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Supplementary Figure 1: Effect of microgrooves on focal adhesion morphology. Immunostaining 

for VE-cadherin and paxillin in a HUVEC monolayer on a flat surface or on 5 x 5 x 5 µm (w x s x d) 

grooves. Yellow arrowheads point to the localization of focal adhesions (FAs) along the ridge edges. 

Scale bar 50 µm. FA morphology was analyzed using a custom-made FIJI macro that segments FAs 

using different steps of filtering and thresholding. Circularity is defined as the FA minor-to-major axis 

ratio. Unpaired t-test, n=3 independent experiments (**** p<0.0001, ** p<0.007), and error bars 

represent standard deviations. Source data are provided as a Source Data file. 

 

Supplementary Figure 2: Establishment of the stream pattern on microgroove substrates. a, Time-

averaged x-direction velocity fields on flat surfaces and on 5 x 5 x 5 µm (w x s x d) grooves. b, 

Quantification of the time correlation length: the Pearson correlation coefficient is calculated for pairs 

of frames increasingly distant in time. Error bars represent SEM, n=3 independent experiments. Source 

data are provided as a Source Data file. 
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Supplementary Figure 3: Influence of groove width on the spatial features of the streams. a, 

Accumulated cell trajectories after 24 h of migration for flat control substrates and for microgroove 

substrates of different dimensions: w=s=2 µm d=1 µm (2-2d1), w=s=5 µm d=1 µm (5-5d1), w=s=3 µm 

d=3 µm (3-3d3), w=s=4 µm d=5 µm (4-4d5), w=s=5 µm d=5 µm (5-5d5). Trajectories are color-coded 

for the orientation angle of each displacement vector. b, Quantification of the spatial features of the 

streams with the same method as explained in the main text. One-way ANOVA, Dunn’s/Fisher’s post-

test, n=3 independent experiments. Source data are provided as a Source Data file. 
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Supplementary Figure 4: Emergence of cell streams with increasing cell density. a, Accumulated 

cell trajectories after 24 h of migration for individual cells, low-density monolayer, and high-density 

monolayer on grooves of width, spacing, and depth of 5 µm. Trajectories are color-coded for the 

orientation angle of each displacement vector, and vertical bars represent the projected trajectories on 

the y-axis. b, Time-averaged x-direction velocity field for monolayers of different densities and 

immunostaining for VE-cadherin showing the morphology of cell-cell junctions for the approximate 

same cell density. Scale bar, 30 µm. The fields of view (FOVs) correspond to movie3. The graph shows 

for these 3 FOVs the time evolution of the correlation between the Vx field at time t and at t+1 and 

illustrates the dynamic evolution of the collective pattern of motion. c, Immunostaining for VE-cadherin 

and DAPI on HUVEC monolayers after 48 h of culture on flat surfaces for control, 2 mM EDTA, or 5 

mM EDTA treatment (24 h).  Source data are provided as a Source Data file. 
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Supplementary Figure 5: Focal adhesion area within the monolayer. Immunostaining for VE-

cadherin and paxillin in a HUVEC monolayer on a flat surface or on 5 x 5 x 5 µm (w x s x d) grooves. 

Scale bar 50 µm. The mean FA area within one cell was compared to the mean area of FAs in its 

neighbors. N = 10 cells, error bars represent standard deviations. Source data are provided as a Source 

Data file. 
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Supplementary Figure 6: Cell-cell junction morphology and cell shape within the monolayer. a, 

(i) HUVEC monolayer on 5 x 5 x 5 µm (w x s x d) grooves immunostained for β-catenin to enable cell-

cell junction morphology analysis. Previous studies have described mature linear junctions vs. “zipper-

like” or “finger-like” junctions that are under tension and that are typically present between leader and 

follower cells1–3. (ii) Left: linearity of junctions in the direction of the grooves/streams (“Par streams”) 

or perpendicular to the grooves/streams (“Perp streams”), quantified by the ratio of length of line 

connecting junction-end points to the actual length of junction. Junctions are linear junctions in the 

groove/stream direction and zipper-like perpendicular to the grooves/streams, confirming the general 

direction of traction in the monolayer. N=3 fields of view, error bars represent standard deviations. 

