Supplementary Information for: A parsimonious model for mass-univariate vertex-wise analyses

Baptiste Couvy-Duchesne, Futao Zhang, Kathryn E. Kemper, Julia Sidorenko, Naomi R. Wray, Peter M. Visscher, Olivier Colliot, Jian Yang

Correspondence: BCD (<u>b.couvyduchesne@uq.edu.au</u>), JY (<u>jian.yang@uq.edu.au</u>)

This PDF file includes:

Supplementary Figs. 1 to 16 Supplementary Tables 1 to 7 Supplementary (section) 1 - 2

A hundred phenotypes were simulated at random and analysed using each model.

SFigure 2: Statistical power for simulated phenotypes associated with a single type of modality

The phenotypes were simulated from a single type of measurement (indicated in parenthesis on the Y-axis label). The statistical power is measured using the true positive rate, or proportion of true associations significant after Bonferroni correction.

SFigure 3: Probability of a false positive vertex arising from associations on cortical thickness

The phenotypes were simulated from cortical thickness only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 4: Probability of a false positive vertex arising from associations on cortical surface area

The phenotypes were simulated from cortical surface area only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 5: Probability of a false positive vertex arising from associations on subcortical thickness

The phenotypes were simulated from subcortical thickness only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 6: Probability of a false positive vertex arising from associations on subcortical surface area

The phenotypes were simulated from subcortical surface area only. The FWER corresponds to the proportion of replicates with a false positive vertex on each type of measurement.

SFigure 7: Results of mass-univariate analyses using smoothed meshes of cortical vertices.

For the ease of computation, we only considered a simple simulation scenario of 10 associated vertices (morphometricity of 20%). Phenotypes were again simulated from the cortical and subcortical meshes, using the same seed vertices and weights as in previous simulations on unsmoothed data.

SFigure 8: Morphometricity estimates of our simulated traits from our three LMM models The grey lines represent the expected values. The different panels correspond to the different simulation scenarios : "10 associated vertices", "100 associated vertices" and "1000 associated vertices".

SFigure 9: Manhattan plot of mass-univariate vertex-wise analysis of body mass index

The Y axis shows the significance level (-log10 pvalue) for all grey matter vertices using the LMM "single random effect". The red horizontal line indicates the brain-wide significance threshold using Bonferroni correction.

SFigure 10: Manhattan plot of mass-univariate vertex-wise analysis of age

The Y axis shows the significance level (-log10 pvalue) for all grey matter vertices using the LMM "single random effect". The red horizontal line indicates the brain-wide significance threshold using Bonferroni correction.

SFigure 11: Manhattan plot of LMM mass-univariate vertex-wise analysis of sex

The Y axis shows the significance level (-log10 pvalue) for all grey matter vertices using the LMM "single random effect". The red horizontal line indicates the brain-wide significance threshold using Bonferroni correction.

SFigure 12: Results of vertex-wise analysis for age at MRI using the different models

The brain plots present the significant vertices (in color), for (from left to right) cortical thickness, cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM "5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM".

SFigure 13: Results of vertex-wise analysis for BMI using the different models

The brain plots present the significant vertices (in color), for (from left to right) cortical thickness, cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM "5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM".

SFigure 14: Results of vertex-wise analysis for sex using the different models

The brain plots present the significant vertices (in color), for (from left to right) cortical thickness (left hemisphere, right hemisphere), cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM "5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM".

SFigure 15: Results of vertex-wise analysis for fluid IQ using the different models

The brain plots present the significant vertices (in color), for (from left to right) cortical thickness (left hemisphere, right hemisphere), cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM "5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM" (no significant association after multiple testing correction).

SFigure 16: Results of vertex-wise analysis for smoking status using the different models

The brain plots present the significant vertices (in color), for (from left to right) cortical thickness (left hemisphere, right hemisphere), cortical surface area, subcortical thickness and subcortical surface. The top and bottom rows shows the outside and inside view of the cortex and of the subcortical volumes. a) Results for GLM "no covariates", b) GLM "sex, ICV", c) GLM "5 global PCs", d) GLM "10 global PCs, e) LMM "global BRM" (no significant association after multiple testing correction).

