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Mathematical model
Consider a system of differential equations with delay and impulses:

Ċ =−kcC+ kcaA(t− τ), (1)

Ȧ =−kaA+(A0 + kahH)Fa(C)Fv(V ), (2)
V̇ =−kvV +(V0 + kvhH)Fa(C). (3)

The coordinates C(t), A(t) are continuous in time, and the potential function V (t) is left-continuous and may have impulses
(jumps). The pulsation times tn are defined from the recursion

t0 = 0, tn+1 = min{t : t > tn, V (t) = ∆}, (4)

where ∆ is a given firing threshold. After the firing the function V (t) resets to zero:

V (t+n ) = 0. (5)

Here V (t+n ) is the right-sided limit of V (t) at the point tn.
Assume that Fa(·) and Fv(·) are nonlinear functions,

Fa(C) = F0 +
1

1+C/hc
, Fv(V ) = e−ksV or Fv(V ) =V e−ksV . (6)

The parameters ka, kc, kv, kah, kca, kvh, A0, V0, τ , ks, hc, F0 are all positive.
The function H(t) decribes a synergetic input from the hypothalamic nuclei. In our simulations it is taken periodic or

quasiperiodic.
System (1)–(5) is functional-differential with a discrete delay and jumps. Let t0 = 0 be the initial time and V (t+0 ) = 0. For

any initial data C(t0), A(t) = ϕ(t), t ∈ [t0− τ, t0], where ϕ(t) is a continuous initial function, there exists a unique solution of
system (1)–(5).

Simple properties of the model
Equations (1)–(3) can be rewritten as

Ċ(t) =−kcC(t)+ fc(t), (7)

Ȧ(t) =−kaA(t)+ fa(t), (8)
V̇ (t) =−kvV (t)+ I(t), (9)

where

fc(t) = kcaA(t− τ), (10)
fa(t) = (A0 + kahH(t))Fa(C(t))Fv(V (t)), (11)
I(t) = (V0 + kvhH(t))Fa(C(t)). (12)

Proposition 1 System (1)–(3) is positive, i.e. its solutions have non-negative components for any non-negative initial data.
Namely, let the input signal H(t)≥ 0 for t ≥ t0, A(t)≥ 0 for t0− τ ≤ t ≤ t0 and C(t0)≥ 0. Then A(t)≥ 0, C(t)≥ 0, V (t)≥ 0
for all t ≥ t0.



Proof Obviously I(t)≥ 0 and hence 0≤V (t)≤ ∆ for all t ≥ t0. From (7), (8) we obtain

C(t) = e−kc(t−t0)C(t0)+
∫ t

t0
e−kc(t−s) fc(s)ds, (13)

A(t) = e−ka(t−t0)A(t0)+
∫ t

t0
e−ka(t−s) fa(s)ds, t ≥ t0. (14)

Then the statement of the proposition evidently follows. �
Further we suppose that the conditions of Proposition 1 are fulfilled, because only positive decisions have biological

meaning. Let 0≤ H− ≤ H(t)≤ H+ for t ≥ t0, where H−, H+ are some numbers. Introduce a number

F+
v =

{
1, Fv(V ) = e−ksV ,

(kse)−1, Fv(V ) =V e−ksV .

Evidently Fv(V )≤ F+
v for all V .

Proposition 2 Define

A+ = (A0 + kahH+)(F0 +1)F+
v /ka, C+ = A+kca/kc.

Then A(t) and C(t) are bounded for t ≥ t0, and

limsup
t→+∞

A(t)≤ A+, limsup
t→+∞

C(t)≤C+ .

Proof The proof follows from (13), (14). �
Obviously I− ≤ I(t)≤ I+ for all t ≥ t0, where

I− = (V0 + kvhH−)F0, I+ = (V0 + kvhH+)(F0 +1) .

Proposition 3 Let

I− > ∆kv. (15)

Define Tn = tn+1− tn, n≥ 0. Then for any solution of (9), (4), (5) and all n≥ 0 we have

− 1
kv

ln
(

1− ∆kv

I+

)
≤ Tn ≤−

1
kv

ln
(

1− ∆kv

I−

)
. (16)

Proof The proof follows immediately from the integral representation

V (t) =
∫ t−tn

0
e−kv(t−tn−s)I(s+ tn)ds, tn ≤ t ≤ tn+1 (17)

and from the equality V (tn+1) = ∆. �
In the special case kv→+0 (a perfect integrator) (15) is satisfied and (16) takes the form

∆/I+ ≤ Tn ≤ ∆/I−. (18)

If I− < ∆kv, then the threshold ∆ is never reached and the function V (t) has no jumps.
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