Supplementary Data

Neuronal hyperexcitability drives central and peripheral nervous system tumor progression in models of Neurofibromatosis-1

Corina Anastasaki, Juan Mo, Ji-Kang Chen, Jit Chatterjee, Yuan Pan, Suzanne M. Scheaffer, Olivia Cobb, Michelle Monje, Lu Q. Le, David H. Gutmann

Figures

Supplementary Figure 1. Characterization of the Arg1809Cys Nf1-mutant mouse strain; relative to Figures 1-7

Supplementary Figure 2. Analysis of Arg1809Cys *Nf1*-mutant neuron signaling; relative to Figures 2-3 **Supplementary Figure 3.** *Nf1*-mutant hippocampal neuron midkine secretion is dependent on neuronal hyperexcitability; relative to Figures 2-3

Supplementary Figure 4. Genetic silencing of *Hcn1* and *Hcn2* results in neuronal death; relative to Figures 2-3, 5-7

Supplementary Figure 5. Human sh*NF1* Schwann cell and sensory neuron analysis; relative to Figure 5 **Supplementary Figure 6.** COL1A2 is uniquely expressed by *NF1*-mutant peripheral nervous system neurons; relative to Figures 5-7

<u>Tables</u>

Supplementary Table 1. Antibodies used.

Supplementary Table 2. Oligonucleotides used for quantitative real-time PCR.

Supplementary Table 3. Microarray datasets used for *COL1A2* analysis.

References

References, relevant to Supplementary Table 1.

Supplementary Figure 1. Characterization of the Arg1809Cys Nf1-mutant mouse strain

A. Summary of litters of Arg1809Cys Nfl heterozygous mouse intercrosses.

B. Weights of male and female Arg1809Cys *Nf1*-mutant mice are similar to WT littermates at 1 month of age. n=4 for all groups.

Data are represented as means \pm SEM. One-way ANOVA with Bonferroni post-test correction. p values were not significant (ns). Source data are provided as a Source Data file.

Supplementary Figure 2. Analysis of Arg1809Cys Nf1-mutant neuron signaling

A. Immunocharacterization of retinal ganglion cells (RGCs; RPBML⁺, Brn3a⁺, TUJ-1⁺), hippocampal neurons (Glutamate Synthetase⁺, GAD65⁺, TUJ-1⁺) and dorsal root ganglia (DRG) neurons (peripherin⁺, Islet-1⁺, TUJ-1⁺). Scale bar, 100 μm. Immunostaining of primary neurons was repeated independently 4 times with similar results.

B. Midkine expression is increased in $NfI^{+/R681X}$ mutant RGCs relative to controls. Scale bar, 50 µm. Immunostaining of mouse retinae was repeated on a minimum of 3 independent animals per genotype with similar results.

C. Immunocharacterization of excitatory (Glutamate Synthetase⁺, NeuN⁺, TUJ-1⁺) and inhibitory (GABA⁺, GAD67⁺, TUJ-1⁺) hiPSC-derived CNS neurons. Scale bar, 100 μ m. Immunostaining of hiPSC-derived neurons was repeated independently 3 times with similar results.

D. Midkine expression is increased in human CNS inhibitory (GABAergic) $NF1^{C383X}$, $NF1^{R681X}$ and $NF1^{E2207X}$, but not in $NF1^{R1809C}$, mutant neurons relative to controls (CTL). n=3 for all groups, p=0.0002.

E. Representative summary of multi-electrode array recordings of WT, $NfI^{+/neo}$ and $NfI^{+/1809}$ RGCs illustrating action potentials detected by each electrode over a period of 5 minutes.