above yabove <th>Metric</th> <th>Num</th> <th>No</th> <th>Ago Sor</th> <th>5 global</th> <th>10 global</th> <th>10</th> <th>LMM</th> <th>LMM</th> <th>LMM</th>	Metric	Num	No	Ago Sor	5 global	10 global	10	LMM	LMM	LMM
Linking 11 <		assoc. vertice s	covariates	Age, Sex, ICV reg.	5 global PCs	PCs	modality spe. PCs	(global BRM)	with covariates	(multi. BRM)
1900142 (3.9)143 (3.0)137 (3.0)137 (3.0)137 (3.0)96 (3.	Lambda (inflation factor)	10 100	2.64 (1.58) 6.45 (4.27)	1.63 (0.64) 3.01 (1.62)	1.15 (0.07) 1.46 (0.09)	1.12 (0.05) 1.37 (0.07)	1.1 (0.04) 1.31 (0.05)	0.94 (0.02)	0.93 (0.02)	0.95 (0.02) 0.91 (0.01)
PR (space) (a) <t< th=""><th></th><th>1000</th><th>4.42 (3.49)</th><th>2.53 (1.08)</th><th>1.48 (0.09)</th><th>1.37 (0.05)</th><th>1.32 (0.04)</th><th>0.96 (0.01)</th><th>0.96 (0.01)</th><th>0.97 (0.01)</th></t<>		1000	4.42 (3.49)	2.53 (1.08)	1.48 (0.09)	1.37 (0.05)	1.32 (0.04)	0.96 (0.01)	0.96 (0.01)	0.97 (0.01)
Inter parts 100 0.32 (0.1) 0.24 (0.1) 0.12 (0.0) 0.11 (0.0) 0.04 (-0.0) 0.04 (-0.0) 0.04 (-0.0) 0.04 (-0.0) 0.04 (-0.0) 0.04 (-0.0) 0.05 (-0.0) 0.04 (-0.0) 0.05 (-0.0) 0.04 (-0.0) 0.05 (-0.0) 0.05 (-0.0) 0.05 (-0.0) 0.05 (-0.0) 0.04 (-0.0) 0.01	FPR (Nominal	10	0.2 (0.11)	0.13 (0.06)	0.07 (0.01)	0.07 (0.01)	0.07 (0.01)	0.05 (<0.01)	0.04 (<0.01)	0.05 (<0.01)
Tree partier (TP) and (TP) and (TP	rate)	100	0.39 (0.16)	0.24 (0.1)	0.12 (0.01)	0.1 (0.01)	0.1 (0.01)	0.04 (<0.01)	0.04 (<0.01)	0.04 (<0.01)
(TP) rate 10 0.54 (0.02) 0.51 (0.02) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.51 (0.03) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 0.01 (-0.01) 1.00	True positive	1000	0.3(0.14) 0.72(0.12)	0.21(0.08)	0.12 (0.01)	0.71 (0.13)	0.09(0.01)	0.03 (< 0.01)	0.03 (< 0.01)	0.03 (<0.01)
Index Desc Desc <thdesc< th=""> Desc Desc <th< th=""><th>(TP) rate</th><th>100</th><th>0.45 (0.05)</th><th>0.43 (0.04)</th><th>0.42 (0.04)</th><th>0.41 (0.04)</th><th>0.41 (0.04)</th><th>0.38 (0.04)</th><th>0.38 (0.04)</th><th>0.37 (0.03)</th></th<></thdesc<>	(TP) rate	100	0.45 (0.05)	0.43 (0.04)	0.42 (0.04)	0.41 (0.04)	0.41 (0.04)	0.38 (0.04)	0.38 (0.04)	0.37 (0.03)
Median isol relation corrical synthesis101(12)1(12)1(12)1(10)1(10)1(10)Telester corrical synthes1(0)1(0)1(0)1(0)1(0)1(0)1(0)1(0)1(0)Max. size of T corrical synthes10061(0)7(1)3(7)3(5)2(2)3(8)1(1)<		1000	0.05 (0.04)	0.03 (0.02)	0.02 (<0.01)	0.01 (<0.01)	0.01 (<0.01)	0.01 (<0.01)	0.01 (0)	0.01 (<0.01)
overlag 100	Median size of TP cluster on	10	11 (45)	7 (32)	3 (12)	2 (9)	1 (2)	1 (1)	1 (1)	1 (0)
arcs 100 1.00 <th1< th=""><th>cortical surface</th><th>100</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th></th1<>	cortical surface	100	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
Max. Strop 01 P 10 63 (183) 29 (79) 18 (49) 12 (7) 7 (22) 3 (8) 3 (8) 2 (3) surface are surface are surface are surface 100 63 (2123) 1 (19) 1 (10)	area	1000	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
string area 100 165 (400) 7 (17) 3 (17) 3 (17) 100 11 (1) 11 (1	cluster on cortical	10	63 (183)	29 (79)	18 (49)	12 (37)	7 (22)	3 (8)	3 (8)	2 (3)
Indian size of Pretainer on indicates 100 1100 1100 1100 1100 1100 Indianse of Pretainer on indicates 100 81 (63) 85 (172) 50 (12) 48 (13) 45 (13) 24 (8) 24 (8) 24 (7) Max size of TP (indicates) 100 30 (22) 26 (16) 13 (7) 13 (7) 13 (7) 143 (65) 148 (64) 199 (62) Max size of TP (indicates) 100 297 (812) 1240 226 (123) 214 (107) 196 (84) 86 (20) 85 (20)	surface area	100	163 (601)	7 (17)	3 (7)	3 (5)	2 (2)	1(1)	1(1)	1 (0)
TP duster on cortical 10 152 (102) 162 (103) 162 (112) 112 (17) 100 (107) 179 (13) 179 (14) Max size of TP cluster on cortical thickness 100 30 (22) 26 (16) 13 (7) 13 (13) 13 (12) 13 (13) 143 (65) 145 (64) 139 (62) Max size of TP cluster on cortical thickness 100 327 (124) 152 (162) 132 (104) 254 (178) 231 (142) 143 (65) 145 (64) 139 (62) Median size cortical surface 100 357 (126) 447 (48) 236 (25) 146 (152) 104 (48) 33 (80) 88 (70) 49 (31) TP duster sub- tocrtical surface 100 457 (576) 353 (143) 127 (123) 102 (103) 57 (39) 35 (22) 31 (10) 31 (23) 32 (23) 35 (23) 25 (23) Cortical surface 100 133 (840) 244 (450) 52 (25) 13 (11) 10 (13) 77 (77) 41 (30) 40 (13) 32 (21) Contral surface 100 177 (77) 34 (450) 26 (25) 26 (25)	Median size of	1000	205 (1283)	1 (2)	3 (19)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
cortical hicklases 1000 30:027 20:127 10:128 20:127 10:128 10:07 10:07 20:128 10:07 20:128 10:07 10	TP cluster on	10	152 (162) 81 (63)	149 (108) 85 (172)	50 (12)	48 (13)	45 (13)	79 (45) 24 (8)	79 (45) 24 (8)	77(44)
Nas. size of TP cluster or ordical thickness 10 334 (502) 332 (304) 254 (178) 231 (142) 218 (10) 143 (65)	cortical thickness	1000	30 (22)	26 (16)	13 (7)	13 (8)	13 (7)	7 (5)	7 (5)	6(5)
cluster overlai 1240	Max. size of TP	10	384 (502)	332 (304)	254 (178)	231 (142)	218 (130)	143 (65)	145 (64)	139 (62)
Index Index <th< th=""><th>cluster on cortical thickness</th><th>100</th><th>1972 (8124)</th><th>1240</th><th>226 (123)</th><th>214 (107)</th><th>196 (84)</th><th>86 (20)</th><th>86 (20)</th><th>85 (20)</th></th<>	cluster on cortical thickness	100	1972 (8124)	1240	226 (123)	214 (107)	196 (84)	86 (20)	86 (20)	85 (20)
Intelline size of Pre cluster sub- cortical surface 10 795 (726) 447 (488) 236 (259) 164 (152) 104 (88) 93 (80) 88 (79) 49 (31) Pre cluster sub- cortical surface 100 855 (750) 335 (434) 127 (132) 102 (99) 57 (39) 32 (22) 31 (20) 25 (17) Max. size of TP 10 848 (732) 450 (486) 239 (257) 166 (151) 106 (677) 44 (79) 89 (78) 50 (31) contrial surface 100 813 (480) 241 (370) 53 (63) 52 (55) 23 (18) 6 (22) 5 (4) 32 (21) Indetian size of TP cluster on sub-cortical 100 747 (217) 384 (479) 206 (258) 193 (236) 82 (84) 6 (4) (23) 6 (6) 3 (3) 15 (11) 15 (11) thickness 1000 200 (220) 116 (270) 39 (44) 30 (30) 18 (30) 7 (10) 6 (9) 2 (21) Max. size TP cluster Size TP cluster Size TP 10 759 (713) 406 (481) 116 (11) 51 (415) 7 (10) 6 (9)		1000	225 (325)	196 (266)	73 (94)	50 (35)	44 (33)	11 (7)	11 (7)	10 (8)
IP claster sub- cortical surfaces 100 855 (76) 335 (43) 127 (132) 102 (99) 57 (39) 32 (22) 31 (20) 25 (17) cortical surfaces 100 455 (551) 140 (205) 46 (57) 41 (49) 21 (17) 56 (2) 5 (4) 2 (NA) custer sub- cortical surface 100 413 (246) 24 (1370 51 (63) 52 (55) 23 (18) 6 (2) 5 (4) 3 (NA) TP cluster on sub-cortical 100 417 (245) 222 (249) 90 (101) 75 (81) 37 (36) 20 (19) 18 (17) 15 (11) thickness 100 200 (220) 116 (270) 39 (44) 30 (30) 18 (30) 7 (10) 6 (9) 2 (2) Max. size TP cluster on subcortical 100 68 (76) 385 (494) 14 (191) 116 (131) 51 (48) 26 (28) 24 (20) 17 (12) itackness 100 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0	Median size of	10	795 (726)	447 (488)	236 (259)	164 (152)	104 (88)	93 (80)	88 (79)	49 (31)
Interview 100 455 (51) 140 (25) 46 (57) 41 (49) 21 (17) 6 (2) 5 (4) 2 (2N) Interview 100 1183 (88) 568 (608) 186 (210) 150 (13) 77 (57) 41 (30) 40 (28) 29 (18) centrical strates 100 1183 (88) 568 (608) 186 (210) 150 (13) 77 (57) 41 (40) 40 (28) 29 (18) ortical strates 100 417 (475) 224 (237) 206 (258) 193 (236) 82 (84) 64 (62) 61 (61) 32 (21) thickness 100 407 (717) 384 (479) 202 (257) 200 (234) 85 (83) 66 (63) 63 (16) 32 (21) thickness 100 668 (776) 385 (394) 148 (191) 116 (131) 51 (48) 26 (28) 24 (26) 17 (12) subcortical 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <th>TP cluster sub- cortical surface</th> <td>100</td> <td>855 (769)</td> <td>335 (434)</td> <td>127 (132)</td> <td>102 (99)</td> <td>57 (39)</td> <td>32 (22)</td> <td>31 (20)</td> <td>25 (17)</td>	TP cluster sub- cortical surface	100	855 (769)	335 (434)	127 (132)	102 (99)	57 (39)	32 (22)	31 (20)	25 (17)
