
Supplementary Material:
Fast Sparse Classification for Generalized Linear and

Additive Models

A THEOREMS AND PROOFS

A.1 Thresholding Is Too Conservative

The first theorem shows that thresholding is too conservative. Recall that with the support set fixed (i.e.,
λ0 = 0), the loss can be written as G(w) =

∑n
i=1 log(1 + exp(−yi(xTi w))) + λ2‖w‖22.

Theorem 4.1 (Thresholding is too conservative.) Let wt be the current solution at iteration t, wtj be the
coefficient for the j-th feature, and let w∗j be the optimal value on the j-th coefficient while keeping all other

coefficients fixed to their values at time t. Furthermore, let wt+1 = wt + ej(T (j,wt)−wtj), where ej is a vector
with 1 on the j-th component and 0 otherwise and T (j,wt) is the thresholding operation with the support set
fixed (i.e., λ0 = 0). Then we have the following inequalities:

∇jG(wt)∇jG(wt+1) ≥ 0,

(wtj − w∗j)(wt+1
j − w∗j) ≥ 0,

and G(wt) ≥ G(wt+1).

Proof.
For notational convenience, let us define two functions:

F (u) := G(wt) + (u− wtj)∇jG(wt) +
1

2
Lj(u− wtj)2

H(u) := G(wt − wtjej + uej).

Using the notation above, our thresholding operation can be rewritten as T (j,w) ∈ arg minu F (u). This means
wt+1
j = T (j,w) minimizes F (·). After the thresholding operation, we update w by wt+1 = wt−wtjej +wt+1

j ej .
Furthermore, we use w∗j to denote the optimal value that minimizes H(·). Throughout this proof, we assume
λ0 = 0 because the support set is fixed.

Using the new notation for F (u) and H(u), we have the following expression for their first and second derivatives:

F ′(u) = ∇jG(wt) + Lj(u− wtj),
H ′(u) = ∇jG(wt − wtjej + uej),

F ′(wtj) = H ′(wtj),

F ′′(u) = Lj

H ′′(u) = ∇2
jjG(wt − wtjej + uej)

0 ≤ H ′′(u) ≤ Lj = F ′′(u).

To get F ′(wtj) = H ′(wtj), we plug in u = wtj into the formula for F ′(u) and H ′(u). For the last inequalities, we
have H ′′(u) ≥ 0 because H(u) is a convex function. In addition, we have H ′′(u) ≤ Lj because Lj is the Lipschitz

constant for H ′(u) so that |H ′(u+ d)−H ′(u)| ≤ Lj |d| and |H ′′(u)| = limd→0 |H
′(u+d)−H′(u)

d | ≤ Lj .

Note that F (u) is a quadratic upper bound of H(u). First we have that F − H is a convex function because
the second derivative of F −H is greater than or equal to 0. Second, the first derivative of F −H at wtj is 0.
Third, F −H at wtj is also 0. These three things mean that F (u)−H(u) ≥ 0 for any u ∈ R. Therefore, F (u) is
a quadratic upper bound of H(u).

We want to show

∇jG(wt)∇jG(wt+1) ≥ 0,

(wtj − w∗j)(wt+1
j − w∗j) ≥ 0,

and G(wt) ≥ G(wt+1).

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

Using the new notation, it is equivalent for us to show

H ′(wtj)H
′(wt+1

j) ≥ 0, (11)

(wtj − w∗j)(wt+1
j − w∗j) ≥ 0, (12)

and H(wtj) ≥ H(wt+1
j). (13)

To show the inequalities above, we discuss three cases: Case 1) wtj < w∗j , Case 2) wtj > w∗j , and Case 3) wtj = w∗j .

Case 1: wtj < w∗j

If wtj < w∗j , we have H ′(wtj) < 0. This is true because

H ′(wtj) = H ′(w∗j) +

∫ wt
j

w∗j

H ′′(u)du

= 0 +

∫ wt
j

w∗j

H ′′(u)du

= −
∫ w∗j

wt
j

H ′′(u)du < 0.