F-H. Adam-10 (*Adam10*) transcript expression is increased in *Nf1*^{+/neo} relative to WT and *Nf1*^{+/1809} optic nerves, retinae and RGCs. **F**, n=4 for all groups, p=0.0010; **G**, n=4 for all groups, p=0.0161; **H**, WT n=5, *Nf1*^{+/neo}, *Nf1*^{+/1809} n=4, p=0.0007

I. *Nlgn3* transcript expression is similar in $Nf1^{+/neo}$, $Nf1^{+/1809}$ and WT DRG neurons. n=4 for all groups.

J-K. Midkine *(Mdk)* (**J**) RNA and (**K**) protein expression are not increased in *Nf1*-mutant DRG neurons relative to WT controls. **J**, n=8 for all groups, p=0.007. **K**, WT n=8, *Nf1*^{+/neo}n=8, *Nf1*^{+/1809} n=4, p=0.0104.

L. Ccl4 expression is increased similarly in WT (n=4) and Arg1809Cys *Nf1*-mutant (n=3) hippocampal neurons following midkine treatment.

M. Ccl5 is similarly elevated in WT (n=3) and Arg1809Cys *Nf1*-mutant (n=3) hippocampal neurons following Ccl4 treatment.

N. *Hcn1-4* RNA expression is not different in *Nf1*-mutant RGC neurons relative to WT controls. n=4 for all groups.

O. *Adam10* transcript expression is unchanged in retinae of 12 week-old $NfI^{+/neo}$ mice following *in vivo* lamotrigine (LTR; 200µM) treatment. n=5 for all groups.

P. *Mdk*, *Adam10*, and *Nlgn3* transcript expression in the optic nerves (O.N.) of 12-week-old *Nf1^{+/neo}* mice following *in vivo* LTR treatment. n=5 for all groups, O.N. *Mdk* R.E.p=0.015.

Q-R. *Mdk*, *Adam10*, and *Nlgn3* transcript expression in (**Q**) retinae (*Mdk* R.E. p=0.0020) and (**R**) optic nerves (*Mdk* R.E. p=0.0109) of 12 week-old *Nf1*-OPG mice following *in vivo* LTR treatment. n=4 for all groups.

Data are represented as means \pm SEM. (**D**, **F-N**) One-way ANOVA with (**D**, **F-K**) Dunnett's or (**N**) Bonferroni post-test correction (**O-R**) two-tailed paired t-test. p values are indicated within each panel. ns, not significant. Source data are provided as a Source Data file.

Supplementary Figure 3. *Nf1*-mutant hippocampal neuron midkine secretion is dependent on neuronal hyperexcitability

A-B. Midkine (**A**) transcript (*Mdk*) and (**B**) protein expression are increased in hippocampal neurons from $NfI^{+/neo}$ mice (n=8; *Mdk* R.E. p=0.0008; Midkine p<0.0001) relative to WT controls (n=7) and $NfI^{+/1809}$ mice (n=3).

C. Hippocampal neuron activity, as measured by action potential (AP) firing rates, is increased in $NfI^{+/neo}$ (n=4; p=0.025) relative to WT (n=8) and $NfI^{+/1809}$ (n=4) neurons.

D-G. (**D-E**) Tetrodotoxin (TTX; 1 μ M; **D**, n=4 for both groups, p=0.0221; **E**, n=5 for both groups, p=0.0002) and (**F-G**) lamotrigine (LTR; 200 μ M; **F**, vehicle n=3, LTR n=4, p=0.0491; **G**, n=6 for both groups, p<0.001) reduced (**D**) AP firing rates of and (**E**) midkine expression in *Nf1*^{+/neo} hippocampal neurons.

H. ZD-7288 (30 μ M) increases midkine secretion by *Nf1*^{+/neo} hippocampal neurons. n=3 for both groups, p=0.0046.

I. RAS activity is elevated in $NfI^{+/neo}$ and $NfI^{+/1809}$ hippocampal neurons relative to WT controls. n=5 for both groups, p<0.0001.