Right: linearity values of zipper-like junctions perpendicular to grooves (see insets, scale bars 10 µm) 

are similar across the monolayer, suggesting minimal heterogeneity in traction forces among cells. b, (i) 

Cell shape in fixed monolayers analyzed using a custom-made Matlab code that automatically calculates 

cell shape parameters from cell outlines segmented from cell-cell junction staining. Note that although 

cells within the monolayer exhibit different levels of elongation, as quantified by the cell circularity 

(minor-to-major axis ratio), no clustering of elongation is present. This is unlike leader-follower systems 

where actively pulling leader cells are typically more elongated than follower cells4. (ii) Shape of a 

single cells at different times extracted from recordings of GFP VE-cadherin HUVECs (gift from Dr. 

Laurent Muller, Collège de France, Paris, France) on 5 x 5 x 5 µm (w x s x d) grooves. Single cells can, 

in the span of hours, explore the entire range of instantaneous cell elongations found within the 

monolayer, suggesting rapidly evolving patterns of cellular forces. Source data are provided as a Source 

Data file. 
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Supplementary Figure 7: Analysis of the monolayer at the border between grooves and flat 

surface. a, Accumulated cell trajectories after 24 h of migration at the border between 5 x 5 x 5 µm (w 

x s x d) grooves and flat surface, color-coded for the orientation of each displacement vector. b, Cell 

orientation angle at the border between 5 x 5 x 5 µm (w x s x d) grooves and flat surface. Cells in fixed 

monolayers were analyzed using a custom-made Matlab code that automatically calculates cell shape 

parameters from cell outlines segmented from cell-cell junction staining. c, Actin organization at the 

border between 5 x 5 x 5 µm (w x s x d) grooves and flat surface, color-coded for the orientation of actin 

bundles (using Orientation J plugin, FIJI). Insets (white rectangles) show actin organization in cells that 

are positioned partly on grooves and partly on flat surface. Scale bars 100 µm, 25 µm for insets. 
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Supplementary Figure 8: Influence of substrate coating on stream formation. a, Confocal 3D 

reconstruction and cross-section of fluorescent fibrinogen showing homogeneity of fibronectin coating 

on 5 x 5 x 5 µm (w x s x d) grooves. Scale bar 5 µm. b, Accumulated cell trajectories after 24 h of 

HUVEC migration on 5 x 5 x 5 µm (w x s x d) grooves coated with cross-linked gelatin, color-coded 

for the orientation angle of each displacement vector. 

Supplementary Figure 9: Influence of time in culture on cell-cell junctions and stream formation. 

a, Immunostaining for the cell-cell junction proteins ZO1 and β-catenin in HUVECs after 24 h of culture 

on 5 µm- or 1 µm-deep grooves. Zoom-ins are shown in insets (white rectangles). Scale bars 100 µm, 

50 µm for insets. b, Accumulated cell trajectories of HUVECs on 5 µm- or 1 µm-deep grooves recorded 

after 48 h of culture, color-coded for the orientation angle of each displacement vector. 
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Supplementary note: Theoretical modeling 

 

We explain the emergence of endothelial cell streams by an active fluid model inspired by 

that proposed by Duclos et al.5. Duclos et al. applied the model of Voituriez et al.6 based on 

active gel theory7 to describe spontaneous flows in confined cell sheets. They explained the 

emergence of global directional motion of otherwise non-migrating cells in a confined stripe 

with cells advancing in opposite directions at the two ends of the stripe. To account for the 

specificities of our experiment, the model differs from that of Duclos et al. in  that an 

additional term in the free energy equation is added to account for the tendency of cells to 

orient along the ridges.  