Nik. Xi2 of 1P 100 104 104 104 104 1183 (88) 2.90 (2.5) 1050 (13) 17 (75) 4 (130) 40 (0.5) 20 (13) cortical surface 1000 813 (846) 241 (370) 53 (63) 52 (55) 23 (18) 64 (62) 61 (61) 32 (21) Median size 100 417 (495) 222 (249) 90 (101) 75 (81) 37 (36) 20 (19) 18 (17) 15 (11) thickness 1000 200 (220) 116 (270) 39 (44) 30 (30) 18 (30) 7 (10) 6 (9) 2 (2) max. vize 71 10 759 (713) 406 (481) 212 (257) 200 (234) 85 (304) 16 (13) 51 (48) 26 (28) 24 (26) 17 (12) elubser on 100 668 (776) 388 (343) 50 (61) 39 (43) 21 (31) 7 (10) 6 (9) 2 (2) FWER 100 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) </th <th>Man din of TD</th> <th>1000</th> <th>455 (551)</th> <th>140 (205)</th> <th>46 (57)</th> <th>41 (49)</th> <th>21 (17)</th> <th>6 (2)</th> <th>5 (4)</th> <th>2 (NA)</th>	Man din of TD	1000	455 (551)	140 (205)	46 (57)	41 (49)	21 (17)	6 (2)	5 (4)	2 (NA)
cordical surface 1000 \$13 (846) 241 (370) 53 (63.) 52 (55) 23 (18) 6 (2) 5 (4) 3 (NA) Median size of sub-cordical indicates 100 747 (17) 384 (479) 206 (258) 193 (236) 82 (84) 64 (62) 61 (61) 32 (21) Number of sub-cordical 100 200 (220) 116 (270) 39 (44) 30 (30) 18 (30) 7 (10) 6 (9) 2 (2) Max. size TP cluster on sub-cordical 100 759 (71.3) 406 (481) 212 (257) 200 (224) 88 (83) 66 (63) 63 (61) 32 (21) Ibickness 1000 668 (776) 385 (494) 148 (191) 116 (131) 51 (48) 26 (28) 24 (20) 17 (12) ibickness 1000 1(0) 1(0) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 027 (0.77) 0.96 (0.2) 0.97 (0.17) Cluster FWER 10 0.99 (0.01) <	cluster sub-	10	1183 (889)	450 (486) 568 (608)	186 (210)	150 (131)	77 (57)	41 (30)	40 (28)	29 (18)
Median size of production sub-cortical thickness100747 (17)384 (479)206 (28)193 (26)82 (84)64 (62)61 (61)32 (21)100417 (495)222 (24)90 (101)75 (81)37 (36)20 (19)18 (17)15 (11)Max. size TP sub-cortical100200 (22)116 (270)39 (44)30 (30)18 (30)66 (63)63 (61)32 (21)Max. size TP sub-cortical100668 (776)385 (49)148 (19)116 (13)51 (48)26 (28)24 (26)17 (12)thickness1000658 (676)385 (33)50 (61)39 (43)21 (31)7 (10)6 (9)2 (2)FWER thickness1001 (0)1 (0)1 (0)1 (0)1 (0)1 (0)1 (0)1 (0)1 (0)1 (0)10001 (0)1 (0)1 (0)1 (0)1 (0)1 (0)1 (0)0 (2) (2)0 (2) (2)Cluster FWR100 .99 (0.01)0 .99 (0.01)0 .97 (0.02)0 .77 (0.05)0 .77 (0.05)0 .77 (0.05)0 .77 (0.05)0 .77 (0.05)	cortical surface	1000	813 (846)	241 (370)	53 (63)	52 (55)	23 (18)	6 (2)	5 (4)	3 (NA)
nub. ortical thickness 100 417 (495) 222 (249) 90 (10) 75 (81) 37 (80) 20 (19) 18 (17) 15 (11) thickness 100 200 (220) 116 (270) 39 (44) 30 (30) 18 (30) 71(10) 6(9) 2 (2) dustron subcortical 100 658 (776) 385 (494) 148 (191) 116 (131) 51 (48) 26 (28) 24 (26) 17 (12) subcortical 100 554 (673) 188 (313) 50 (61) 39 (43) 21 (31) 7 (10) 6 (9) 2 (2) FWER 100 1 (0)	Median size of TP cluster on	10	747 (717)	384 (479)	206 (258)	193 (236)	82 (84)	64 (62)	61 (61)	32 (21)
Interses 1000 200 (220) 116 (270) 39 (43) 30 (30) 18 (30) 7 (10) 6 (9) 2 (2) Max. size TP 10 759 (713) 406 (48) 1212 (257) 200 (234) 85 (83) 66 (63) 63 (61) 32 (21) reluster on subcortical 1000 554 (673) 188 (313) 50 (61) 39 (43) 21 (31) 7 (10) 6 (9) 2 (2) FWER 10 1 (0 1 (0) <th>sub- cortical</th> <td>100</td> <td>417 (495)</td> <td>222 (249)</td> <td>90 (101)</td> <td>75 (81)</td> <td>37 (36)</td> <td>20 (19)</td> <td>18 (17)</td> <td>15 (11)</td>	sub- cortical	100	417 (495)	222 (249)	90 (101)	75 (81)	37 (36)	20 (19)	18 (17)	15 (11)
oluster on subcortical thickness 100 668 (75) 90 (76) 92 (21) 200 (23) 93 (3) 90 (3) 93 (1) 93 (21) subcortical thickness 100 668 (75) 385 (493) 188 (313) 50 (61) 39 (43) 21 (31) 7 (10) 6 (9) 2 (2) FWER 10 1 (0) 0 (37 (0.5) 0.63 (0.5) 0.63 (0.5) 0.49 (0.5) Cluster FWER 10 0.49 (0.01) 0.49 (0.01) 0.99 (0.01) 0.99 (0.01) 0.97 (0.2) 0.85 (0.01) 0.53 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.59 (0.01) 0.53 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01) 0.58 (0.01)	thickness Max. size TP	1000	200 (220)	116 (270)	39 (44)	30 (30)	18 (30)	7 (10)	6 (9) 63 (61)	$\frac{2}{22}(2)$
subcortical thickness 100 0.00 (170) 0.00 (170) 100 (17) 0.06 (0.2) 0.97 (0.17) 0.96 (0.2) 0.97 (0.17) 0.96 (0.2) 0.97 (0.05) 0.43 (0.05) 0.43 (0.05) 0.44 (0.05) Cluster FWER 100 1 (0) 1 (0) 0.99 (0.01) 0.97 (0.02) 0.57 (0.05) 0.58 (0.05) 0.58 (0.05) Statistical Power (cluster FWER-0.2) 0.03 (14E-3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3) 3)	cluster on	10	668 (776)	385 (494)	148(191)	116 (131)	63 (63) 51 (48)	26 (28)	24 (26)	$\frac{52(21)}{17(12)}$
FWER 10 1 (0) 0.97 (0.17) 0.96 (0.2) 0.97 (0.17) 0.96 (0.2) 0.97 (0.17) 0.96 (0.2) 0.97 (0.17) 0.96 (0.2) 0.97 (0.05) 0.63 (0.05) 0.46 (0.05) 0.48 (0.05) 1000 1 (0) 1 (0) 1 (0) 0.99 (0.01) 0.97 (0.02) 0.97 (0.05) 0.67 (0.05) 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.58 (0.05) 0.59 (0.01) 0.58 (0.01) 0.62 (0.13) 0.07 (1.9E- 0.13 (2.2E- 0.12 (2.2E- 0.22 (2.7E- <	subcortical thickness	1000	554 (673)	188 (313)	50 (61)	39 (43)	21 (31)	7 (10)	6 (9)	2 (2)
1001(0)1(0)1(0)1(0)1(0)1(0)1(0)1(0)1(0)1(0)Cluster FWE100.99 (0.01)0.97 (0.02)0.98 (0.01)0.96 (0.02)0.88 (0.04)0.63 (0.05)0.63 (0.05)0.49 (0.05)1001(001(000.99 (0.01)0.99 (0.01)0.97 (0.02)0.72 (0.05)0.72 (0.05)0.72 (0.05)1001(001(000.99 (0.01)0.97 (0.02)0.72 (0.05)0.63 (0.05)0.58 (0.05)Statistical Power (cluster100.44 (0.01)0.45 (0.01)0.91 (0.01)0.53 (0.01)0.59 (0.01)0.58 (0.05)1000.03 (1.4E-3)0.07 (1.9E)0.13 (2.2E)0.12 (2.2E)0.22 (2.7E)0.22 (2.7E)0.22 (2.7E)1000.03 (1.4E-3)0.000.03 (1.4E-3)0.010.4E (0.1)0.13 (0.1E)0.16 (1.4E-3)0.12 (2.1E)10000.75 (0.24)0.64 (0.24)0.48 (0.25)0.41 (0.24)0.32 (0.22)0.16 (0.17)0.13 (0.12)0.12 (0.15)10000.75 (0.24)0.64 (0.24)0.48 (0.25)0.41 (0.24)0.32 (0.23)0.13 (0.11)0.13 (0.12)0.13 (0.15)10000.73 (0.13)0.65 (0.13)0.45 (0.15)0.42 (0.13)0.17 (0.1)0.43 (0.02)0.43 (0.02)10000.73 (0.13)0.55 (0.1)0.33 (0.61)0.44 (0.55)0.42 (0.33)0.43 (0.21)0.43 (0.21)0.43 (0.21)10000.42 (1.55)9.27 (1.35 (3.66)6.61 (1.5)5.5 (1.6)8.3 (3.61)0.43 (0.21)0.43 (0.21	FWER	10	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
Index Index <t< th=""><th></th><th>100</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th><th>1 (0)</th></t<>		100	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)
Cluster FWER 10 0.99 (0.01) 0.97 (0.02) 0.98 (0.01) 0.96 (0.02) 0.85 (0.04) 0.63 (0.05) 0.63 (0.05) 0.49 (0.05) 100 1(0) 1(0) 1(0) 0.99 (0.01) 0.97 (0.02) 0.72 (0.05) 0.71 (0.05) 0.72 (0.05) 0.72 (0.05) 0.72 (0.05) Statistical Power (cluster FWER<0.2) 10 0.40 (0.01) 0.48 (0.01) 0.53 (0.01) 0.59 (0.01) 0.58 (0.01) 0.52 (2.8E- 0.22 (2.7E- 0.22		1000	1 (0)	1 (0)	1 (0)	1 (0)	1 (0)	0.97 (0.17)	0.96 (0.2)	0.97 (0.17)
100 1 (0) 1 (0) 1 (0) 0.99 (0.01) 0.97 (0.02) 0.72 (0.05) 0.72 (0.05) Statistical Power (cluster FWER<0.2)	Cluster FWER	10	0.99 (0.01)	0.97 (0.02)	0.98 (0.01)	0.96 (0.02)	0.85 (0.04)	0.63 (0.05)	0.63 (0.05)	0.49 (0.05)
Statistical Power (eluster FWER<0.2)		100	1 (0)	1 (0)	1 (0)	0.99 (0.01)	0.97 (0.02)	0.72 (0.05)	0.7 (0.05)	0.72 (0.05)
Power (cluster FWER<0.2)	Statistical	1000	1(0)	1 (0)	1(0)	0.99 (0.01)	1(0)	0.7 (0.05)	0.67 (0.05)	0.58 (0.05)
Intervs.2 100 0.03 (1.4E-3) 3 3 3 0.16 (2.4E-3) 3 3 3 3.6E-4 (1.5E- 1000 4) (8.2E-5) (9.4E-5) (8.6E-5) (8.6E-5) (1.4E-4) (1.4E-4) (1.3E-4) Cluster FDR 10 0.75 (0.24) 0.64 (0.24) 0.48 (0.25) 0.41 (0.24) 0.32 (0.22) 0.16 (0.17) 0.16 (0.17) 0.16 (0.17) 0.12 (0.15) 100 0.78 (0.18) 0.62 (0.17) 0.33 (0.16) 0.24 (0.13) 0.17 (0.1) 0.04 (0.03) 0.03 (0.03) 0.03 (0.03) 1000 0.73 (0.13) 0.65 (0.13) 0.45 (0.16) 0.34 (0.13) 0.32 (0.13) 0.13 (0.11) 0.13 (0.12) 0.13 (0.15) Number of significant clusters 10 96 (125) 33 (25) 20 (17) 15 (8) 12 (5) 9 (2) 13 (19) 100 122 (204) 135 (86) 66 (21) 55 (12) 49 (8) 39 (4) 39 (4) 39 (4) 39 (7) relaters 1000 142 (155) 92 (77) 30 (17) 21	Power (cluster	10	0.01)	0.07 (1.9E-	0.13 (2.2E-	0.12 (2.2E-	0.00 (0.01)	0.22 (2.7E-	0.22 (2.8E-	0.22 (0.013) 0.22 (2.7E-
