Supporting Information For

Design, Synthesis, and Preliminary Evaluation of [⁶⁸Ga]Ga-NOTA-Insulin as a PET Probe in Alzheimer's Disease Mouse Model

Jillissa C. Taubel^{¥, 1}, Nicholas R. Nelson^{¥, 1}, Aditya Bansal¹, Geoffrey L. Curran¹, Lushan Wang²,

Zengtao Wang², Heather M. Berg¹, Cynthia J. Vernon¹, Hoon-Ki Min¹, Nicholas B. Larson³,

Timothy R. DeGrado⁴, Karunya Kandimalla^{*2}, Val J. Lowe^{1*}, Mukesh K. Pandey^{1*}

¹Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, MN 55905,

United States

²Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN

55455, United States

³Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, United States

⁴Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045,

United States

Description of Supporting Figures:

Figure S1: HPLC traces of different product during optimization of NOTA-insulin reaction time

Figure S2: Representative HPLC trace of different products after reaction optimization and PD-10 purification (one of the fractions)

Figure S3: Representative HPLC trace of one of the PD-10 purified fractions used for radiolabeling

Figure S4: r-TLC trace of [68Ga]Ga-NOTA-insulin

Figure S5: MALDI-TOF spectrum of insulin

Figure S6: MALDI-TOF spectrum of NOTA-insulin before reaction condition optimization and after PD-10 purification

Figure S7: Uptake (SUV) of [¹¹C]PIB in Normal (B6SJL) and AD (APP/PS1) mice models at 30 min post intravenous administration measured via organ/tissue harvesting. P values have been adjusted for multiple testing

Figure S8: Brain (SUV) of (A) [¹⁸F]AV1451 and (B) [¹¹C]PIB and Heart (SUV) (C) [¹⁸F]AV1451 and (D) [¹¹C]PIB in AD (n=4 for each tracer) and normal (n=4 for each tracer) mice at 5, 10, 15 and 20 min post intravenous (i.v.) administration. The uptake (SUV) data for figure S8 was extracted from micro-PET/CT images by drawing region of interest (ROI) at different timepoints.

Figure S9: Uptake (SUV) and biodistribution of (A) $[^{18}F]AV1451$ and (B) $[^{11}C]PIB$ in in different brain regions of AD (n=4 for each tracer) and normal (n=4 for each tracer) at 30 min post intravenous (i.v.) administration.

Figure S10: Uptake (SUV) and biodistribution of (A) $[^{18}F]AV1451$ and (B) $[^{11}C]PIB$ in AD (n=4 for each tracer) and normal (n=4 for each tracer) at 30 min post intravenous (i.v.) administration.

Figure S11: Representative micro-PET/CT images of (A) [¹⁸F]AV1451 and (B) [¹¹C]PIB in normal and AD mice at different time points post intravenous (i.v.) administration.

Description of Supporting Tables:

Table S1: Details of injected NOTA-insulin (nonradioactive mass) as $[^{68}Ga]Ga$ -NOTA-insulin, specific activity(A_s) at time of injection and molar activity(A_m) at end of the synthesis

Table S2: Uptake (SUV) of [¹⁸F]AV1451 in brain of AD (APP/PS1) and normal (B6SJL) mice post intravenous administration measured via micro PET/CT image analysis and drawing region of interest (ROI) on whole mice brain and whole heart at different timepoints.

Table S3: Uptake (SUV) of [¹⁸F]AV1451 in different brain regions of B6SJL (normal) and APP/PS1 (AD) mice models at 30 min post intravenous administration measured via organ/tissue harvesting

Table S4: Uptake (SUV) of [¹⁸F]AV1451 in Normal (B6SJL) and AD (APP/PS1)mice models at 30 min post intravenous administration measured via organ/tissue harvesting.

Table S5: Uptake (SUV) of [¹¹C]PIB in brain of AD (APP/PS1) and normal (B6SJL) mice post intravenous administration measured via micro PET/CT image analysis and drawing region of interest (ROI) on whole mice brain and whole heart at different timepoints.