The last inequality holds because H ′′(u) ≥ 0 and H ′′(u) > 0 for some nonzero measurable set in [wtj , w
∗
j].

Now because wt+1
j minimizes F (·), we have F ′(wt+1

j) = 0. Using the relationship between F (·) and H(·), we
have

0 = F ′(wt+1
j) = F ′(wtj) +

∫ wt+1
j

wt
j

F ′′(u)du

= H ′(wtj) +

∫ wt+1
j

wt
j

F ′′(u)du

≥ H ′(wtj) +

∫ wt+1
j

wt
j

H ′′(u)du

= H ′(wt+1
j).

Therefore, we have H ′(wt+1
j) ≤ 0. Since H ′(wtj) < 0, we have H ′(wtj)H

′(wt+1
j) ≥ 0, proving (11) for Case 1.

Let us prove (12) for Case 1. For the sake of contradiction, suppose wt+1
j > w∗j , we have H ′(wt+1

j) > 0 because

H ′(wt+1
j) = H ′(w∗j) +

∫ wt+1
j

w∗j

H ′′(u)du

= 0 +

∫ wt+1
j

w∗j

H ′′(u)du

=

∫ wt+1
j

w∗j

H ′′(u)du > 0.

This implies H ′(wtj)H
′(wt+1

j) < 0, contradicting the proof of (11) for Case 1 above. Thus, we have wt+1
j ≤ w∗j

and (wtj − w∗j)(wt+1
j − w∗j) ≥ 0, proving (12) for Case 1.

Lastly, because of the relationship between F (·) and H(·), we have

H(wt+1
j) ≤ F (wt+1

j) = min
u
F (u) ≤ F (wtj) = H(wtj).

This proves our third inequality (13) for Case 1.

Fast Sparse Classification for Generalized Linear and Additive Models

Case 2: wtj > w∗j

If wtj > w∗j , we have H ′(wtj) > 0. The procedure to show this is very similar to what we have shown in Case 1,
so we omit it here.

Now because wt+1
j minimizes F (·), we have F ′(wt+1

j) = 0. Using the relationship between F (·) and H(·), we
have

0 = F ′(wt+1
j) = F ′(wtj) +

∫ wt+1
j

wt
j

F ′′(u)du

= H ′(wtj) +

∫ wt+1
j

wt
j

F ′′(u)du

≤ H ′(wtj) +

∫ wt+1
j

wt
j

H ′′(u)du

= H ′(wt+1
j).

The third line holds true because wt+1
j < wtj . Therefore, we have H ′(wt+1

j) ≥ 0. Since H ′(wtj) > 0, we have

H ′(wtj)H
′(wt+1

j) ≥ 0, proving the inequality (11) under Case 2.

We proceed to prove (12) for Case 2. Now for the sake of contradiction, suppose wt+1
j < w∗j , we have H ′(wt+1

j) <
0. Again, the procedure to show this is very similar to what we have shown in Case 1, so we omit it here. This
reasoning implies H ′(wtj)H

′(wt+1
j) < 0, contradicting the proof of (11) under Case 2 above. Thus, we have

wt+1
j ≥ w∗j and (wtj − w∗j)(wt+1

j − w∗j) ≥ 0, proving (12) for Case 2.

The procedure to prove (13) under Case 2 identical to (13) under Case 1, so we omit the proof here.

Case 3: wtj = w∗j .

In this special case, wt+1
j = wtj . Thus, the three inequalities (11), (12), and (13) hold trivially. This completes

the proof for Theorem 4.1.

To the best of our knowledge, we are the first to show that wt+1
j and wtj stay on the same side of w∗j . This

important point is the motivation behind our use of cutting planes and the development of our quadratic lower
bound.