1000 4) (8.12-5) (9.42-5) (8.62-5) (8.62-5) (1.42-4) (1.42-4) (1.42-4) Cluster FDR 10 0.75 (0.24) 0.64 (0.24) 0.48 (0.25) 0.41 (0.24) 0.32 (0.22) 0.16 (0.17) 0.16 (0.17) 0.12 (0.15) 100 0.78 (0.18) 0.62 (0.17) 0.33 (0.16) 0.24 (0.13) 0.17 (0.1) 0.04 (0.03) 0.03 (0.03) 0.03 (0.03) 1000 0.73 (0.13) 0.65 (0.13) 0.45 (0.16) 0.34 (0.13) 0.32 (0.13) 0.13 (0.11) 0.13 (0.12) 0.13 (0.15) Number of significant clusters 10 96 (125) 33 (25) 20 (17) 15 (8) 12 (5) 9 (2) 9 (2) 13 (19) Number of significant cluster 100 122 (155) 92 (77) 30 (17) 21 (7) 18 (5) 8 (3) 8 (3) 7 (3) Prediction (r) from top vertex per cluster 10 0.29 (0.09) 0.45 (0.05) 0.18 (0.05) 0.42 (0.03) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) Number of significant vertices 100 0.	FWEK~0.2)	100	0.03 (1.4E-3)	3)	3) 6 5E 4	3)	0.16 (2.4E-3)	3)	3) 2 4 E 3	3) 2 OF 3
Cluster FDR 10 0.75 (0.24) 0.64 (0.24) 0.48 (0.25) 0.41 (0.24) 0.32 (0.22) 0.16 (0.17) 0.16 (0.17) 0.12 (0.15) 100 0.78 (0.18) 0.62 (0.17) 0.33 (0.16) 0.24 (0.13) 0.17 (0.1) 0.04 (0.03) 0.03 (0.03) 0.03 (0.03) 1000 0.73 (0.13) 0.65 (0.13) 0.45 (0.16) 0.34 (0.13) 0.32 (0.13) 0.13 (0.11) 0.13 (0.12) 0.13 (0.15) Number of significant clusters 10 96 (125) 33 (25) 20 (17) 15 (8) 12 (5) 9 (2) 9 (2) 13 (19) 100 122 (7204) 135 (86) 66 (21) 55 (12) 49 (8) 39 (4) 39 (4) 39 (7) Prediction (r) from top vertex per cluster 10 0.29 (0.09) 0.35 (0.07) 0.38 (0.06) 0.42 (0.03) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.43 (0.02) 0.41 (0.04) <		1000	4)	(8.2E-5)	(9.4E-5)	(8.6E-5)	(8.6E-5)	(1.4E-4)	(1.4E-4)	(1.3E-4)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cluster FDR	10	0.75 (0.24)	0.64 (0.24)	0.48 (0.25)	0.41 (0.24)	0.32 (0.22)	0.16 (0.17)	0.16 (0.17)	0.12 (0.15)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		100	0.78 (0.18)	0.62 (0.17)	0.33 (0.16)	0.24 (0.13)	0.17 (0.1)	0.04 (0.03)	0.03 (0.03)	0.03 (0.03)
Number of significant vertices1096 (125)33 (25)20 (17)15 (8)12 (5)9 (2)9 (2)13 (19)100227 (204)135 (86)66 (21)55 (12)49 (8)39 (4)39 (4)39 (7)1000142 (155)92 (77)30 (17)21 (7)18 (5)8 (3)8 (3)7 (3)Prediction (r) from top vertex per cluster100.29 (0.09)0.35 (0.07)0.38 (0.06)0.4 (0.05)0.42 (0.03)0.43 (0.02)0.43 (0.02)1000.32 (0.09)0.4 (0.08)0.54 (0.08)0.58 (0.06)0.61 (0.04)0.64 (0.02)0.64 (0.01)0.63 (0.02)10000.18 (0.04)0.2 (0.05)0.18 (0.05)0.18 (0.05)0.18 (0.04)0.15 (0.04)0.14 (0.04)Number of significant vertices104636 (7293)(1767)747 (552)616 (352)492 (230)325 (118)320 (114)261 (110)10005813 (13178)(2755)345 (315)209 (148)150 (83)23 (15)23 (15)20 (15)100.22 (0.06)0.24 (0.05)0.25 (0.05)0.26 (0.06)0.26 (0.05)0.28 (0.06)0.28 (0.06)0.28 (0.06)1000.23 (0.06)0.27 (0.06)0.34 (0.07)0.36 (0.06)0.38 (0.05)0.4 (0.04)0.4 (0.04)0.4 (0.04)	Number of	1000	0.73 (0.13)	0.65 (0.13)	0.45 (0.16)	0.34 (0.13)	0.32 (0.13)	0.13 (0.11)	0.13 (0.12)	0.13 (0.15)
clusters 100 $227(204)$ $135(80)$ $60(21)$ $35(12)$ $49(8)$ $39(4)$ $39(4)$ $39(4)$ $39(1)$ 1000 $142(155)$ $92(77)$ $30(17)$ $21(7)$ $18(5)$ $8(3)$ $8(3)$ $7(3)$ Prediction (r) from top vertex per cluster 10 $0.29(0.09)$ $0.35(0.07)$ $0.38(0.06)$ $0.4(0.05)$ $0.42(0.03)$ $0.43(0.02)$ $0.43(0.02)$ $0.43(0.02)$ 100 $0.32(0.09)$ $0.4(0.08)$ $0.54(0.08)$ $0.58(0.06)$ $0.61(0.04)$ $0.64(0.02)$ $0.64(0.01)$ $0.63(0.02)$ 1000 $0.18(0.04)$ $0.2(0.05)$ $0.18(0.05)$ $0.18(0.05)$ $0.18(0.04)$ $0.15(0.04)$ $0.14(0.04)$ Number of significant vertices 100 $4636(7293)$ (1767) $747(552)$ $616(352)$ $492(230)$ $325(118)$ $320(114)$ $261(110)$ 100 (15205) (12859) $1967(881)$ $1666(595)$ $1309(325)$ $565(100)$ $557(98)$ $510(114)$ 100 $5813(13178)$ (2755) $345(315)$ $209(148)$ $150(83)$ $23(15)$ $23(15)$ $20(15)$ 100 $0.22(0.06)$ $0.24(0.05)$ $0.26(0.06)$ $0.26(0.05)$ $0.28(0.06)$ $0.28(0.06)$ $0.28(0.06)$ 100 $0.23(0.06)$ $0.27(0.06)$ $0.34(0.07)$ $0.36(0.06)$ $0.38(0.05)$ $0.4(0.04)$ $0.4(0.04)$ $0.4(0.04)$	significant	10	96 (125)	33 (25) 135 (96)	20 (17)	15 (8)	12 (5)	9 (2) 30 (4)	9 (2) 30 (4)	13 (19) 30 (7)
Prediction (r) from top vertex per cluster 1000 $142(155)$ $52(17)$ $50(17)$ $21(17)$ $10(5)$ $0(5)$ $0(5)$ $0(5)$ $10(5)$ $10(5)$ $10(5)$ $10(5)$ $10(5)$ $10(5)$ $0($	clusters	100	142 (155)	92 (77)	30(17)	21 (7)	18 (5)	8(3)	8(3)	7(3)
from top vertex per cluster 100 0.32 (0.09) 0.4 (0.08) 0.54 (0.08) 0.58 (0.06) 0.61 (0.04) 0.64 (0.02) 0.64 (0.01) 0.63 (0.02) 1000 0.18 (0.04) 0.2 (0.05) 0.18 (0.05) 0.18 (0.04) 0.15 (0.04) 0.15 (0.04) 0.14 (0.04) Number of significant vertices 100 4636 (7293) (1767) 747 (552) 616 (352) 492 (230) 325 (118) 320 (114) 261 (110) 100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 100 (5813 (13178) (2755) 345 (315) 209 (148) 150 (83) 23 (15) 23 (15) 20 (15) 100 0.22 (0.06) 0.24 (0.05) 0.25 (0.05) 0.26 (0.06) 0.28 (0.06)<	Prediction (r)	10	0.29 (0.09)	0.35 (0.07)	0.38 (0.06)	0.4 (0.05)	0.42 (0.03)	0.43 (0.02)	0.43 (0.02)	0.43 (0.02)
Number of significant vertices 1000 0.18 (0.04) 0.2 (0.05) 0.18 (0.05) 0.18 (0.05) 0.18 (0.04) 0.15 (0.04) 0.15 (0.04) 0.14 (0.04) Number of significant vertices 10 4636 (7293) (1767) 747 (552) 616 (352) 492 (230) 325 (118) 320 (114) 261 (110) 100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 1000 5813 (13178) (2755) 345 (315) 209 (148) 150 (83) 23 (15) 23 (15) 20 (15) 100 0.22 (0.06) 0.24 (0.05) 0.25 (0.05) 0.26 (0.06) 0.26 (0.05) 0.28 (0.06) 0.28 (0.06) 100 0.23 (0.06) 0.27 (0.06) 0.34 (0.07) 0.36 (0.06) 0.38 (0.05) 0.4 (0.04) 0.4 (0.04) 0.4 (0.04)	from top vertex per cluster	100	0.32 (0.09)	0.4 (0.08)	0.54 (0.08)	0.58 (0.06)	0.61 (0.04)	0.64 (0.02)	0.64 (0.01)	0.63 (0.02)
Number of significant vertices 10 4636 (7293) 1452 (1767) 747 (552) 616 (352) 492 (230) 325 (118) 320 (114) 261 (110) vertices 100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 100 5813 (13178) (2755) 345 (315) 209 (148) 150 (83) 23 (15) 23 (15) 20 (15) 100 0.22 (0.06) 0.24 (0.05) 0.25 (0.05) 0.26 (0.06) 0.26 (0.05) 0.28 (0.06) 0.28 (0.06) 100 0.23 (0.06) 0.27 (0.06) 0.34 (0.07) 0.36 (0.06) 0.38 (0.05) 0.4 (0.04) 0.4 (0.04) 0.4 (0.04)	per cluster	1000	0.18 (0.04)	0.2 (0.05)	0.18 (0.05)	0.18 (0.05)	0.18 (0.04)	0.15 (0.04)	0.15 (0.04)	0.14 (0.04)
vertices 10596 6840 $106(17)$ $12(217)$ $12(217)$ $122(127)$	Number of significant	10	4636 (7293)	1452 (1767)	747 (552)	616 (352)	492 (230)	325 (118)	320 (114)	261 (110)
100 (15205) (12859) 1967 (881) 1666 (595) 1309 (325) 565 (100) 557 (98) 510 (114) 100 5813 (13178) 2179 2475 345 (315) 209 (148) 150 (83) 23 (15) 23 (15) 20 (15) 10 0.22 (0.06) 0.24 (0.05) 0.25 (0.05) 0.26 (0.06) 0.26 (0.05) 0.28 (0.06) 0.28 (0.06) 0.28 (0.06) 100 0.23 (0.06) 0.27 (0.06) 0.34 (0.07) 0.36 (0.06) 0.38 (0.05) 0.4 (0.04) 0.4 (0.04) 0.4 (0.04)	vertices	100	10596	6840	10(7(000)	1.((())====	1200 (22-)			
1000 5815 (131/8) (2/55) 345 (315) 209 (148) 150 (83) 23 (15) 23 (15) 20 (15) 10 0.22 (0.06) 0.24 (0.05) 0.25 (0.05) 0.26 (0.06) 0.26 (0.05) 0.28 (0.06) </th <th></th> <td>100</td> <td>(15205)</td> <td>(12859) 2179 (2755)</td> <td>1967 (881)</td> <td>1666 (595)</td> <td>1309 (325)</td> <td>565 (100)</td> <td>557 (98)</td> <td>510 (114)</td>		100	(15205)	(12859) 2179 (2755)	1967 (881)	1666 (595)	1309 (325)	565 (100)	557 (98)	510 (114)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000	<u>5813 (13178)</u>	(2755)	345 (315)	209 (148)	150 (83)	23 (15)	23 (15)	20 (15)
		100	0.22 (0.06)	0.27 (0.05)	0.34 (0.07)	0.36 (0.06)	0.38 (0.05)	0.4 (0.04)	0.4 (0.04)	0.4 (0.04)