Active fluid equations. We consider a 2D coordinate system (x,y) with the x-direction aligned 

with the ridges and the y-direction perpendicular to them. Endothelial cells are treated as 

active nematic particles whose orientation is characterized by the unit director field p = (cos θ, 

sin θ), with θ being the angle between the cell orientation and the ridges. Because endothelial 

cells are able to change their direction of motion without rotating the cell body, we model 

them as nematic particles, a hypothesis also made by Duclos et al.5. Moreover, our 

experiments show that endothelial cells on microgrooves typically change direction of 

migration over a time scale on the order of 1-2 hours, whereas the establishment of the 

streams occurs over times of about one day. This separation of time scales further supports 

using the nematic cell description for the purpose of describing stream formation. Actomyosin 

cell activity induces a contractile (or extensile) force dipole acting on each cell. The force per 

unit length of the cell is given by ζΔμ, where Δμ is the free energy produced by nutrient 

consumption and ζ is the reactive coefficient as defined in active gel theory7, whose sign 

indicates whether active forces are contractile (ζ <0) or extensile (ζ >0). Note that the term 

ζΔμ is a force dipole. Therefore, the associated net force acting on a single cell is zero, and 
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this term does not lead to single cell locomotion. It is indeed notable that single cell 

locomotion is not a necessary ingredient for the formation of the streams described here.  

Effective free energy. The effective free energy of the director field in two dimensions is 

given by 

 
ℱ = ∫ (

𝐾1

2
(∇ ∙ 𝒑)2 +

𝐾3

2
(∇ × 𝒑)2 +

𝛼

2
𝑝𝑦

2) . 
(1) 

The first two terms are the classic formulation of the effective free energy in active gels, 

where K1 and K3 are the splay and bend Frank constants, respectively. As in Duclos et al.5, we 

assume K1= K3= K. The third term is a new term that we introduce to penalize cell orientation 

across the ridges. The coefficient α is a measure of the tendency of the cells to align with the 

ridges that is expected to depend on the ridge height. By using the Einstein relation between 

diffusion and active thermal agitation, this coefficient can be estimated as 𝛼 ≈ 𝜉x𝐷t/𝜎𝜃
2, 

where 𝜉x is the substrate friction coefficient, 𝐷t the translational diffusion, and 𝜎𝜃 the standard 

deviation of cell orientation angles. We have measured for our cells 𝐷t ≈ 10 μm2/min, which 

leads us to estimate 𝛼 to be in the range 10-3–10-2 J/m2, depending on the value of 𝜎𝜃 which is 

determined by the groove geometry. Importantly, the estimate of 𝛼, which is determined by 

groove geometry, is insensitive to cell density, as we obtain similar estimates in experiments 

with densities ranging from isolated to confluent cells (Supplementary Table 1). This 

validates our application of the Einstein relation to an out-of-equilibrium system, as it has 

been shown that such application to active matter may remain formally valid in the dilute 

regime8.   

Supplementary Table 1: Mean standard deviations of cell displacement orientation angles (degrees) 

for different groove dimensions and cell densities. 

 Grooves 5x5x1 µm Grooves 5x5x5 µm 

Monolayer 38.1 32.2 

Individual cells 38.3 30.9 



11 
 

 

 

Constitutive relations. The linearized constitutive relations for an active nematic fluid in two 

dimensions relate the stress σ to the cell orientation p as well as the variations in cell 

orientation to the shear stress. They are: 

 
𝜎𝛼𝛽 = 2𝜂𝑢𝛼𝛽 − 𝜁Δ𝜇 𝑝𝛼𝑝𝛽 +

𝜈

2
(𝑝𝛼ℎ𝛽 + 𝑝𝛽ℎ𝛼) +

1

2
(𝑝𝛼ℎ𝛽 − 𝑝𝛽ℎ𝛼) − 𝑃𝛿𝛼𝛽 , 

(2) 

 
𝜕𝑡𝑝𝛼 + 𝑣𝛽𝜕𝛽𝑝𝛼 + 𝜔𝛼𝛽𝑝𝛽 =

ℎ𝛼

𝛾
− 𝜈𝑢𝛼𝛽𝑝𝛽 . 