A.2 Lower Bound via Cutting Planes

Theorem 4.2 Suppose f(x) is convex and differentiable on domain R. Let α1 and α2 be slopes of tangent lines
of f(x) at locations x1 and x2. If α1α2 ≤ 0, there is a lower bound on the optimal value f(x∗):

f(x∗) ≥ α1f(x2)− α2f(x1) + α1α2(x1 − x2)

α1 − α2
.

Proof.
Because of the convexity of f(x), we have

f(x) ≥ f(x1) + α1(x− x1) where α1 = f ′(x1)

f(x) ≥ f(x2) + α2(x− x2) where α2 = f ′(x2).

Notice that the function f(x) sits above two lines y = f(x1) + α1(x− x1) and y = f(x2) + α2(x− x2).

Equating these two lines to find the intersection point x̂, we have

f(x1) + α1(x̂− x1) = f(x2) + α2(x̂− x2) (14)

⇒x̂ =
f(x2)− f(x1) + α1x1 − α2x2

α1 − α2
.

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

To find the intersection value ŷ, we plug in x̂ into the left side of (14) and get

ŷ = f(x1) + α1(x̂− x1)

=
α1f(x2)− α2f(x1) + α1α2(x1 − x2)

α1 − α2
.

Since the function f(x) sits above the two lines and therefore above the intersection value ŷ, we have

f(x∗) ≥ α1f(x2)− α2f(x1) + α1α2(x1 − x2)

α1 − α2
.

This completes the proof for Theorem 4.2.

A.3 Lower Bound via Quadratic Cuts

Theorem 4.3 Suppose f(x) = g(x) + λ2x
2, where g(x) is a convex and differentiable function. Then f(x) is

strongly convex. Let α1 be the slope of the tangent line to f(x) at location x1. Then, there is a lower bound on
the optimal value f(x∗):

f(x∗) ≥ Llow := f(x1)− α2
1

4λ2
. (15)

Let α2 be the slope of the tangent line to f(x) at another location x2. If α1α2 ≤ 0, a lower bound on the optimal
value f(x∗) is as follows:

f(x∗) ≥ Llow := f(x̂) + α1(x̂− x1) + λ2(x̂− x1)2, (16)

where

x̂ =
−f(x1) + f(x2) + α1x1 − α2x2 − λ2(x2

1 − x2
2)

α1 − α2 − 2λ2(x1 − x2)
.

Proof.
Given a convex function g(x), we first show that f(x) = g(x) +λ2x

2 is a strongly convex function before proving
the two bounds in Theorem 4.3.

To show that f(x) is a strongly convex function, it is sufficient to show

f(y) ≥ f(x) + f ′(x)(y − x) + λ2(y − x)2 (17)

for any x, y ∈ R.

Because g(x) is convex, we have

g(y) ≥ g(x) + g′(x)(y − x).

Adding λ2y
2 to both sides, we have

g(y) + λ2y
2 ≥ g(x) + g′(x)(y − x) + λ2y

2.

The LHS is f(y). The RHS can be rewritten as

g(x) + g′(x)(y − x) + λ2y
2

= g(x) + λ2x
2 + (g′(x) + 2λ2x)(y − x) + λ2y

2 − λ2x
2 − 2λ2x(y − x)

= f(x) + f ′(x)(y − x) + λ2(x− y)2.

Therefore, f(x) is a strongly convex function.

Because f(·) is strongly convex, where (17) holds for any x and y, given a point x1 with α1 := f ′(x1), then our
strongly convex function f(·) at any point x is bounded by

f(x) ≥ f(x1) + α1(x− x1) + λ2(x− x1)2.

Fast Sparse Classification for Generalized Linear and Additive Models

The RHS is a quadratic function of x, with the minimum value achieved at f(x1)− α2
1

4λ2
, so we have

f(x) ≥ f(x1)− α2
1

4λ2
.