Prediction (r) from significant vertices	1000	0.15 (0.05)	0.16 (0.06)	0.12 (0.05)	0.12 (0.05)	0.12 (0.04)	0.12 (0.04)	0.11 (0.03)	0.11 (0.03)
AUC	10	0.86 (0.06)	0.86 (0.06)	0.85 (0.07)	0.86 (0.07)	0.85 (0.07)	0.85 (0.06)	0.85 (0.07)	0.85 (0.07)
	100	0.71 (0.02)	0.71 (0.02)	0.71 (0.02)	0.71 (0.02)	0.7 (0.02)	0.69 (0.02)	0.69 (0.02)	0.68 (0.02)
	1000	0.52 (0.01)	0.51 (0.01)	0.51 (0)	0.51 (0)	0.51 (0)	0.5 (0)	0.5 (0)	0.5 (0)

STable 1: metrics of performance (SE) of mass-univariate models on simulated traits The values are calculated over 100 simulated phenotypic traits.

		BMI	Fluid Intelligence	Age	Sex	Smoking status
	Adj. R^2 with age, sex &	0.011	0.030	0.012	0.31	0.0086
	ICV					
	<i>Adj. R² with first 10</i> <i>PCs</i>	0.033	0.032	0.41	0.43	0.0092
Uncorrecte	N assoc. vertices	10,947	24,776	136,278	355,130	707
d GLM	N assoc. clusters	232	640	970	714	34
	Max cluster size	862	2,030	22,358	130,651	116
	Prediction (UKB)	0.41 [0.38,0.45]	0.14 [0.08,0.21]	0.70 [0.68,0.73]	0.65 [0.61,0.68]	0.12 [0.08,0.16]
	Prediction (OASIS3)		-0.05 [-			
		0.26 [0.19,0.33]	0.16,0.06]	0.75 [0.7,0.8]	0.42 [0.34,0.5]	-0.03 [-0.13,0.07]
Age, sex,	N assoc. vertices	10,240	195	129,700	321,154	88
ICV GLM	N assoc. clusters	237	15	1269	1154	6
	Max cluster size	494	112	19,450	2,955	37
	Prediction (UKB)	0.37 [0.34,0.4]	0.12 [0.07,0.16]	0.74 [0.71,0.76]	0.74 [0.71,0.78]	0.08 [0.04,0.12]
	Prediction (OASIS3)	0.21 [0.15,0.28]	0.02 [-0.06,0.1]	0.76 [0.71,0.81]	0.59 [0.51,0.66]	-0.01 [-0.09,0.07]
5 global	N assoc. vertices	10,407	24	28,166	31,640	39
PCs GLM	N assoc. clusters	201	5	385	499	4
	Max cluster size	680	10	1,875	1,618	25
	Prediction (UKB)	0.35 [0.32,0.38]	0.06 [0.03,0.1]	0.37 [0.34,0.4]	0.5 [0.48,0.52]	0.04 [0,0.07]
	Prediction (OASIS3)	L / J	-0.01 [-			L / J
		0.22 [0.15,0.29]	0.07,0.06]	0.19 [0.13,0.24]	0.38 [0.34,0.42]	-0.04 [-0.11,0.03]
10 global	N assoc. vertices	8,548	30	16,746	26,894	91
PCs GLM	N assoc. clusters	174	5	297	492	6
	Max cluster size	518	9	894	1782	43
	Prediction (UKB)	0.35 [0.31,0.38]	0.06 [0.03,0.1]	0.32 [0.29,0.34]	0.44 [0.42,0.46]	0.01 [-0.02,0.04]
	Prediction (OASIS3)		-0.01 [-			
		0.16 [0.09,0.23]	0.07,0.06]	0.14 [0.08,0.2]	0.34 [0.29,0.39]	-0.07 [-0.14,0]
10 moda.	N assoc. vertices	4,227	75	13,367	18,869	17
Spe. PCs	N assoc. clusters	161	4	404	515	3
GLM	Max cluster size	346	37	616	1437	6
	Prediction (UKB)	0.33 [0.3,0.36]	0.07 [0.03,0.1]	0.65 [0.63,0.68]	0.54 [0.52,0.56]	0.04 [0.01,0.07]
~	Prediction (OASIS3)	0.15 [0.08,0.21]	0 [-0.07,0.06]	0.7 [0.65,0.75]	0.45 [0.4,0.49]	-0.04 [-0.1,0.02]
Single	N assoc. vertices	11	0	47	27	0
random	N assoc. clusters	5	0	8	6	0
enect	Max cluster size	5	-Inf	15		-Inf
	Morphometricity (SE)	0.58 [0.54,0.64]	0.16 [0.12,0.21]	0.91 [0.87,0.95]	0.99 [0.96,1.04]	0.15 [0.10,0.19]
	Prediction (UKB)	0.16 [0.13,0.19]	NA [NA,NA]	0.45 [0.42,0.48]	0.28 [0.25,0.31]	NA [NA,NA]
I MM:4h	N manage stations	0.09 [0.01,0.17]		0.35 [0.29,0.42]	0.22 [0.17,0.28]	
Coverietes	N assoc. vertices	3	0	40	20	0
covariates	Max cluster size	3	Jnf	12	10	Juli
	Mornhometricity (SF)	0 57 [0 52 0 62]	0.15[0.10.0.19]	0.90 [0.85 0.93]	0.99[0.96 1.04]	0 13 [0 092 0 17]
	Prediction (I/KR)	0.07 [0.04 0.1]	NA [NA NA]	0.31 [0.28 0.34]	0.00[0.00, 1.04]	NA [NA NA]
	Prediction (OASIS3)	0.07[0.03,0.18]	NA [NA NA]	0.15[0.09.0.22]	0.16[0.11.0.21]	NA [NA NA]
Multiple	Nassoc vertices	0	0	0	1	0
random	N assoc. clusters	-Inf	-Inf	-Inf	9	-Inf
effect	Max cluster size	NA	NA	NA	9	NA
LMM	Morphometricity (SE)	NA	NA	NA	1.07 [1.02 1 11]	NA
	Prediction (UKR)	NA	NA	NA	0.14 [0.11.0.16]	NA
	Prediction (OASIS3)	NA	NA	NA	0.15 [0.1.0.19]	NA

STable 2: Summary of mass-univariate vertex-wise analyses for the UKB phenotypes considered

In the "age, sex and ICV adjusted" GLM, we dropped the corresponding covariate when studying age and sex. All adjusted R^2 are significant (pvalue<1e-16) considering the large sample size. Significance corresponded to a Bonferroni significance threshold of 1.5e-8, which accounts for the number of vertices and traits analyses.