Table S6: Uptake (SUV) of [¹¹C]PIB in different brain regions of Normal (B6SJL) and AD (APP/PS1) mice models at 30 min post intravenous administration measured via organ/tissue harvesting. P values have been adjusted for multiple testing.

Table S7: Uptake (SUV) of [¹¹C]PIB in normal (B6SJL) and AD (APP/PS1) mice models at 30 min post intravenous administration measured via organ/tissue harvesting. P values have been adjusted for multiple testing.

Figure S1: HPLC traces of different product during optimization of NOTA-insulin reaction time

Figure S2: Representative HPLC trace of different products after reaction optimization and PD-10 purification (one of the fractions)

Note: Relative retention time may shift ($\pm 1.5 \text{ min}$) from day-to-day HPLC analysis and after PD-10 purification.

Figure S3: Representative HPLC trace of one of the PD-10 purified fractions used for radiolabeling

HPLC trace of NOTA-insulin products after PD-10 purification

Figure S4: MALDI-TOF spectrum of insulin

Figure S5: MALDI-TOF spectrum of NOTA-insulin before reaction condition optimization and after PD-10 purification

Figure S6: MALDI-TOF spectrum of NOTA-insulin after optimization of reaction condition and PD-10 purification

Figure S7: r-TLC trace of [⁶⁸Ga]Ga-NOTA-insulin

Figure S8: Brain (SUV) of (A) [¹⁸F]AV1451 and (B) [¹¹C]PIB and Heart (SUV) (C) [¹⁸F]AV1451 and (D) [¹¹C]PIB in AD (n=4 for each tracer) and normal (n=4 for each tracer) mice at 5, 10, 15 and 20 min post intravenous (i.v.) administration. The uptake (SUV) data for figure 10 was extracted from micro-PET/CT images by drawing region of interest (ROI) at different timepoints.

Figure S9: Uptake (SUV) and biodistribution of (A) [¹⁸F]AV1451 and (B) [¹¹C]PIB in in different brain regions of AD (n=4 for each tracer) and normal (n=4 for each tracer) at 30 min post intravenous (i.v.) administration.

Figure S10: Uptake (SUV) and biodistribution of (A) [¹⁸F]AV1451 and (B) [¹¹C]PIB in AD (n=4 for each tracer) at 30 min post intravenous (i.v.) administration.

Figure S11: Representative micro-PET/CT images of (A) [¹⁸F]AV1451 and (B) [¹¹C]PIB in normal and AD mice at different time points post intravenous (i.v.) administration.

	Insulin injected	Specific activity (A_s) at	Molar activity (A _m) at
AD	/Body Wt (µg/g)	Time of Injection	End of synthesis
		(MBq/µg)	(GBq/µmol)
AD Mouse 1	0.341	0.17	0.92
AD Mouse 2	0.318	0.13	
AD Mouse 3	0.176	0.36	1.17
AD Mouse 4	0.277	0.20	
AD Mouse 5	0.190	0.27	0.97
AD Mouse 6	0.297	0.17	
AD Mouse 7	0.170	0.34	1.21
AD Mouse 8	0.266	0.25	
AD Mouse 9	0.163	0.40	1.35
AD Mouse 10	0.297	0.29	
N 1			
Normal	0.000	0.26	0.50
Mouse 1	0.092	0.26	0.70
Mouse 2	0.197	0.22	
Mouse 3	0.085	0.48	1.11
Mouse 4	0.211	0.32	
Mouse 5	0.103	0.25	0.71
Mouse 6	0.210	0.18	
Mouse 7	0.116	0.36	0.96
Mouse 8	0.201	0.26	
Mouse 9	0.123	0.61	1.45
Mouse 10	0.256	0.43	
Mouse 11	0.098	0.61	1.40
Mouse 12	0.226	0.44	
		Average	1.1±0.26

Table S1: Details of injected NOTA-insulin (nonradioactive mass) as $[^{68}Ga]Ga$ -NOTA-insulin, specific activity(A_s) at time of injection and molar activity(A_m) at end of the synthesis

Table S2: Uptake (SUV) of [¹⁸F]AV1451 in brain of AD (APP/PS1) and normal (B6SJL) mice post intravenous administration measured via micro PET/CT image analysis and drawing region of interest (ROI) on whole mice brain and whole heart at different timepoints.