Since the above inequality works for any x ∈ R, it also works for the optimal value x∗:

f(x∗) ≥ f(x1)− α2
1

4λ2
.

Therefore, we have proved (15).

Suppose we are given another point x2 with α2 := f ′(x2), then f(x) sits above two quadratic equations:

f(x) ≥ f(x1) + α1(x− x1) + λ2(x− x1)2

f(x) ≥ f(x2) + α2(x− x2) + λ2(x− x2)2.

Equating these two quadratic equations to find the intersection point x̂, we have

f(x1) + α1(x̂− x1) + λ2(x̂− x1)2 = f(x2) + α2(x̂− x2) + λ2(x̂− x2)2

⇒x̂ =
−f(x1) + f(x2) + α1x1 − α2x2 + λ2(x2

2 − x2
1)

α1 − α2 − 2λ2(x1 − x2)
.

Plugging in the intersection point x̂, we can get the intersection value ŷ, which is a lower bound of f(x∗)

f(x∗) ≥ ŷ = f(x1) + α1(x̂− x1) + λ2(x̂− x1)2.

This completes the proof for (16).

A.4 Derivation for the Exponential Loss

The exponential loss function is defined as H(w) = 1
n

∑n
i=1 e

−yif(xi), where f(xi) = wTxi. Since xi is a binary
vector, s.t. xij ∈ {−1, 1} and yi ∈ {−1, 1}, let zi = yixi and zi ∈ {−1, 1}p. After t iterations, the exponential
loss function can be written as:

H(wt) =
1

n

n∑
i=1

e−yi(
∑p

j=1 w
t
jxij) =

1

n

n∑
i=1

e−(wt)T zi .

We will perform a linesearch, where we optimize coefficient j at iteration t. This linesearch optimization problem
for coordinate j is wt+1

j ∈ arg minwH([wt1, ..., w
t
j−1, w, w

t
j+1, ...]) + λ0‖[wt1, ..., wtj−1, w, w

t
j+1, ...]‖0.

Theorem 5.1 Let wt be the coefficient vector at iteration t, Ht := H(wt) and λ0 be the regularization constant
for the `0 penalty. For the j-th coordinate, we update the coefficient according to:

(1) Suppose wtj=0. Let d−=
∑
i:zij=−1ci/

∑n
i=1ci, where ci = e−(wt)T zi . Then, if d− is within the interval:[

1

2
− 1

2Ht

√
λ0(2Ht−λ0),

1

2
+

1

2Ht

√
λ0(2Ht−λ0)

]
,

then set wt+1
j to 0. Otherwise set wt+1

j = 1
2 ln 1−d−

d−
.

(2) Suppose wtj 6=0. Let D−=
∑
i:zij=−1ci/

∑n
i=1ci, where ci = e−(wt−wt

jej)T zi . Let Ht
¬j = H(wt−wtjej). Then,

if D− is within the interval:[
1

2
− 1

2Ht
¬j

√
λ0(2Ht

¬j−λ0),
1

2
+

1

2Ht
¬j

√
λ0(2Ht

¬j
−λ0)

]
,

then set wt+1
j to 0. Otherwise, set wt+1

j = 1
2 ln 1−D−

D−
.

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

While these expressions may first appear difficult to calculate, they are not. Like AdaBoost, we make multi-
plicative updates to the loss at each iteration. Thus, since Ht is easy to calculate, Ht

¬j is also easy to calculate
(requiring only a multiplication), and the rest is simple mathematical operations.

Intuitively, using AdaBoost’s terminology, the bound states that if the weak learning algorithm produces a
stronger weak classifier at that iteration (a classifier whose error rate is away from 1/2), we would keep it.
Otherwise, we would not; we would rather set its coefficient to 0. In some sense, this result is reminiscent of
iterative thresholding (Daubechies et al., 2004).