STable 3: top vertices in each significant cluster from LMM single random effect models

			Top ver	tex		Discovery					Replication UKB		Replication OASIS3	
		hemi	modality	region	X;Y;Z coordinates	beta	se	pvalue	r	Cluster	beta	pvalue	beta	pvalue
										size				
BMI	LogJacs_10_738	Left	Subcort. surface	Thalamus-Proper	148.5 ; 110.9 ; 105.1	0.363	0.063	9.7E-09	0.082	2	0.029	7.3e-01	-0.23	0.25
	LogJacs_26_484	Left	Subcort. surface	Accumbens-area	136.3 ; 109.1 ; 144.7	0.408	0.072	1.5E-8	0.092	1	0.139	1.3e-01	0.098	0.63
	thick_12_879	Left	Subcort. thickness	Putamen	152.4 ; 111.8 ; 125.4	0.316	0.055	1.2E-8	0.072	1	0.22	3.6e-03	0.072	0.69
	thick_26_291	Left	Subcort. thickness	Accumbens-area	132.3 ; 114 ; 141.6	0.38	0.063	1.4E-09	0.086	5	0.359	3.2e-05 *	0.18	0.41
	thick_54_1331	Right	Subcort. thickness	Amygdala	106.2 ; 131.8 ; 141.1	0.447	0.075	2.7E-09	0.101	2	0.229	1.8e-02	0.20	0.42
Age	LogJacs_49_1110	Right	Subcort. surface	Thalamus-Proper	108.9 ; 105.4 ; 108.6	-0.552	0.097	1.3E-8	-0.074	2	-0.388	2.4e-03	-1.24	4.8E-06 *
_	LogJacs_50_2347	Right	Subcort. surface	Caudate	119.8 ; 100.6 ; 151.3	0.64	0.11	1.3E-8	0.086	1	0.388	1.2e-02	1.15	1.2E-4 *
	thick_10_2231	Left	Subcort. thickness	Thalamus-Proper	139.5 ; 109.8 ; 125.6	-0.623	0.094	3.7E-11	-0.084	5	-0.658	5.6e-07 *	-0.56	1.0E-02
	thick_10_732	Left	Subcort. thickness	Thalamus-Proper	130.3 ; 107.4 ; 104.7	0.581	0.091	1.9E-10	0.078	15	0.793	2.9e-10 *	0.091	7.0E-1
	thick_49_954	Right	Subcort. thickness	Thalamus-Proper	126 ; 107 ; 107.3	0.618	0.088	1.8E-12	0.083	11	0.577	3.4e-07 *	0.75	1.7E-3
	thick_49_1337	Right	Subcort. thickness	Thalamus-Proper	110.2 ; 104.4 ; 111.3	0.536	0.081	3.2E-11	0.072	9	0.517	2.5e-04 *	0.47	1.0E-1
	thick_49_1652	Right	Subcort. thickness	Thalamus-Proper	113.4 ; 97.9 ; 115.5	0.625	0.10	1.7E-09	0.084	2	0.76	3.2e-10 *	0.78	8.8E-4 *
	thick_51_243	Right	Subcort. thickness	Putamen	98.6 ; 109.8 ; 117.3	-0.43	0.070	9.1E-10	-0.058	2	-0.348	5.6e-04 *	-0.68	1.8E-03
Sex	rht_46930	Right	Cort. thickness	Lateral orbitofrontal	-14 ; 11.2 ; -14.8	0.031	0.0043	1.3E-12	0.061	10	0.022	2.7e-04 *	0.045	2.6E-04 *
	thick_10_1216	Left	Subcort. thickness	Thalamus-Proper	128.5 ; 113.5 ; 109.3	0.038	0.0058	1.2E-10	0.076	11	0.034	3.5e-05 *	0.046	1.7E-3
	thick_10_2415	Left	Subcort. thickness	Thalamus-Proper	136.1 ; 111.9 ; 127.4	0.029	0.0046	4.3E-10	0.058	3	0.028	2.3e-05 *	0.016	2.1E-01
	thick_49_1483	Right	Subcort. thickness	Thalamus-Proper	113.3 ; 97.8 ; 113.2	0.037	0.0064	9.2E-09	0.074	1	0.027	2.3e-03	0.074	1.8E-05 *
	thick_50_1785	Right	Subcort. thickness	Right-Caudate	123.2 ; 98.6 ; 141.6	-0.034	0.0059	6.7E-09	-0.068	1	-0.031	1.3e-04 *	-0.030	4.4E-02
	thick_54_597	Right	Subcort. thickness	Amygdala	111.4 ; 121.1 ; 131.8	0.026	0.0046	1.2E-8	0.053	1	0.031	1.4e-06 *	0.064	1.6E-06 *

*: significant in the replication sample after multiple testing correction (p<0.05/85=5.8e-4).

STable 4: review of mass-univariate analyses of Age

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothing / mesh	Multiple testing	Significant regions
Medic et al.,	10.1038/ijo.20 16.42	2016	Age	202	Healthy adults	Age, sex, scanner, BMI, hemisphere, global thickness, area)	Cortical thickness, area	15mm	Cluster level using Monte Carlo simulations	11 regions in cortical thickness
Harrison et al.,	10.1016/j.neur obiolaging.201 8.03.024	2018	Successful ageing (cognition)	129	Older adults (70+)	sex	Cortical thickness	NS	No correction	Impossible to conclude
Dotson et al.,	10.3389/fnagi. 2015.00250	2016	Age	46	Middle aged adults (51-81 years	Sex, education, ICV/CT	Cortical thickness, surface	10mm	FDR	9 cortical regions surface area
Ducharme et al.,	10.1016/j.neur oimage.2015.1 0.010	2016	Age	384	HC 4-22 years old, longitudinal (753 scans)	Sex, scanner (TBV)	Cortical thickness	20mm	RFT peak and clusters	Linear model good approx. for most vertices
Li et al.,	10.1093/cerco r/bhs413	2013	age	73	Imaged at birth and 2 years, longitudinal	NA	Asymetry in sulcal depth, surface area, curvature. Left right SA ratio	NA	sufstat	Regional asymetries found for several modalities
Hogstrom	10.1093/cerco r/bhs231	2012	Age	322	Healthy adults (20-85)	Sex, Total WM volume	Cortical thickness, surface, gyrification	30mm	FDR Genovese et al., 2002	Surface area showed strong age-related decreases, particularly pronounced in dorsomedial prefrontal, lateral temporal, and fusiform cortices, independently of total white matter volume.
Hugues et al.,	10.1016/j.neur oimage.2012.0 7.043	2012	Age	86	Healthy subjects (20-74)	none	Thalamus shape/expansion	NA	FDR (non-specified)	Most of thalamus vertices significant
Sowell et al.,	10.1523/JNEU ROSCI.1798- 04.2004	2004	Age	45	Imaged twice, age 5-11. T- test between t1 and t2 (no mixed models).	none	Cortical thickness (Eikonal Fire Equation, not FreeSurfer) 65K vertices p.h.	15mm	Permutation to estimate minimal area significant	10 significant regions
Muftuler et al.,	10.1016/j.brai nres.2011.05.0 18	2011	Age	126	Normally developing children age 6-10	none	Cortical thickness (FS)	Unclear	FDR (unspecified)	Many cortical regions significant
Reid	10.1002/hbm. 20994	2010	Age	503	nondemented elderly individuals (50–85 years) with a history ofsymptomatic cerebral small vessel disease (SVD	sex	Cortical thickness (CIVET) 40,962 vertices	NA	RFT	Most of the cortical sheet showed significant decrease with Age, with the greatest effects apparent in the ventrolateral prefrontal cortex(BA45, BA46, and BA47), the primary and secondary audi-tory cortices (BA41, BA42), Wernicke's area (BA22), medialtemporal lobe (BA36, BA28, excluding the hippocampal formation and amygdala), and the primary visual cortex.
Salat et al.,	10.1093/cerco r/bhh032	2004	Age	106	non-demented participants ranging in age from 18 to 93 years Imaged several times with T1 averaged	sex	Cortical thickness (FS)	22mm	none	Some regions likely significant after bonferroni correction.
Gogtay	10.1073pnas. 0402680101	2004	Age	13	Healthy age 4-21. Up to 4 scans per subject (52 images)	none	Cortical GM density	15mm	None	Results not interpretable