Time points (min)	AD Brain (Avg. SUV±SD, n=4)	Normal Brain (Avg. SUV±SD, n=4)	P value	AD Heart (Avg. SUV±SD, n=4)	Normal Heart (Avg. SUV±SD, n=4)	P value
5	1.601 ± 0.499	1.465 ± 0.164	0.311	1.329 ± 0.448	0.912 ± 0.278	0.082
10	0.989 ± 0.236	1.003 ± 0.158	0.464	1.118 ± 0.492	0.728 ± 0.190	0.095
15	0.754 ± 0.164	0.749 ± 0.138	0.483	1.047 ± 0.514	0.670 ± 0.187	0.108
20	0.611 ± 0.129	0.602 ± 0.118	0.461	0.948 ± 0.450	0.632 ± 0.193	0.123

Table S3: Uptake (SUV) of [¹⁸F]AV1451 in different brain regions of Normal (B6SJL) and AD (APP/PS1) mice models at 30 min post intravenous administration measured via organ/tissue harvesting.

	Alzhaimar's disaasa miaa	Normal mice	
Mouse brain regions	(Avg. SUV±SD, n=4)	(Avg. SUV±SD, n=4)	P value
Caudate Nucleus	0.287 ± 0.097	0.483 ± 0.148	0.37
Cortex	0.390 ± 0.118	0.471 ± 0.155	0.58
Hippocampus	0.394 ± 0.027	0.572 ± 0.316	0.52
Thalamus	0.326 ± 0.041	0.453 ± 0.155	0.40
Brain stem	0.365 ± 0.021	0.484 ± 0.177	0.45
Cerebellum	0.471 ± 0.365	0.367 ± 0.117	0.76

Alzheimer's disease mice Normal mice **Organ/Tissue** P value (Avg. SUV±SD, n=4) (Avg. SUV±SD, n=4) Blood 0.252 ± 0.080 0.289 ± 0.122 0.76 Heart 0.522 ± 0.071 0.625 ± 0.181 0.52 0.976 ± 0.171 1.707 ± 0.647 0.37 Lungs 2.593 ± 1.284 4.038 ± 1.796 0.40 Liver 2.503 ± 0.635 0.40 Spleen 3.616 ± 1.067 Pancreas 1.234 ± 0.033 1.379 ± 0.515 0.76 Bone 0.628 ± 0.146 0.903 ± 0.190 0.37 0.40 Gut 1.733 ± 0.685 2.727 ± 1.385 Feces 0.471 ± 0.105 2.486 ± 2.986 0.40 0.206 ± 0.069 0.299 ± 0.344 0.76 Adipose 1.597 ± 0.404 2.074 ± 0.594 0.40 Stomach 0.174 ± 0.042 0.311 ± 0.095 Skin 0.37 Muscle 0.209 ± 0.040 0.256 ± 0.057 0.40 Cecum 0.469 ± 0.087 0.756 ± 0.231 0.37 2.738 ± 0.652 3.729 ± 0.791 0.40 Eyes 0.80 Bladder 1.799 ± 1.093 2.529 ± 2.640 Kidneys 2.618 ± 1.931 4.753 ± 1.427 0.40 Urine 7.971 ± 8.091 6.788 ± 2.134 0.79

Table S4: Uptake (SUV) of [¹⁸F]AV1451 in Normal (B6SJL) and AD (APP/PS1)mice models at 30 min post intravenous administration measured via organ/tissue harvesting.