Proof.
Case 1: Suppose at iteration t, wtj = 0 and in the next iteration t + 1, we evaluate placing feature j into the

model, i.e., set wt+1
j 6= 0. Then, the decrease in loss should be larger than λ0, otherwise wt+1

j = 0. Suppose we
want to add feature j into the model, the loss function is

Ht+1 =
1

n

n∑
i=1

e−(wt)T zi−yiwjxij =
1

n

n∑
i=1

e−(wt)T zi−wjzij .

We can get an analytical solution for wj by solving ∂Ht+1

∂wj
= 0, which is the same as AdaBoost’s update step.

0 =
∂Ht+1

∂wj

∣∣∣
w∗j

=

n∑
i=1

−zije−(wt)T zie−wjzij
∣∣∣
w∗j

=
∑

i:zij=1

−e−(wt)T zie−wj

∣∣∣
w∗j

+
∑

i:zij=−1

e−(wt)T ziewj

∣∣∣
w∗j

.

(18)

Multiplying by a normalization constant

C =

n∑
i=1

ci =

n∑
i=1

e−(wt)T zi ,

and defining

d+ =

∑
i:zij=1 e

−(wt)T zi

C
and d− =

∑
i:zij=−1 e

−(wt)T zi

C
,

Equation (18) becomes
0 = −d+e

−w∗j + d−e
w∗j .

Solving this yields:

w∗j =
1

2
ln
d+

d−
.

Recalling that d+ = 1− d−, the lowest possible loss after adding in feature j is thus:

Ht+1 = Lt ·

(
(1− d−)

(
1− d−
d−

)−1/2

+ d−

(
1− d−
d−

)1/2
)

= Ht · 2 ((1− d−)d−)
1/2

. (19)

We have now derived the best possible value for wj if it were nonzero. However, our objective suffers a penalty
of λ0 from the regularization term whenever wj is nonzero. Thus, we need to compare the objective with wj = 0
to the regularized objective with (19) as the loss term. If the difference is less than λ0, it would benefit the
objective to set coefficient j to 0 at the next iteration. The condition for setting wj to 0 is:

Ht −Ht+1 = Ht −Ht · 2 ((1− d−)d−)
1/2 ≤ λ0.

Ht − λ0

2Ht
≤ ((1− d−)d−)1/2(

Ht − λ0

2Ht

)2

≤ (1− d−)d−

d2
− − d− +

(
Ht − λ0

2Ht

)2

≤ 0.

(20)

Fast Sparse Classification for Generalized Linear and Additive Models

This is a quadratic equation, permitting solutions in d− ∈
(

1
2 −

1
2Ht

√
λ0(2Ht − λ0), 1

2 + 1
2Ht

√
λ0(2Ht − λ0)

)
.

Therefore, if d− ∈
(

1
2 −

1
2Ht

√
λ0(2Ht − λ0), 1

2 + 1
2Ht

√
λ0(2Ht − λ0)

)
, then set wt+1

j to 0. Otherwise, wt+1
j =

1
2 ln 1−d−

d−
.

Case 2: Suppose at iteration t, wtj 6= 0, and in the next iteration t + 1, we evaluate updating wtj . Then the

decrease in loss should be larger than Ht − Ht
¬j + λ0, otherwise, wt+1=0

j . Suppose we want to update wj at
iteration t+ 1, the loss function is

Ht+1 =
1

n

n∑
i=1

e−(wt−wt
jej)T zi−wjzij .

Similar to the derivation for Case 1, we can get an analytical solution for wj by solving ∂Ht+1

∂wj
= 0.

0 =
∂Ht+1

∂wj

∣∣
w∗j

=
n∑
i=1

−zije−(wt−wt
jej)T zie(−wjzij)

∣∣
w∗j

=
∑

i:zij=1

−e−(wt−wt
jej)T zie−wj

∣∣
w∗j

+

∑
i:zij=−1

e−(wt−wt
jej)T ziewj

∣∣
w∗j

.