(3) 

Here, α and β are indices that stand for the directions x or y, with a repeated index implying 

summation over all values of the indices, as per Einstein's convention. σαβ is the stress tensor, 

uαβ = (∂αvβ + ∂βvα)/2 is the shear rate, with vα the velocity component, and ωαβ = (∂αvβ - ∂βvα)/2 

is the vorticity tensor. P is a Lagrange multiplier, related to the pressure, that enforces 

incompressibility, i.e., ∂β vβ = 0.  hα=-∂ℱ/∂pα is the so-called orientational field. η and γ are the 

shear and rotational viscosities, respectively, arising from both cell mechanical properties and 

cell-cell interactions. υ is the flow alignment parameter, which controls how mechanical stress 

determines cell orientation. 

Force balance. The force balance equation, assuming negligible inertia, reads 

 𝜕𝛽𝜎𝛼𝛽 = 𝜉𝛼𝑣𝛼 , (4) 

where ξα is the friction coefficient along the α-direction. Duclos et al. concluded that substrate 

friction did not significantly change the physics of the phenomenon they considered. Here we 

will show that substrate friction is needed to explain the emergence of periodic cell streams.  

Simplification of the equations. We seek a quasi-1D solution to the problem defined by Eqs. 

(1-4) by assuming the solution to be uniform along x. Moreover, we assume that the velocity 
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along the ridges vx dominates the transverse velocity vy, which we neglect. We express the 

orientational field by its components parallel and perpendicular to the director, ℎ⊥ and ℎ∥. We 

obtain: 

 
ℎ⊥ = 𝛾 [

(𝜈 cos 2𝜃 + 1)

2

𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝜃

𝜕𝑡
], 

(5) 

 
ℎ∥ =

𝛾 𝜈 sin 2𝜃

2

𝜕𝑣𝑥

𝜕𝑦
. 

(6) 

Next, we linearize the force balance equation in the x-direction, Eq. (4), by assuming 𝜃 ≪ 1, 

to obtain:  

 
(𝜂 +

𝛾(1 + 𝜈)2

4
)

𝜕2𝑣𝑥

𝜕𝑦2
− 𝜁Δ𝜇

𝜕𝜃

𝜕𝑦
+

𝛾(1 + 𝜈)

2

𝜕2𝜃

𝜕𝑡𝜕𝑦
= 𝜉𝑥𝑣𝑥. (7) 

By using Eq. (5) and the relationship between the orientational field and the effective free 

energy, ℎ𝛼 = −𝜕ℱ/𝜕𝑝𝛼, we obtain: 

 
𝐾

𝜕2𝜃

𝜕𝑦2
− 𝛼𝜃 =

𝛾(1 + 𝜈)

2

𝜕𝑣𝑥

𝜕𝑦
+ 𝛾

𝜕𝜃

𝜕𝑡
. (8) 

Eqs. (7) and (8) constitute a system of two ODEs with two unknowns: 𝑣𝑥(𝑦, 𝑡) and 𝜃(𝑦, 𝑡). 

Linear stability analysis. We perform a linear stability analysis of the system formed by Eqs. 

(7) and (8) around a steady state where cells would all be immobile and aligned with the 

ridges,  θeq(y)=0, and vx,eq(y)=0. We are specifically interested in finding the range of 

wavelengths (kmin, kmax) of the unstable modes, as well as the wavelength k*0 of the fastest 

growing mode, which will indicate the expected spatial periodicity of the flow profile at the 

onset of a perturbation. The linear stability analysis leads to the following dispersion 

relationship between the rate of growth σ and the wavenumber k: 
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𝜎 = −

(𝛼 + 𝐾𝑘2)

𝛾
(1 +

𝛾(1 + 𝜈)2𝑘2

4(𝜉𝑥 + 𝜂𝑘2)
) −

𝜁Δ𝜇(1 + 𝜈)𝑘2

2(𝜉𝑥 + 𝜂𝑘2)
. (9) 