							(Thompson et al., 2000)			
Gogtay	10.1002/hipo. 20193	2006	Age	31	Healthy age 4-21. Up to 4 scans per subject (100 images)	Sex, TBV	Hippocampus thickness, manual tracing, 30,000 measurements	NA	none	Results not interpretable
Van Soelen	10.1016/j.neur oimage.2011.1 1.044	2012	Age	113	Healthy twins 9–13 Imaged twice with 3 years interval	Sex, handedness, scan interval	Cortical thickness (CLASP) 40 962 vertices per hemisphere	20mm	FDR (Genovese et al.,)	Widespread significant regions
Tamnes	10.1523/JNE UROSCI.330 2-16.2017	2017	Age	85	Healthy adolescents, up to 2 scans per individual, 170 images total. 4 samples	Sex, scanning interval	Cortical thickness, volume, surface (FS)	15mm	Monte carlo simulations, clusters p<0.05	Widespread significant regions

STable 5: Review of mass-univariate analyses of Sex

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex/voxel modalities	Smoothing / mesh	Multiple testing	Significant regions
Lotze et al.,	10.1038/s4 1598-018- 38239-2	2018	Sex	2,838	Adults age 21-90	TBV, IQR, age, years of education, nicotine intake, alcohol consumption, and body mass index (BMI)	VBM	8mm	FWER (not specified), cluster size >10 voxels	25 significant regions
Chen et al.,	10.1016/j.n euroimage. 2007.03.06 3	2007	Sex	411	Adults, 44-48 years	age, years of education, handedness, and total intracranial volume	Cortical volume (VBM)	12mm	FWER (not specified), threshold p<0.001	15 significant regions
Ruigrok et al.,	10.1016/j.n eubiorev.20 13.12.004	2014	Sex	<2186	Meta-analysis all ages. Incl. Chen et al., 2007	Depending on study	Cortical volume, density (VBM)	Depends on study	FDR	22 regions associated. Meta-analysis relies on foci, not on full map of summary statistics.
Jiang et al.,	10.1371/jo urnal.pone. 0073932	2013	Sex	266	Inflamattory Bowel Disease (90). 176 HC	Age, Total grey matter volume	Cortical thickness	8mm	FDR (RFT)	4 cortical regions
Li et al.,	10.1093/ce rcor/bhs41 3	2013	sex	73	Imaged at birth and 2 years, longitudinal	age	Asymetry in sulcal depth, surface area, curvature		sufstat	
Boulos et al.,	10.1371/jo urnal. pone.01529 83	2016	Sex	87	Right handed females (14-19 years) and males (14-18, See Chumachenko et al.,)	Age, IQ	Cortical thickness	10mm	p<0.005, monte carlo simulations: cluster >250 mm2	No significant findings
Richie et al,.	10.1093/ce rcor/bhy10 9	2018	Sex	5216	UK Biobank	Age, ethnicity	Cortical thickness, surface area, volume (FS) Rs-fMRI WM microstructur e	20mm	None (post hoc analysis)	Results compared to ROI based results. Tred: large SQ and VOL in males, larger thickness in females
Luders et al	10.1002/hb m.20187	2005	Sex	60	Healthy young adults, right handed, matched for age	2 processing, one accounting for global head size in realignment	Cortical thickness (Eikonal fire equations)	15mm	permutation	Increased CT in females, widespread. Esp. when accounting for head size
Lv et al.,	10.1016/j.n euroimage. 2010.05.02 0	2010	Sex	184	Healthy adults (18-70)	Age, head size (GM+WM+CSF)	Cortical thickness (no FS) 40,962 p.h.	20mm	FDR (Genovese et al.,)	cortical thickening in females appeared extensively in the frontal, parietal and occipital lobes, including the superior frontal gyrus, precentral gyrus, and postcentralgyrus in both hemispheres, and the superior parietal lobule, cuneus, and frontal pole in left hemispheres. The male cortex was significantly thicker than that of the female only in some small regions of the temporal lobes.
Sowell et al.,	10.1093/ce rcor/bhl066	2007	Sex	176	Healthy 7-87 years	Age, age2, (height)	Cortical thickness		Permutations (within large	Results of ROI permutation analyses (shown in Table 2) confirm the significance of sex differences in

							(manual and automated processing) Eikonal fire equation 65536 vertices p.h.		cortical regions) to estimate cluster size	cortical thickness in right lateral parietal (P = 0.048), right lateral temporal (P= 0.024), and left medial occipital (P = 0.017) regions.
				36	Follow up in male female sample matched for TBV					Female thicker. Right: Lateral ventral frontal Lateral occipital Lateral parietal Lateral temporal
Van Velsen	10.1016/j.n eulet.2013. 06.063	2013	Sex	1022	Non-demented elderly: age ~68	ICV, education (in men and women separately)	Cortical thickness (FS)	NA	none	Results not presented/discussed. ROI focus
Reid	10.1002/hb m.20994	2010	Sex	503	nondemented elderly individuals (50–85 years) with a history ofsymptomatic cerebral small vessel disease (SVD	age	Cortical thickness (CIVET) 40,962 vertices	NA	RFT	Vertex-wise analyses highlightsome regions where a moderate Sex effect was apparent.AfterP-value correction, these effects were not significant;

STable 6: Review of mass-univariate analyses of smoking (and related traits)

Article	DOI	Year	Phenotype	Ν	population	Matching / covariates	Vertex modalities	Smoothin g / mesh	Multiple testing	Significant regions
Jorgensen et al.,	10.1503/j pn.140163	2015	Smoking	743	237 healthy controls and 506 psychiatric cases	Age, sex, diagnosis	Cortical thickness	20mm	FDR (no reference)	1 cluster significant in patient sample
			Smoking amount							No significant result
Cox et al.,	10.1093/e urheartj/e hz100	2019	Vascular risk factors (BMI, smoking)	792 8	UKB adults	age, sex, ethnicity, head size (for volumetric data), and head positioning confounds	Cortical volume	20mm	FDR (Benjamini Hochberg)	Several large cortical regions (lateral and medial temporal lobes)
Chye et al.,	10.1111/a db.12830	2019	Substance dependence (incl. nicotine)	390 5	Multiple substance dependence (ENIGMA)	Site, sex, age, and ICV	Subcortical thickness and area	none	FDR (Landers et al.,)	Several subcortical volumes associated
Boulos et al.,	10.1371/j ournal. pone.015 2983	2016	Substance abuse (10 substances, incl. tobacco)	43	Right handed females (14-19 years)	Age, IQ	Cortical thickness	10mm	p<0.005, monte carlo simulations: cluster >250 mm2	pregenual rostral anterior cingulate cortex extending to the medial orbitofrontal cortex
Chumach enko	10.3109/0 0952990. 2015.105 8389	2015	Substance use (and conduct problems)	44	Males 14-18	Age, IQ, total cortical thickness	Cortical thickness	NA	FWER – cluster leve; - Monte Carlo simulation (10,000 iterations) with a cluster-forming threshold vertex- level p-value of 0.005 (55)	Left posterior cingulate/precuneus

STable 7: Review of mass-univariate analyses of BMI (or related traits)

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothin g / mesh	Multiple testing	Significant regions
Medic et al.,	10.1038/ijo.20 16.42	2016	BMI	202	Healthy adults	Age, sex, scanner, hemisphere, global thickness, area, (smoking status)	Cortical thickness, area	15mm	Cluster level using Monte Carlo simulations	2 clusters in cortical thickness
Sharkey et al.,	10.3389/fnins. 2015.00024	2015	BMI	378 (716 scans)	Healthy children (<18), longitudinal MRIs	Age, sex, scanner	Cortical thickness (CIVET)	20mm	FDR correction (Non-specified, surfstat?)	No significant association
Bernardes et al.,	10.1007/s110 11-018-0223-5	2018	BMI / obesity	31 lean normoglycemic controls 44 obese	28 Obese with T2Diabetes Age 40-70	Age, sex, hypertention and ICV	Cortical thickness, area, volume	10mm	Monte-carlo simulations, Pthreshold <0.01	1 cortical thickness cluster
Veit et al.,	10.1016/j.nicl. 2014.09.013	2014	BMI	72	Healthy subjects age 19- 50	Age, sex, total surface area, education	Cortical thickness	10mm	Monte carlo threshold estimation, after cutoff P<0.05	3 thickness clusters
Varma et al.,	10.1002/hipo. 22586	2016	Physical activity	90	Adults > 6o years	intracranial volume (ICV), age, years of education, body mass index (BMI), cardiovascular disease burden (CVD), and global cognitive function	Subcortical shape	NA	FWER and FDR	Some significant regions (hippocampus)
Cox et al.,	10.1093/eurh eartj/ehz100	2019	Vascular risk factors (BMI, smoking)	7928	UKB adults	age, sex, ethnicity, head size (for volumetric data), and head positioning confounds	Cortical volume	20mm	FDR (Benjamini Hochberg)	Several large cortical regions (lateral and medial temporal lobes)
Leritz et al.,	10.1016/j.neu roimage.2010. 10.050.	2011	Cerebrovas cular health (PCs derived from BMI)	115	Healthy controls, age 43-83	age	Cortical thickness	20mm	Clustering, after P<0.05	Comparison with other results impossible