J. Hippocampal neuron midkine secretion is reduced following IN-1 treatment (1 μ M). Vehicle n=12, IN-1 n=7, p<0.0001.

K. RAS activity is reduced in $Nfl^{+/neo}$ neurons following TTX and LTR treatment. n=6 for all groups, p<0.0001.

L. *Nf1^{+/neo}* hippocampal neuron AP firing rates are not reduced following IN-1 treatment. n=4 for both groups.

Data are represented as means \pm SEM, (A-C; I, K) One-way ANOVA with Dunnett's post-test correction or (D-H, J, L) unpaired two-tailed student's t-test. p values are indicated within each panel. ns, not significant. Source data are provided as a Source Data file.

Supplementary Figure 4. Genetic silencing of *Hcn1* and *Hcn2* results in neuronal death.

A-B. Representative phase-contrast images depicting (**A**) RGCs or (**B**) DRG neurons infected with scrambled control, sh*Hcn1*, sh*Hcn2*, or a combination of sh*Hcn1* and sh*Hcn2*. Silencing of *Hcn1/2* lead to neuronal death. Independently generated primary RGC and DRG neurons were infected 3 times with similar results.

C. 6-hour treatment with TTX induced RGC and DRG neuronal cell death. Independently generated primary RGC and DRG neurons were treated with TTX 3 times with similar results.

Scale bars, 100µm

Supplementary Figure 5. Human shNF1 Schwann cell and sensory neuron analysis

A. Human sh*NF1* Schwann cells are immunopositive for EGR2, S100 β , OCT6 and SOX10 expression. Immunostaining of human Schwann cells was repeated independently 3 times with similar results. Scale bars, 50 μ m.

B-C. *NF1*^{+/-} hiPSC-sensory neurons are immunopositive for (**B**) neurofilament, peripherin, BRN3A, ISL-1, and CALCA1 expression by western blot, as well as for (**C**) SMI32 and Tuj-1 by immunocytochemistry, but are immunonegative for Nestin and p75NTR expression. Scale bars, 50 μ m. Immunostaining of hiPSCsensory neurons was repeated independently a minimum of 3 times with similar results.

D. sh*NF1* human Schwann cell proliferation following hiPSC-sensory neuron CM treatment. CTL sh#1 n=6, Arg1809Cys sh#1 n=5, ns, Cys383X sh#1 n=6, p<0.0001, Arg681X sh#1 n=6, p<0.0001. CTL sh#2 n=3, Arg1809Cys sh#2 n=3, ns, Cys383X sh#2 n=3, p<0.0001, Arg681X sh#2 n=3, p<0.0001. CTL sh#3 n=3, Arg1809Cys sh#3 n=3, ns, Cys383X sh#3 n=3, p<0.0001, Arg681X sh#3 n=3, p<0.0001.

Data are represented as means \pm SEM, 2-tailed paired t-tests or One-way ANOVA with Bonferroni posttest correction. p values are indicated within each panel. ns, not significant. Source data are provided as a Source Data file.

ns

0

1.5

•

•

Hcn1 (R.E.)

0.0

Ρ

Q

Supplementary Figure 6. COL1A2 is uniquely expressed by *NF1*-mutant peripheral nervous system neurons.

A. The amplitudes of action potentials were similar in $NfI^{+/neo}$ (n=3) and $NfI^{+/1809}$ (n=3) DRG neurons relative to WT controls (n=4). Right panels: representative traces of DRG neuron action potentials over 3 msec (gray). The averages of the DRG action potential traces are indicated in black.

B-C. (B) 2D gels of control (CTL), *NF1*^{R681X} (R681X) and *NF1*^{R1809C} (1809) human sensory neuron conditioned media and (**C**) annotation of increased (green) and decreased (red) proteins in CM of R681X (left) or R1809C (right) *NF1*-mutant relative to control sensory neurons.

D-H. COL2A1, lactotransferrin, C7, albumin and ANXA2 expression in independently-generated hiPSCsensory neuron CM were not uniquely elevated in $NF1^{C383X}$ - and $NF1^{R681X}$ -mutant neurons relative to controls and $NF1^{R1809C}$ -mutant neurons. **D**, n=4 all groups. **E**, n=3 all groups, C383X p<0.0001. **F**, n=4 all groups. **G**, n=4 all groups, R681X p<0001. **H**, n=3 all groups, R681X p=0.0008.