In the limit α=0, this equation is identical to that obtained by Duclos et al. in the presence of 

substrate friction. Unstable modes can arise if 𝜁Δ𝜇(1 + 𝜈) < 0, for example in the case of 

contractile cells (𝜁Δ𝜇 < 0). By solving the quadratic equation in k obtained by imposing σ = 

0, we obtain the range of unstable wavenumbers (kmin, kmax). Based on the parameter estimates 

presented in Supplementary Table 2 below, the smallest possible stream width is Wmin = 

π/kmax ≈ 6 μm, thinner than a single cell, which practically means that no lower bound on the 

stream width is imposed by the theory. Considering the dominant terms, the maximum width 

Wmax = π/kmin is given by 

 
𝑊max ≈

𝜋

√𝜉𝑥

 [
(1 + 𝜈)

2𝛼
𝛾(−𝜁Δ𝜇) − 𝜂 −

𝛾(1 + 𝜈)2

4
]

1/2

. (10) 

e At the onset of the perturbation, the fastest-growing wavenumber is: 

 

𝑘∗0 = −
𝜉𝑥

𝜂
+ √(

𝜉𝑥

𝜂
)

2

+
1

𝑙4
 , (11) 

where 

 

𝑙4 =
𝐾𝜂 [

4𝜂
𝛾 + (1 + 𝜈)2]

𝜉𝑥 [2(−𝜁Δ𝜇)(1 + 𝜈) − 𝛼(1 + 𝜈)2 −
4𝐾𝜉𝑥

𝛾 ]
 . (12) 

For 𝑘∗0 to exist, the term in square brackets in the denominator of the right-hand side of Eq. 

(12) must be positive, which requires 2(−𝜁Δ𝜇)(1 + 𝜈) > 𝛼(1 + 𝜈)2, since according to our 

parameter estimates (Supplementary Table 2), the third term in the denominator containing K 

is small compared to the other two. Thus, we assume the bracketed term in the denominator to 

be of the order of the active contractile term.  
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Supplementary Table 2: Estimates of model parameters. 

Symbol Meaning Value Units 

|−𝜁Δ𝜇| Cell contractility 10-2 Pa∙m 

𝜂 2D shear viscosity 10 Pa∙s∙m 

𝛾 2D rotational viscosity 10 Pa∙s∙m 

|1 + 𝜈| Flow alignment parameter 1  

𝜉𝑥 Substrate friction 

coefficient 

1010 Pa∙s∙m-1 

𝐾 Frank constant 10-14 Pa∙m3 

𝛼 Ridge alignment constant  10-3–10-2 Pa∙m 

 

The linear stability analysis above suggests the emergence of streams with a sinusoidal 

velocity profile of the form 

 𝑣𝑥 = 𝑣max cos (𝜋
𝑦

𝑊∗0
).  (13) 

The stability analysis can be extended to the next order (third order), which introduces a 

correction to the first harmonic in Eq. (13) as well as a third harmonic. The amplitude of these 

third-order corrections turns out to be about two orders of magnitude smaller than the first 

order, and such corrections are therefore negligible. 
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Critical contractility. We next investigate if the observed streams are well described by a 

system near the bifurcation that occurs for a critical contractility value −𝜁Δ𝜇 = 𝐴c, which 

corresponds to the onset of collective motion. If cell contractility is smaller than 𝐴c, no 

collective motion is expected. If cell contractility is slightly larger than 𝐴c, we can perform a 

perturbation analysis on the small number (𝐴 − 𝐴c), where 𝐴 = −𝜁Δ𝜇, as done in previous 

studies5,6. The bifurcation threshold is obtained by making 𝜎 = 0 in the dispersion 

relationship (Eq. 9) and imposing 𝑘min = 𝑘max, which leads to an expression for the critical 

activity: 

 
𝐴c =

1

2
𝛼(1 + 𝜈) +

2

𝛾(1 + 𝜈)
(𝐾𝜉𝑥 + 𝜂𝛼) +

2

(1 + 𝜈)
[(

4𝐾𝜂

𝛾
+ 𝐾(1 + 𝜈)2)

𝛼𝜉𝑥

𝛾
]

1/2

. (14) 

