A		
DUXC and	DUXC-ALT HD1 alignment	
DUXC	PRRRRLVLTASQKGALQAFFQKNPYPSITAREHLARELAISESRIQ	- 46
	PRRRLVLTASQKGALQAFFQKNPYPSITAREHLARELAISESRIQ	
DUXCALT	${\tt PRRRLVLTASQKGALQAFFQKNPYPSITAREHLARELAISESRIQCRGSLRMGPLVRRMARKARAKARA$	60
DUXC	VWFQNQRTRQLRQS	60
	VWFQNQRTRQLRQS	
DUXCALT	${\tt TPVSSVFLVSQSASAPYRGLQQELHPLPMRMTKEEMTLVPMPSVVWFQNQRTRQLRQS}$	118

Figure S1. **A.** Sequence alignment of the HD1 domain regions of canine DUXC and DUXC-ALT. **Lower panels**: HD1 and HD2 protein alignments. B. RT-PCR of RNA from different canine tissues using primers that will amplify both DUXC and DUXC-ALT shows expression of DUXC-ALT in thymus and testis.

Homeodomain 1

Mouse	RRRRKTVWQAWQEQALLSTFKKKRYLSFKERKELAKRMGVSDCRIRVWFQNRRNRSGEEG				
	RRR+ VW Q +AL + F++ Y R+ LA+ +G+ + R+++WFQN R+R +	60%	Sim		
Human	${\tt GRRRRLVWTPSQSEALRACFERNPYPGIATRERLAQAIGIPEPRVQIWFQNERSRQLRQH}$				
	RRRRLV T SQ AL+A F++NPYP I RE LA+ + I E R+Q+WFQN+R+RQLRQ	75%	Sim		
Dog	${\tt PRRRRLVLTASQKGALQAFFQKNPYPSITAREHLARELAISESRIQVWFQNQRTRQLRQS}$				
Homeodomain 2					
Homeod	omain 2				
Homeod Mouse	omain 2 GRRPRTRLTSLQLRILGQAFERNPRPGFATREELARDTGLPEDTIHIWFQNRRARRRHRR				
Homeod Mouse	omain 2 GRRPRTRLTSLQLRILGQAFERNPRPGFATREELARDTGLPEDTIHIWFQNRRARRRHRR GRR RT +T Q +L +AFE++ PG A REELAR+TGLPE I IWFQNRRAR +	70%	Sim		
Homeodo Mouse Human	omain 2 GRRPRTRLTSLQLRILGQAFERNPRPGFATREELARDTGLPEDTIHIWFQNRRARRRHRR GRR RT +T Q +L +AFE++ PG A REELAR+TGLPE I IWFQNRRAR + GRRKRTAVTGSQTALLLRAFEKDRFPGIAAREELARETGLPESRIQIWFQNRRARHPGQG	70%	Sim		
Homeodo Mouse Human	omain 2 GRRPRTRLTSLQLRILGQAFERNPRPGFATREELARDTGLPEDTIHIWFQNRRARRHRR GRR RT +T Q +L +AFE++ PG A REELAR+TGLPE I IWFQNRRAR + GRRKRTAVTGSQTALLLRAFEKDRFPGIAAREELARETGLPESRIQIWFQNRRARHPGQG GRRKRT+++ SQT++LL+AFE++RFPGI RE LAR+TGLPE+RIQ+WFQNRRARHPGQ	70% 92%	Sim Sim		

Figure S2. The canine DUXC homeodomains show higher similarity to the human than does the mouse. HD1 alignments show that the canine has 75% similarity to the human, whereas the similarity of human to mouse is 60%. For HD2, canine is 92% similar to human, whereas mouse is 70% similar to human.

Figure S3. See legend on next page.

ERVL-MaLR

family

Gypsy

Others

ERV1

ERVL

Figure S3. **Repeat element different analysis and enriched repeat families** . (A) A traditional MA plot to show the expression of 726 repeat elements in canine muscle cells expressing DUX4 (HinC) compared to a control luciferase vector. The x axis is the mean of normalized counts of each repeat element in the two conditions and y axis is the log_2 fold change of each element in the two conditions. The red dots represent the differentially expressed repeat elements with adjusted p-value < 0.05 corresponding \mathcal{H}_0 : $|logFC| \le 0.5$. (B) Similar to A showin the expression of 717 repeat elements in canine muscle cells expressing canine DUXC and luciferase (CinC). (C) The repeat family distribution in LTR class. (D) The percentage of differentially expressed elements within each LTR repeat class in HinC and CinC. (D) A violin plot to show the log_2 expression of each element in the LTR families, with red dots indicating the element is differentially expressed.

Figure S4. A bar plot to show the percentage of up-regulated retroelements in the LINE sub-families of CR1, L1, and L2.