I. Increased proliferation (%Ki67⁺ cells) of mouse $NfI^{-/-}$ DRG-NSCs following treatment with human NFI^{R681X} -, but not CTL- and NFI^{R1809C} -mutant, hiPSC-sensory neuron CM. n=6 all groups, p<0.0001.

J. Colla2 expression is increased in mouse $NfI^{+/neo}$ DRG neurons, but not in mouse $NfI^{+/neo}$ RGC neurons. n=3 all groups.

K-N Genetic inhibition of (K-L) human *COL1A2* or (M-N) mouse *Col1a2* with three independent short hairpin constructs reduces *COL1A2* and *Col1a2* (K, M) transcript and (L, N) protein expression relative to a control scrambled short hairpin (shCTL). K, n=3 all groups, p=0.0006. L, shCTL n=4, sh*COL1A2* #1-3 n=3; p<0.0001. M, n=3 all groups; *shCol1a2* #1 p=0.0337, *shCol1a2* #2 p=0.0143, *shCol1a2* #3 p=0.0246. N, n=4 all groups, p<0.0001.

O. *Hcn1-4* expression is not altered in *Nf1*-mutant DRG neurons relative to WT controls. n=4 all groups.

P. RAS activity is increased in human $NF1^{R681X}$ - and $NF1^{R1809C}$ -mutant hiPSC-sensory neurons relative to controls. n=3 all groups, R681X p<0.0001, R1809C p=0.0001.

Q. COL1A2 is reduced in *NF1*^{681X}-mutant hiPSC-sensory neurons following IN-1 treatment. n=5 both groups, p<0.0001.

Data are represented as means \pm SEM, (**A**, **D**-**P**) One-way ANOVA with Dunnett's post-test correction or (**Q**) two-tailed paired t-test. p values are indicated within each panel. ns, not significant. Source data are provided as a Source Data file.

Supplementary Table 1. Antibodies used

Antibody	Dilution	Validation (application)	Product Link	Manufacturer	Catalog# Number
Alexa Fluor 488 goat anti-mouse secondary antibody	1:200	Fisher Scientific (IF/ICC)	https://www.thermofishe r.com/antibody/product/ Goat-anti-Mouse-IgG-H- L-Highly-Cross- Adsorbed-Secondary- Antibody-Polyclonal/A- 11029	Fisher Scientific	A11029
Alexa Fluor 568 goat anti-rabbit secondary antibody	1:200	Fisher Scientific (IF/ICC)	https://www.thermofishe r.com/antibody/product/ Goat-anti-Rabbit-IgG-H- L-Cross-Adsorbed- Secondary-Antibody- Polyclonal/A-11011	Fisher Scientific	A11011
Anti-actin	1:5,000	CST (WB)	https://www.cellsignal.c om/products/primary- antibodies/b-actin-13e5- rabbit-mab/4970	Cell Signaling Technologies	4970
Anti-alpha-tubulin	1:5,000	Sigma-Aldrich (WB)	https://www.sigmaaldric h.com/US/en/product/sig ma/t9026	Sigma Aldrich	T9026
Anti-beta III Tubulin antibody [2G10]	1:1,000	Abcam (WB, ICC)	https://www.abcam.com/ beta-iii-tubulin-antibody- 2g10-neuronal-marker- ab78078.html	Abcam	ab78078
Anti-BRN3A, Rabbit monoclonal [EPR23257-285]	1:1,000	Abcam (IHC, WB)	https://www.abcam.com/ brn3a-antibody- epr23257-285- ab245230.html	Abcam	ab245230
Anti-CD3 antibody	1:50	Abcam (IHC)	https://www.abcam.com/ cd3-antibody-cd3-12- ab11089.html	Abcam	ab11089
Anti-CD34	1:2,500	Abcam (IHC)	https://www.abcam.com/ cd34-antibody-ep373y- ab81289.html	Abcam	ab81289
Anti-CGRP (CALCA)	1:500	Abcam (WB)	https://www.abcam.com/ cgrp-antibody- ab189786.html	Abcam	ab189786
Anti-Col1a2 (for mouse samples)	1:200	ThermoFisher (IHC)	https://www.thermofishe r.com/antibody/product/ COL1A2-Antibody- Polyclonal/PA5-106555	ThermoFisher	PA5-106555
Anti-COL1A2 antibody (for human samples)	1:200	Abcam (ICC)	https://www.abcam.com/ col1a2-antibody- ab96723.html	Abcam	ab96723
Anti-EGR2	1:100	Abcam (ICC)	https://www.abcam.com/ egr2-antibody-oti1f10- ab156765.html	Abcam	ab156765
Anti-Factor XIIIa	1:100	Abcam (IHC)	https://www.abcam.com/ factor-xiiia-antibody-ac- 1a1-ab1834.html	Abcam	ab1834

