Figure S12: interactive data exploration at opencell.czbiohub.org. (A) The three principal pages of the OpenCell web app.
From left to right: the target page, interactor page, and gallery page. (B) The target page consists of three columns. The
leftmost column contains the functional annotation for the target from UniProt, links to other databases, our manually-as-
signed localization annotations, and measures of protein expression. The middle column contains the image viewer, and the
rightmost column the interaction network. (C) The image viewer allows the user to scroll through the confocal z-slices using
a slider or to visualize the z-stack in 3D as a volume rendering; in either mode, the user can pan and zoom by clicking, drag-
ging, and scrolling. (D) The interaction network can be toggled with two alternative, complementary visualizations of the
target’s protein interactions: a volcano plot of relative enrichment vs. p-value and a scatterplot of interaction stoichiometry
vs. abundance stoichiometry. In both the network view and the scatterplots, the user can click on an interactor to open the
target or the interactor page for the corresponding protein.
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