(21)

Similarly, multiplying by a normalization constant C, and defining D+ =
∑
i:zij=1 e

−(wt−wt
jej)T zi/C and D− =∑

i:zij=−1 e
−(wt−wt

jej)T zi/C.

Then Equation 21 becomes

0 = −D+e
−w∗j +D−e

w∗j .

Solving this yields:

w∗j =
1

2
ln
D+

D−
.

The lowest possible loss after updating the coefficient of feature j is

Ht+1 = Ht
¬j ·

(
D+

(
D+

D−

)−1/2

+D−

(
D+

D−

)1/2
)

= Ht
¬j · 2((1−D−)D−)1/2. (22)

Similarly to Case 1, we need to compare the objective with wj = 0 to the regularized objective with (22) as the
loss term. If the difference is less than λ0, it would benefit the objective to set coefficient j to 0 at the next
iteration. The condition for setting wj to 0 is:

Ht
¬j −Ht+1 = Ht

¬j −Ht
¬j · 2 ((1−D−)D−)

1/2 ≤ λ0.

Using the same derivation as in Equation (20), the solution is in

D− ∈

(
1

2
− 1

2Ht
¬j

√
λ0(2Ht

¬j−λ0),
1

2
+

1

2Ht
¬j

√
λ0(2Ht

¬j − λ0)

)
.

Therefore, if D− ∈
(

1
2−

1
2Ht
¬j

√
λ0(2Ht

¬j−λ0), 1
2 + 1

2Ht
¬j

√
λ0(2Ht

¬j − λ0)
)

, then set wt+1
j to 0. Otherwise,

wt+1
j = 1

2 ln 1−D−
D−

.

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

B PSEUDOCODE

We begin with the presentation of our high-level Algorithm 1 and then elaborate on the novel steps in the
following lower-level algorithms.

Shortly, we discuss how TryDeleteOrSwap(w, j, Sc) is implemented in detail. After that, we discuss its subroutine
algorithms TryAddLinCut(w′, j′,Lbest) and TryAddQuad(w′, j′,Lbest), as well as their subroutine algorithm
FindNewCoefficient(w′, j′). For algorithms TryAddLinCut(w′, j′,Lbest) and TryAddQuad(w′, j′,Lbest), we use
f(x) = G(w′ + ej′x) for notational convenience (assuming w′j′ = 0; if it is not, notation can be adjusted
appropriately). Also for notational convenience, we use one lower bound from classical cutting planes and two
lower bounds from quadratic cuts:

LinCut(a, b, f(·)) =
f ′(a)f(b)− f ′(b)f(a) + f ′(a)f ′(b)(a− b)

f ′(a)− f ′(b)

QuadCut1(a, f(·)) = f(a)− f ′(a)2

4λ2

QuadCut2(a, b, f(·)) = f(a) + f ′(a)(x̂− a) + λ2(x̂− a)2

with x̂ =
−f(a) + f(b) + f ′(a)a− f ′(b)b+ λ2(b2 − a2)

f ′(a)− f ′(b)− 2λ2(a− b)
.

Algorithm 1 General Algorithm for Swapping Features

Input: coefficients w from a warm start algorithm, c = 0 is a vector of size p where each cj for j < p indicates
the number of times we failed to find a feature to swap with j.
Output: updated coefficients w that is a swap 1-OPT solution.

1: while True do
2: Update support S = {j|wj 6= 0}.
3: Π(S) = Sort(S) according to cj for j ∈ S. #Sort support in ascending order of the no. of failed swaps
4: for j in Π(S) do
5: w′ = TryDeleteOrSwap(w, j, Sc) #Sc is the complement of S
6: if w′ 6= w then
7: Let w = w′. #Swap was successful
8: Go to line 2.
9: else

10: cj = cj + 1. #No better feature can replace feature j
11: end if
12: end for
13: Return w. #No single feature can be replaced with better features
14: end while

Fast Sparse Classification for Generalized Linear and Additive Models

Algorithm 2 TryDeleteOrSwap(w, j, Sc)

Input: coefficients w, feature index j with wj 6= 0, set of feature indices Sc = {j′|wj′ = 0}.
Output: updated coefficients w′ with feature j possibly deleted or swapped with feature j′ ∈ Sc.