Anti-GABA	1:1,000	Sigma (ICC)	https://www.sigmaaldric h.com/US/en/product/sig ma/a2052	Sigma Aldrich	A2052
Anti-GAD2, Rabbit monoclonal [D5G2]	1:500	CST (IF)	https://www.cellsignal.c om/products/primary- antibodies/gad2-d5g2- xp-rabbit-mab/5843	Cell Signaling Technologies	58438
Anti-GAP43	1:2000	Abcam (IHC)	https://www.abcam.com/ gap43-antibody- neuronal-marker- ab12274.html	Abcam	ab12274
Anti-GFAP, Rat monoclonal [2.2B10]	1:500	ThermoFisher (IHC, ICC, IF)	https://www.thermofishe r.com/antibody/product/ 13- 0300.html?ef_id=EAIaI QobChMIlby2rZKR9wI V7m1vBB3ySAD5EAA YASAAEgKDafD_BwE :G:s&s_kwcid=AL!3652 !3!459736943987!!!g!!& cid=bid_pca_aup_r01_c o_cp1359_pjt0000_bid0 0000_0se_gaw_dy_pur con&gclid=EAIaIQobCh MIIby2rZKR9wIV7m1v BB3ySAD5EAAYASA AEgKDafD_BwE	ThermoFisher	13-0300
Anti-Glutamate synthetase mouse monoclonal [3B6]	1:500	Abcam (ICC)	https://www.abcam.com/ glutamine-synthetase- antibody-3b6-bsa-and- azide-free-ab64613.html	Abcam	ab64613
Anti-Glutamate synthetase rabbit polyclonal	1:500	Abcam (ICC)	https://www.abcam.com/ glutamine-synthetase- antibody-ab228590.html	Abcam	ab228590
Anti-Iba1	1:500	Wako (IHC)	https://labchem- wako.fujifilm.com/us/cat egory/01213.html	Wako	NC9288364
Anti-ISL-1 Rabbit monoclonal [EP4182]	1:250	Abcam (ICC)	https://www.abcam.com/ islet-1-antibody-ep4182- neural-stem-cell-marker- ab109517.html	Abcam	ab109517
anti-Ki-67, Mouse monoclonal [B56]	1:500	BD Biosciences (ICC), (1)	https://www.fishersci.co m/shop/products/anti-ki- 67-clone-b56-bd- 6/BDB556003	BD Biosciences	BDB556003
Anti-Midkine C- terminal	1:200	Abcam (IHC/ IF), (2)	https://www.abcam.com/ midkine-antibody-c- terminal-ab170820.html	Abcam	ab170820

