Supplementary material for the manuscript: Modeling pulsativity in the hypothalamic-pituitary-adrenal hormonal axis

Alexander N. Churilov and John G. Milton

Mathematical model

Consider a system of differential equations with delay and impulses:

$$\hat{C} = -k_c C + k_{ca} A(t-\tau), \tag{1}$$

$$A = -k_a A + (A_0 + k_{ah} H) F_a(C) F_\nu(V),$$
⁽²⁾

$$V = -k_{\nu}V + (V_0 + k_{\nu h}H)F_a(C).$$
(3)

The coordinates C(t), A(t) are continuous in time, and the potential function V(t) is left-continuous and may have impulses (jumps). The pulsation times t_n are defined from the recursion

$$t_0 = 0, \quad t_{n+1} = \min\{t : t > t_n, \quad V(t) = \Delta\},\tag{4}$$

where Δ is a given firing threshold. After the firing the function V(t) resets to zero:

$$V(t_n^+) = 0. (5)$$

Here $V(t_n^+)$ is the right-sided limit of V(t) at the point t_n .

Assume that $F_a(\cdot)$ and $F_v(\cdot)$ are nonlinear functions,

$$F_a(C) = F_0 + \frac{1}{1 + C/h_c}, \quad F_v(V) = e^{-k_s V} \quad \text{or} \quad F_v(V) = V e^{-k_s V}.$$
 (6)

The parameters k_a , k_c , k_v , k_{ah} , k_{ca} , k_{vh} , A_0 , V_0 , τ , k_s , h_c , F_0 are all positive.

The function H(t) decribes a synergetic input from the hypothalamic nuclei. In our simulations it is taken periodic or quasiperiodic.

System (1)–(5) is functional-differential with a discrete delay and jumps. Let $t_0 = 0$ be the initial time and $V(t_0^+) = 0$. For any initial data $C(t_0)$, $A(t) = \varphi(t)$, $t \in [t_0 - \tau, t_0]$, where $\varphi(t)$ is a continuous initial function, there exists a unique solution of system (1)–(5).

Simple properties of the model

Equations (1)–(3) can be rewritten as

$$\dot{C}(t) = -k_c C(t) + f_c(t), \tag{7}$$

$$\dot{A}(t) = -k_a A(t) + f_a(t), \tag{8}$$

$$\dot{V}(t) = -k_{\nu}V(t) + I(t), \tag{9}$$

where

$$f_c(t) = k_{ca}A(t-\tau),$$
(10)
$$f_c(t) = (t_{ca}A(t-\tau), t_{ca}A(t-\tau)) + (t_{ca}A(t-\tau)) + (t$$

$$f_a(t) = (A_0 + k_{ah}H(t))F_a(C(t))F_v(V(t)),$$
(11)

 $I(t) = (V_0 + k_{vh}H(t))F_a(C(t)).$ (12)

Proposition 1 System (1)–(3) is positive, i.e. its solutions have non-negative components for any non-negative initial data. Namely, let the input signal $H(t) \ge 0$ for $t \ge t_0$, $A(t) \ge 0$ for $t_0 - \tau \le t \le t_0$ and $C(t_0) \ge 0$. Then $A(t) \ge 0$, $C(t) \ge 0$, $V(t) \ge 0$ for all $t \ge t_0$.

Proof Obviously $I(t) \ge 0$ and hence $0 \le V(t) \le \Delta$ for all $t \ge t_0$. From (7), (8) we obtain

$$C(t) = e^{-k_c(t-t_0)}C(t_0) + \int_{t_0}^t e^{-k_c(t-s)} f_c(s) \, ds,$$
(13)

$$A(t) = e^{-k_a(t-t_0)}A(t_0) + \int_{t_0}^t e^{-k_a(t-s)}f_a(s)\,ds, \quad t \ge t_0.$$
(14)

Then the statement of the proposition evidently follows.

Further we suppose that the conditions of Proposition 1 are fulfilled, because only positive decisions have biological meaning. Let $0 \le H^- \le H(t) \le H^+$ for $t \ge t_0$, where H^- , H^+ are some numbers. Introduce a number

$$F_{\nu}^{+} = \begin{cases} 1, & F_{\nu}(V) = e^{-k_{s}V}, \\ (k_{s}e)^{-1}, & F_{\nu}(V) = Ve^{-k_{s}V}. \end{cases}$$

Evidently $F_{v}(V) \leq F_{v}^{+}$ for all *V*.

Proposition 2 Define

$$A^+ = (A_0 + k_{ah}H^+)(F_0 + 1)F_v^+/k_a, \quad C^+ = A^+k_{ca}/k_c.$$

Then A(t) *and* C(t) *are bounded for* $t \ge t_0$ *, and*

$$\limsup_{t \to +\infty} A(t) \le A^+, \quad \limsup_{t \to +\infty} C(t) \le C^+.$$

Proof The proof follows from (13), (14).

Obviously $I^- \leq I(t) \leq I^+$ for all $t \geq t_0$, where

$$I^{-} = (V_0 + k_{vh}H^{-})F_0, \quad I^{+} = (V_0 + k_{vh}H^{+})(F_0 + 1).$$

Proposition 3 Let

$$I^- > \Delta k_{\nu}. \tag{15}$$

Define $T_n = t_{n+1} - t_n$, $n \ge 0$. Then for any solution of (9), (4), (5) and all $n \ge 0$ we have

$$-\frac{1}{k_{\nu}}\ln\left(1-\frac{\Delta k_{\nu}}{I^{+}}\right) \le T_{n} \le -\frac{1}{k_{\nu}}\ln\left(1-\frac{\Delta k_{\nu}}{I^{-}}\right).$$
(16)

Proof The proof follows immediately from the integral representation

$$V(t) = \int_0^{t-t_n} e^{-k_v(t-t_n-s)} I(s+t_n) \, ds, \quad t_n \le t \le t_{n+1}$$
(17)

and from the equality $V(t_{n+1}) = \Delta$.

In the special case $k_v \rightarrow +0$ (a perfect integrator) (15) is satisfied and (16) takes the form

$$\Delta/I^+ \le T_n \le \Delta/I^-. \tag{18}$$

If $I^- < \Delta k_{\nu}$, then the threshold Δ is never reached and the function V(t) has no jumps.