The corresponding critical wavelength is 

 
𝑘c = (

4𝛼𝜉𝑥

4𝐾𝜂 + 𝛾𝐾(1 + 𝜈)2
)

1/4

.  (15) 

Now we suppose 𝐴 = −𝜁Δ𝜇 = 𝐴c + 𝛿𝐴 with 𝛿𝐴 ≪ 𝐴c, keeping in mind that we will need to 

verify the applicability of this hypothesis to our experiments. Following the approach in 

earlier studies5,6, and since our baseline state is 𝜃0 = 0, 𝑣𝑥0 = 0, we can write 

 

𝜃 = 𝜃√
𝛿𝐴

𝐴c
sin(𝑘c𝑦),  (16) 

 

𝑣𝑥 = 𝑣√
𝛿𝐴

𝐴c
cos(𝑘c𝑦), (17) 

where 𝜃 and 𝑣 are constants to be determined. By considering the governing differential 

equations up to order 𝜃3~𝑣3~𝛿𝐴3/2 (Eqs. 20 and 21 below), we obtain the following 

algebraic equations for 𝜃 and 𝑣: 
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{[(3 −

8

(1 + 𝜈)
+

12𝜂

𝛾(1 + 𝜈)2
) 𝑘c

4 +
4𝜉𝑥

𝛾(1 + 𝜈)2
𝑘c

2] 𝜐𝐾

+ [− ((1 +
4𝜂

𝛾(1 + 𝜈)2
) (1 − 2𝜈) +

4𝜈

(1 + 𝜈)
) 𝑘c

2

−
4𝜉𝑥(1 − 2𝜈)

3𝛾(1 + 𝜈)2
] 𝛼 + 2𝐴c𝑘c

2} 𝜃2 = 𝐴c𝑘c
2,  

(18) 

 
𝑣 =

2

𝛾(1 + 𝜈)
(𝐾𝑘c +

𝛼

𝑘c
) 𝜃. (19) 

An order of magnitude evaluation based on the estimates presented in Supplementary Table 2 

leads to 𝜃~10-2 and 𝑣~10-8 m/s. Since 𝑣max = 𝑣(𝛿𝐴/𝐴c)1/2 and the experimentally observed 

maximum velocity is also of the order of 10-8 m/s, we conclude that 𝛿𝐴 is comparable to 𝐴c. 

Therefore, the hypothesis 𝛿𝐴 ≪ 𝐴c does not hold for our experimental conditions. Indeed, the 

analysis based on this hypothesis yields 𝐴c~10-3 Pa.m, about one order of magnitude smaller 

than our estimate of cell contractility in Supplementary Table 2, and a stream width of the 

order of 103 μm, which is one order of magnitude larger than the observation. Overall, we 

conclude that our experimental system is not close to the bifurcation but that rather 𝐴 ≫ 𝐴c in 

our case.  

Nonlinear stability analysis. The fastest-growing wavenumber predicted by Eq. (11) has been 

obtained by a linear analysis only valid at the onset of the perturbation. We emphasize that in 

our case 𝐴 ≫ 𝐴c and we study the growth over time of perturbations of the unstable base state 

𝜃 = 0, 𝑣𝑥 = 0. The observed steady-state streams correspond to a well-developed 

perturbation, whose wavenumber may differ from that of the linear analysis. To understand 

how the fastest-growing wavenumber evolves as the perturbation grows, we perform a 

nonlinear stability analysis using a method first proposed by Sharma and Ruckenstein to study 

the stability of thin liquid films9. We refer the reader to this reference for details on the 
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method. Instead of studying the linearized equations (7) and (8), we keep terms up to order θ3 

and consider the system of differential equations: 

 
(𝜂 +

𝛾(1 + 𝜈)2

4
)

𝜕2𝑣𝑥

𝜕𝑦2
− 𝜁Δ𝜇(1 − 2𝜃2)