Anti-Mouse IgG Polyclonal Secondary Antibody IRDye® 800RD	1:5,000	Li-Cor Biosciences (WB)	https://www.licor.com/bi o/reagents/irdye-800cw- goat-anti-mouse-igg- secondary- antibody?ppc_keyword= &gclid=EAIaIQobChMI 8fCg25OR9wIVNntvBB 1Y- AkcEAAYASAAEgK8 mPD_BwE	Li-Cor Biosciences	926-32210
Anti-Nestin	1:200	Abcam (ICC)	https://www.abcam.com/ nestin-antibody-neural- stem-cell-marker- ab92391.html	Abcam	ab92391
Anti-NeuN mouse monoclonal [A60]	1:500	Sigma-Aldrich (ICC)	https://www.sigmaaldric h.com/US/en/product/m m/mab377	Sigma-Aldrich	MAB377
anti- Neurofilament H (NF-H), Nonphosphorylate d Antibody mouse monoclonal SMI32	1:500	Biolegend (WB, IF)	https://www.biolegend.c om/en- us/products/purified- anti-neurofilament-h-nf- h-nonphosphorylated- antibody-11475	Biolegend	801701
Anti-neuroligin-3	0.4µg/m L	Novus (WB), (1)	https://www.novusbio.co m/products/neuroligin-3- nlgn3-antibody_nbp1- 90080	Novus	NBP1- 90080
Anti-OCT6	1:200	Abcam (ICC)	https://www.abcam.com/ oct6-antibody- ab272925.html	Abcam	ab272925
Anti-p75 NTR rabbit monoclonal [D4B3]	1:1000	CST (ICC)	https://www.cellsignal.c om/products/primary- antibodies/p75ntr-d4b3- xp-rabbit-mab/8238	Cell Signaling Technologies	8238S
Anti-peripherin	1:500	Abcam (ICC)	https://www.abcam.com/ peripherin-antibody- ab4666.html	Abcam	ab4666
Anti-Rabbit IgG Polyclonal Secondary Antibody IRDye® 680RD	1:5,000	Li-Cor Biosciences (WB)	https://www.licor.com/bi o/reagents/irdye-680rd- goat-anti-rabbit-igg- secondary-antibody	Li-Cor Biosciences	926-68071
Anti-Rbpms	1:1,000	PhosphoSoluti ons (ICC/ IF)	https://www.phosphosol utions.com/products/anti -rbpms-antibody-1832- rbpms	PhosphoSolutio ns	1832- RBPMS
Anti-S100β antibody, Rabbit monoclonal [EP1576Y]	1:100	Abcam (ICC)	https://www.abcam.com/ s100-beta-antibody- ep1576y-astrocyte- marker-ab52642.html	Abcam	ab52642

Anti-SOX10 antibody, Rabbit monoclonal [EPR4007-104] (for mouse tumors)	1:250	Abcam (IHC), (3)	https://www.abcam.com/ sox10-antibody-epr4007- 104-ab180862.html	Abcam	ab180862
Anti-SOX10, Rabbit monoclonal [SP267] (for human cells)	1:50	Abcam (ICC)	https://www.abcam.com/ sox10-antibody-sp267- ab227680.html	Abcam	ab227680
Biotinylated anti Mouse secondary antibody	1:200	Fisher (IHC)	https://vectorlabs.com/pr oducts/antibodies/biotiny lated-goat-anti-mouse- igg	Vector Laboratories	BA9200
Biotinylated anti Rabbit secondary antibody	1:200	Fisher (IHC)	https://vectorlabs.com/pr oducts/antibodies/biotiny lated-goat-anti-rabbit-igg	Vector Laboratories	BA-1000

WB, Western blot; IHC, immunohistochemistry; IF, immunofluorescence; ICC, immunocyctochemistry

Oligonucleotides	Manufacturer	Catalog Number
ongonacionados		Catalog Pulliber
ADAM10 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Hs01109562_m1
Adam10 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm00545742_m1
COL1A2 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Hs01028940_g1
Colla2 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm00483888_m1
GAPDH - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Hs02786624_g1
Gapdh - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm99999915_g1
Hcn1 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm00468832_m1
Hcn2 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm00468538_m1
Hcn3 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm01212852_m1
Hcn4 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm01176084_m1
Mdk - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm00440279_m1
NLGN3 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Hs01043809_m1
Nlgn3 - TaqMan® Gene Expression Assay FAM-MGB	ThermoFisher	Mm01225951_m1