STable 8: Review of mass-univariate analyses of IQ/cognition

Article	DOI	Year	Phenotype	N	population	Matching / covariates	Vertex modalities	Smoothing / mesh	Multiple testing	Significant regions
Harrison et al.,	10.1016/j.neu robiolaging.20 18.03.024	2018	Successful ageing (cognition)	129	Older adults (70+)	sex	Cortical thickness	NS	No correction	Impossible to conclude
Abe et al.,	10.1111/acps. 12922	2018	Executive functionning	160	HC, Type I and II bipolar	Sex (no age) + lot more in sensitivity analyses	Cortical thickness	10mm	Monte carlo, cluster wise. Threshold p<0.05	Several regions, some found across disease groups
Navas- Sanchez	10.1002/hbm. 23143	2016	Math gifted	62	Spanish adolescents – IQ matched	age, gender, and IQ	Cortical thickness, area, volume	15mm	Cluster wise probability method (FDR) Hagler et al., 2006	Surface and thickness associated regions
Burgaleta	10.1002/hbm. 22305	2014	Fluid IQ (and other IQ dimensions)	104	Psychology undergraduates (age ~19)	Age, sex (brain size in processing)	Subcortical shape/deformation	NA	FDR	right hemisphere only, for the accumbens, caudate, and putamen.
Burgaleta	10.1016/j.neu roimage.2013. 09.038.	2014	IQ change	188	Healthy adolescents 6-20	Sex, scanner, time to repeat IQ	Cortical thickness, area	20mm (thick) 40mm (area)	Sufstat 5,000 permutations (Nichols and Holmes, 2002)	3 SA regions
Walhovd	10.1016/j.neu roimage.2006. 01.011	2006	Memory recall (5 mins, 30 mins, 83 days)	71	Healthy adults 40+	gender, age, IQ, and intracranial volume, (hippo volume)	Cortical thickness	12.6mm	Uncorrected	Un-interpretable
Voineskos	10.1002/hbm. 22825	2015	Cognition (verbal episodic memory, visuospatial episodic memory, and working memory)	137	Healthy adults 18-86	Age, sex, education, APOE e4 status	Hippocampus shape (normalised fro TBV)	NA	10% FDR (and 5%) (Genovese et al.,)	No significant associations at FDR <5%
Winjen	10.1007/s003 30-019-06437- 9	2019	EDSS and cognition domains	34	relapsing-remitting multiple sclerosis	Age, ICV	T1, T2, T2*, PD in grey matter masks	10mm	Monte carlo, p<0.05	T2 associations (no multiple correction for number of phenotypes studied)

Bobholz	10.1007/s116 82-018-0005-z	2019	Cognition domains focus: psychomotor speed (digit symobol)	135	81 idiopathic epilepsies 54 healthy controls	age, gender, and IQ, (epilepsy)	CV, CT, SA, and LGI (local gyrification index)	15mm	Use of Qdec's Monte Carlo simulation allowed for corrections of multiple comparisons, with the cluster forming threshold set to p < 0.05	LGI associations: left postcentral gyrus, left lateral occipital gyrus, and right caudal middle frontal gyrus
Brathen	10.1002/hbm. 24287	2018	Episodic memory plasticity (improvment)	126	HC, did a 10weeks memory course 2 separate age groups	Age, sex, ICV	Cortical volume (FreeSurfer), fALFF	15mm	The significance of this relationship was assessed within the FreeSurferframewor k (mri_gImfit), using cluster-based inference to account for multiple comparisons. To verify the reliability of the findings, several cluster-forming thresholds were tested, ranging from p < .05 to p < .001 (all tests were two-sided).	No significant relationships were observed between memory improvement and surface-level/vertex-wise cortical volume or cortical fALFF. Similarly, no relationships were found at the MNI voxel- level when investigating noncortical fALFF.

A. UKB participants' recruitment

The UKB participants were unselected volunteers from the United Kingdom [55]. Exclusion criteria were limited to the presence of metal implant or any recent surgery and health conditions problematic for MRI imaging (e.g. hearing, breathing problems or extreme claustrophobia) [13].

B. T1 weighted and T2 FLAIR image collection

The T1 weighted (T1w) images were acquired over 4:54 minutes, voxel size 1.0x1.0x1.0mm, matrix of 208x256x256mm, using a 3D MPRAGE sequence, sagittal orientation of slice acquisition, R=2 (in plane acceleration factor), TI/TR=880/2000ms [13]. The T2 FLAIR acquisition lasted 5:52 minutes, voxel size 1.05x1.0x1.0 mm, matrix of 192x256x256 voxels, 3D SPACE sequence, sagittal orientation, R=2, partial Fourier 7/8, fat saturated, TI/TR=1800/5000ms, elliptical [13].

C. Participants inclusion and exclusion criteria

We considered the first 10,103 participants of the UK Biobank (UKB) imaging wave. None of the participants withdrew consent after the data were collected. We excluded 231 participants due to T1 images labelled unusable by the UKB or because the FreeSurfer processing failed or did not complete within 48 hours.

D. Sample QC

We excluded pairs of individuals with most similar/dissimilar brain as defined by +-5SD from the mean of the brain-relatedness matrix off-diagonal values. These outlying pairs of participants may bias the LMM estimates and cause convergence problems as REML estimation relies on the brain-relatedness matrix, which corresponds to the variance-covariance matrix of the random effects. We used this stringent cut-off although there may be a more optimal QC threshold that could maximise the sample size in future studies.

We have previously observed in the Human Connectome Project sample that this QC strategy led to the exclusion of a handful of individuals whose processing was flagged using the ENIGMA visual QC protocol [12].

In the UKB, our QC step led to exclude 80.6% of the participants processed using T1w only (vs. 9.9% of the individuals processed using T1w+T2w, p-value< 10^{-16}), which confirmed our QC could identify individuals or groups of individuals with outlying brain measurements [17]. In addition, QCed out participants had lower cortical thickness and more extreme ICV, cortical thickness, surface area and subcortical volumes (positive associations with the quadratic terms; p< $1e^{-16}$). Finally, our QC excluded slightly more males than females (14.6% vs. 10.4%, p-value= $4.6e^{-10}$) and marginally older participants (63.0 vs. 62.5 years of age, p-value=0.018).

- [55] C. Sudlow, J. Gallacher, N. Allen *et al.*, "UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age," *PLoS Med*, vol. 12, no. 3, pp. e1001779, Mar, 2015.
- [13] K. L. Miller, F. Alfaro-Almagro, N. K. Bangerter *et al.*, "Multimodal population brain imaging in the UK Biobank prospective epidemiological study," *Nat Neurosci*, vol. 19, no. 11, pp. 1523-1536, Nov, 2016.
- [12] B. Couvy-Duchesne, L. T. Strike, F. Zhang *et al.*, "A unified framework for association and prediction from vertex-wise grey-matter structure," *Human Brain Mapping*, vol. n/a, no. n/a, 2020.
- [17] H. Lindroth, V. A. Nair, C. Stanfield *et al.*, "Examining the identification of age-related atrophy between T1 and T1 + T2-FLAIR cortical thickness measurements," *Sci Rep*, vol. 9, no. 1, pp. 11288, Aug 2, 2019.

We defined statistical power as the True Positive Rate, for a fixed risk alpha (cluster FWER <0.20). In order to achieve a similar control of false positive rate across the different models, we considered a wide range of significance thresholds (down to p<1e-52), all more stringent than the Bonferroni correction. For each significance threshold, we quantified the cluster FWER and TPR. For each model, we reported the largest TPR that satisfied the constraint of cluster FWER < 0.2. We provide below several plots that illustrate the results obtained, and allow the reader to appreciate power for different levels of cluster FWER.

First, we confirmed that lowering the significance threshold (below the Bonferroni one used throughout the analyses) led to a reduction in cluster FWER (**Appendix 2 Figure 1**). Similarly, lowering the significance threshold led to fewer true positive reaching significance, hence a lower TPR (**Appendix 2 Figure 1**).

Finally, we plotted the statistical power for different levels of cluster FWER. The results presented in the main text (cluster FWER<0.2) may be visualised using the vertical dashed line. Overall, the LMM models yielded a greater statistical power than the GLM models.

Appendix 2 Figure 1: Evolution of the cluster FWER when lowering the significance threshold.

The x axis is in the logarithmic scale (-log(pvalue significance threshold)). The top dashed line corresponds to a cluster FWER<0.2. The bottom dashed line corresponds to the more traditional alpha level of cluster FWER<0.05. The three panels correspond to the different simulation scenarios (10, 100 and 1000 associated vertices).

Appendix 2 Figure 2: Evolution of the True Positive Rate (TPR) when lowering the significance threshold. The x axis is in the logarithmic scale (-log(pvalue significance threshold)). The three panels correspond to the different simulation scenarios (10, 100 and 1000 associated vertices).

Appendix 2 Figure 3: Statistical power (True positive rate) for different levels of risk alpha (cluster FWER). The vertical dashed line corresponds to cluster FWER<0.2, which corresponds to the results presented in the main text. The three panels correspond to the different simulation scenarios (10, 100 and 1000 associated vertices).