𝜕𝜃

𝜕𝑦
− 2𝛾𝜈𝜃

𝜕𝑣𝑥

𝜕𝑦

𝜕𝜃

𝜕𝑦
− 𝛾𝜈𝜃2

𝜕2𝑣𝑥

𝜕𝑦2

− 2𝛾𝜈𝜃
𝜕𝜃

𝜕𝑦

𝜕𝜃

𝜕𝑡
+

𝛾(1 + 𝜈(1 − 2𝜃2))

2

𝜕2𝜃

𝜕𝑡𝜕𝑦
= 𝜉𝑥𝑣𝑥 , 

(20) 

 
𝐾

𝜕2𝜃

𝜕𝑦2
− 𝛼𝜃 +

2

3
𝛼𝜃3 =

𝛾(1 + 𝜈)

2

𝜕𝑣𝑥

𝜕𝑦
− 𝛾𝜈𝜃2

𝜕𝑣𝑥

𝜕𝑦
+ 𝛾

𝜕𝜃

𝜕𝑡
. (21) 

We consider a velocity and orientational field consisting of a steady-state component plus a 

perturbation, 𝑣𝑥 = 𝑣1(𝑦) + 𝑣2(𝑦, 𝑡) and 𝜃 = 𝜃1(𝑦) + 𝜃2(𝑦, 𝑡), with 𝑣1(𝑦) = 𝜀 cos (𝑘1𝑦) and 

𝜃1(𝑦) = 𝛿 sin (𝑘1𝑦) a steady-state solution, and 𝛿 ≈
(1+𝜈)𝛾𝑘1

2𝛼
𝜀, as deduced from linear 

theory. We note that this latter relationship suggests that the maximum stream velocity ε 

should be proportional to the alignment parameter α, which depends on the groove geometry. 

Introducing these expressions into Eqs. (20) and (21) and keeping leading-order perturbation 

terms {𝑣2, 𝜃2} only, we obtain  

 
(𝜂 +

𝛾(1 + 𝜈)2

4
)

𝜕2𝑣2

𝜕𝑦2
− 𝜁Δ𝜇(1 − 2𝜃1

2)
𝜕𝜃2

𝜕𝑦
+ 4 𝜁Δ𝜇𝜃1

𝜕𝜃1

𝜕𝑦
𝜃2  

− 𝛾𝜈 (2𝜃1

𝜕𝑣1

𝜕𝑦

𝜕𝜃2

𝜕𝑦
+ 2𝜃1

𝜕𝜃1

𝜕𝑦

𝜕𝑣2

𝜕𝑦
+ 2

𝜕𝜃1

𝜕𝑦

𝜕𝑣1

𝜕𝑦
𝜃2 + 𝜃1

2 𝜕2𝑣2

𝜕𝑦2

+ 2𝜃1

𝜕2𝑣2

𝜕𝑦2
𝜃2 + 2𝜃1

𝜕𝜃1

𝜕𝑦

𝜕𝜃2

𝜕𝑡
) +

𝛾 (1 + 𝜈(1 − 2𝜃1
2))

2

𝜕2𝜃2

𝜕𝑡𝜕𝑦

= 𝜉𝑥𝑣𝑥 , 

(22) 
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𝐾

𝜕2𝜃2

𝜕𝑦2
− 𝛼𝜃2 + 2𝛼𝜃1

2𝜃2

=
𝛾(1 + 𝜈)

2

𝜕𝑣2

𝜕𝑦
− 𝛾𝜈 (𝜃1

2 𝜕𝑣2

𝜕𝑦
+ 2𝜃1

𝜕𝑣1

𝜕𝑦
𝜃2) + 𝛾

𝜕𝜃2

𝜕𝑡
. 