Supplementary Table 2. Oligonucleotides used for quantitative real-time PCR

Sample	Sample name	GSM352
normal SCs	batch1c-NHSC_303_HG_U133_Plus_2.CEL	487
normal SCs	batch1c-NHSC_339_HG_U133_Plus_2.CEL	489
normal SCs	batch1c-NHSC_771_HG_U133_Plus_2.CEL	490
normal SCs	batch2a-NHSC216_HG_U133_Plus_2.CEL	501
normal SCs	batch2b-NHSC323_HG_U133_Plus_2.CEL	515
normal SCs	batch2c-NHSC338_HG_U133_Plus_2.CEL	526
normal SCs	batch3a-NHSC_286_HG_U133_Plus_2.CEL	535
normal SCs	batch3b-NHSC_J017_HG_U133_Plus_2.CEL	543
normal SCs	batch3c-NHSC_02.8_HG_U13Plus_2.CEL	550
normal SCs	batch3c-NHSC_J037_HG_U13Plus_2.CEL	551
cNF	batch3a-dNFSC_ERS_HG_U133_Plus_2.CEL	534
cNF	batch3b-dNFSC_ABB_HG_U133_Plus_2.CEL	542
cNF	batch3c-dNFSC_JLM_HG_U13Plus_2.CEL	549
cNF	batch1c-ABC_8NlHG_U133_Plus_2.CEL	479
cNF	batch1c-AIBC_2NlHG_U133_Plus_2.CEL	480
cNF	batch1c-CLT_6N_+lHG_U133_Plus_2.CEL	481
cNF	batch1c-MGF_33N_+lHG_U133_Plus_2.CEL	483
cNF	batch1c-SCC_7NlHG_U133_Plus_2.CEL	492
cNF	batch2a-ADN1N_KO_HG_U133_Plus_2.CEL	495
cNF	batch2b-RMN9N_KO_HG_U133_Plus_2.CEL	520
cNF	batch2c-SCC5N_KO_HG_U133_Plus_2.CEL	531
pNF	batch3a-pNFSC_04.7_HG_U133_Plus_2.CEL	537
pNF	batch3a-pNFSC_05.4_HG_U133_Plus_2.CEL	538
pNF	batch3b-pNFSC_00.13_HG_U133_Plus_2.CEL	544
pNF	batch3b-pNFSC_05.5_HG_U133_Plus_2.CEL	545
pNF	batch3c-pNFSC_97.9_HG_U13Plus_2.CEL	552
pNF	batch1b-pNF00.6_HG_U133_Plus_2.CEL	464
pNF	batch1b-pNF95.3_HG_U133_Plus_2.CEL	466
pNF	batch1b-pNF95.6_HG_U133_Plus_2.CEL	467
pNF	batch2a-pNF03.3_HG_U133_Plus_2.CEL	503
pNF	batch2b-pNF04.4_HG_U133_Plus_2.CEL	516
pNF	batch2c-pNF05.3_HG_U133_Plus_2.CEL	527

Supplementary Table 3. Available microarray datasets used for *COL1A2* analysis.

References

- 1. Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, et al. NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature. 2021;594(7862):277-82.
- 2. Guo X, Pan Y, Xiong M, Sanapala S, Anastasaki C, Cobb O, et al. Midkine activation of CD8(+) T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun. 2020;11(1):2177.
- 3. Mo J, Anastasaki C, Chen Z, Shipman T, Papke J, Yin K, et al. Humanized neurofibroma model from induced pluripotent stem cells delineates tumor pathogenesis and developmental origins. J Clin Invest. 2021;131(1).