Table S5: Uptake (SUV) of [¹¹C]PIB in brain of AD (APP/PS1) and normal (B6SJL) mice post intravenous administration measured via micro PET/CT image analysis and drawing region of interest (ROI) on whole mice brain and whole heart at different timepoints.

Time points (min)	AD Brain (Avg. SUV±SD, n=4)	Normal Brain (Avg. SUV±SD, n=4)	P value	AD Heart (Avg. SUV±SD, n=4)	Normal Heart (Avg. SUV±SD, n=4)	P value
5	0.866 ± 0.386	0.743 ± 0.211	0.299	1.167 ± 0.743	1.131 ± 0.351	0.215
10	0.436 ± 0.172	0.381 ± 0.118	0.307	0.911 ± 0.582	0.972 ± 0.306	0.328
15	0.278 ± 0.099	0.266 ± 0.088	0.434	0.749 ± 0.482	0.854 ± 0.267	0.414
20	0.203 ± 0.067	0.210 ± 0.065	0.450	0.637 ± 0.388	0.740 ± 0.228	0.434

Table S6: Uptake (SUV) of [¹¹C]PIB in different brain regions of Normal (B6SJL) and AD (APP/PS1) mice models at 30 min post intravenous administration measured via organ/tissue harvesting. P values have been adjusted for multiple testing.

	Alzheimer's disease mice	Normal mice	
Mouse brain regions	(Avg SUV+SD n=4)	(Avg. SUV±SD,	P value
	(Avg. 50 v ±5D, 11−4)	n=4)	
Cortex	0.147 ± 0.08	0.132 ± 0.049	0.90
Caudate Nucleus	0.158 ± 0.09	0.169 ± 0.041	0.64
Hippocampus	0.204 ± 0.12	0.157 ± 0.055	0.64
Thalamus	0.160 ± 0.08	0.168 ± 0.048	0.64
Brain stem	0.241 ± 0.13	0.241 ± 0.050	0.64
Cerebellum	0.173 ± 0.09	0.178 ± 0.061	0.64

Table S7: Uptake (SUV) of [¹¹C]PIB in Normal (B6SJL) and AD (APP/PS1) mice models at 30 min post intravenous administration measured via organ/tissue harvesting. P values have been adjusted for multiple testing.

0 /T	Alzheimer's disease mice	Normal mice	D I
Organ/Tissue	(Avg. SUV±SD, n=4)	(Avg. SUV±SD, n=4)	P value
Blood	0.516 ± 0.296	0.532 ± 0.294	0.86
Heart	0.441 ± 0.424	0.325 ± 0.158	0.86
Lungs	0.398 ± 0.220	0.607 ± 0.163	0.63
Liver	3.148 ± 1.159	4.076 ± 2.094	0.64
Spleen	0.232 ± 0.104	0.464 ± 0.057	0.55
Pancreas	0.384 ± 0.157	0.911 ± 0.217	0.55
Bone	0.146 ± 0.051	0.184 ± 0.042	0.63
Gut	6.440 ± 1.464	4.989 ± 1.604	0.63
Feces	0.922 ± 0.819	0.716 ± 0.316	0.86
Adipose	0.507 ± 0.279	0.406 ± 0.061	0.64
Stomach	2.433 ± 4.190	1.873 ± 1.570	0.98
Skin	0.295 ± 0.144	0.341 ± 0.317	0.64
Muscle	0.171 ± 0.072	0.232 ± 0.028	0.63
Cecum	0.435 ± 0.236	0.413 ± 0.082	0.86
Eyes	0.574 ± 0.258	1.886 ± 1.530	0.63
Bladder	11.353 ± 7.539	5.848 ± 4.365	0.63
Kidneys	6.853 ± 5.772	3.881 ± 0.803	0.98

Urine	64.293 ± 32.503	30.571 ± 27.148	0.63