(23) 

To make these equations analytically tractable, we apply the technique proposed by Sharma 

and Ruckenstein, which linearizes the equations by studying the region where the driving 

physical effects are dominant. As we seek to characterize how stream width evolves, we focus 

on the border between opposing streams, where shear stresses and groove realignment forces 

are both maximum. In this region we have 𝑣1 ≈ 0, 
𝜕𝑣1

𝜕𝑦
≈ −𝑘1𝜀, 

𝜕2𝑣2

𝜕𝑦2
≈ 0, and 𝜃1 ≈ 𝛿, 

𝜕𝜃1

𝜕𝑦
≈

0, 
𝜕2𝜃2

𝜕𝑦2 ≈ −𝑘1
2𝛿. This approximation yields a linear system of differential equations in 

{𝑣2, 𝜃2}, upon which we perform a linear stability analysis by supposing perturbations {𝑣2, 𝜃2} 

proportional to exp(𝑖𝑘𝑦 + 𝜎𝑡). By imposing 
𝜕𝜎

𝜕𝑘
= 0 we obtain the following a second-order 

algebraic equation for the fastest-growing mode 𝑘∗: 

 𝑎𝑘∗
4 + 𝑏𝑘∗

2 + 𝑐 = 0 (24) 

with 
𝑎 =  𝐾𝜂 (

𝜂

𝛾
+

(1 + 𝜈)2

4
) + 𝛿2 [𝐾𝜈2 (𝜂 +

𝛾(1 + 𝜈)2

4
) − 𝐾𝜈𝜂] (25) 

 
𝑏 = 𝐾𝜉𝑥 (

2𝜂

𝛾
+

(1 + 𝜈)2

2
) − 𝛿22𝐾𝜉𝑥𝜈 (26) 

 
𝑐 =

𝐾𝜉𝑥
2

𝛾
+

𝛼(1 + 𝜈)2

4
𝜉𝑥 −

1

2
(−𝜁Δ𝜇)(1 + 𝜈)𝜉𝑥

+ 𝛿2𝜉𝑥 [(−𝜁Δ𝜇)(1 + 𝜈) − 𝛼 (2𝜈 +
(1 + 𝜈)2

2
)]. 

(27) 

By keeping only the dominant terms upon numerical evaluation with the estimates in 

Supplementary Table 1, we can show that the fastest-growing mode of the nonlinear analysis, 
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of wavenumber 𝑘∗, is related to the fastest-growing mode of the linear analysis, of 

wavenumber 𝑘∗0, through the relationship 

 𝑘∗
2 ≈ 𝑘∗0

2(1 − 𝛿2).  (28) 

This result indicates that as the streams develop and the maximum velocity (proportional to δ) 

increases, their wavenumber decreases and thus their width increases. This suggests that, 

eventually, the streams will reach the minimum possible wavenumber, corresponding to the 

maximum width given by Eq. (10), at which point 𝜎 = 0 and stream growth stops. Thus, as a 

result of the nonlinear stability analysis, we conclude that a good estimate of the width of 

fully developed streams is given by Eq. (10). We note that this same estimate of the stream 

width can also be obtained by studying the steady-state solution of Eqs. (7) and (8) and by 

imposing that the steady-state profile minimizes the system’s effective free energy, i.e. the 

overall cell misalignment with the streams. 

Length of the streams. We postulate that varying the ridge height modifies the length of the 

streams by modifying the alignment constant α. When cells are placed on the ridges, their 

orientation will be stochastic and expected to follow a Boltzmann distribution, i.e. a normal 

distribution of zero mean and standard deviation given by 

 

𝜎𝜃 = √
𝑘B𝑇eff

𝛼𝑎2
 , (29) 

where a is the cell size. At a fixed time, the offset along the y axis between two consecutive 

cells along a stream can be described as a one-dimensional random walk. The average step of 

this random walk is given by 𝛿𝑦 = 〈|𝜃|〉𝑎. After N steps, the length of the stream will be 𝐿 ≈

𝑁𝑎, whereas its width will be 〈𝑊2〉1/2 = 𝛿𝑦√𝑁 ≈ 𝜎𝜃√𝐿𝑎. We can define the persistence 
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length of the stream as the value of 𝐿 for which the offset 𝑊 becomes comparable to the cell 

length, 〈𝑊2〉1/2 ≈ 𝑎, which yields 

 
𝐿 ≈

𝑎

𝜎𝜃
2 =

𝛼𝑎3

𝑘B𝑇eff
 . (30) 
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