1: Calculate the best current loss Lbest = G(w).
2: Let w′ = w and then set w′j = 0. #Drop feature j from the support
3: if G(w′) ≤ Lbest then
4: Update w′ with support restricted to S \ {j}. #Dropping feature j leads to smaller loss
5: Return w′.
6: end if
7: Calculate |∇ScG(wt)| on Sc.
8: Π′ = feature indices in Sc sorted in descending order of |∇ScG(w′)|. #Order features to possibly add in
9: for j′ ∈ Π′ do

10: Let w′ = TryAddQuad(w′, j′,Lbest) if (λ2 > 0). #or w′ = TryAddLinCut(w′, j′,Lbest) if (λ2 = 0)
11: if w′ has changed then
12: Update full vector w′ with support restricted to S ∪ {j′} \ {j}. #Swapping j with j′ decreases loss
13: Return w′.
14: end if
15: end for
16: Return w. #Since there were no better features, return original w

Algorithm 3 TryAddLinCut(w′, j′,Lbest)
Input: coefficients w′, feature index j′, and current best loss Lbest.
Output: updated coefficients w′.

1: Let a = T (j′,w′), b = 2T (j′,w′) #Take 2X distance suggested by thresholding operation Eq (4)
2: if f ′(0)f ′(b) < 0 then
3: Let c = (a+ b)/2 #Binary search
4: if f ′(0)f ′(c) < 0 then
5: Let b = c
6: else
7: Let a = c
8: end if #a and b are on opposite sides of w∗j′
9: Get Llow = LinCut(a, b, f(·))

10: if Llow ≥ Lbest then
11: Return w′ #Stop considering feature j′ and exit early
12: end if
13: Let ŵj′ = FindNewCoefficient(w′, j′).
14: if f(ŵj′) < Lbest then
15: Return w′ with w′j′ = ŵj′ #Swap feature j with feature j′

16: end if
17: Return w′ #Eliminate considering feature j′

18: end if
19: Let a = 2T (j′,w′), b = 3T (j′,w′) #Take 3X distance suggested by thresholding operation
20: if f ′(0)f ′(b) < 0 then
21: Go to line 9.
22: else
23: Go to line 13. #Minimum is far from starting point. Swap the feature to see if there’s improvement.
24: end if

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

Algorithm 4 TryAddQuad(w′, j′,Lbest)
Input: coefficients w′, feature index j′, and current best loss Lbest
Output: updated coefficients w′

1: Get Llow = QuadCut1(0, f(·))
2: if Llow ≥ Lbest then
3: Return w′ #Stop considering feature j′ and exit early
4: end if
5: Let a = T (j′,w′), b = 2T (j′,w′) #Take 2X distance suggested by thresholding operation Eq (4)
6: if f ′(0)f ′(b) < 0 then
7: Let c = (a+ b)/2 #Binary search
8: Get Llow = QuadCut1(c, f(·))
9: if Llow ≥ Lbest then

10: Return w′ #Stop considering feature j′ and exit early
11: end if
12: if f ′(0)f ′(c) < 0 then
13: Let b = c
14: else
15: Let a = c
16: end if #a and b are on opposite sides of w∗j′
17: Get Llow = QuadCut2(a, b, f(·))
18: if Llow ≥ Lbest then
19: Return w′ #Stop considering feature j′ and exit early
20: end if
21: Let ŵj′ = FindNewCoefficient(w′, j′).
22: if f(ŵj′) < Lbest then
23: Return w′ with w′j′ = ŵj′ #Swap feature j with feature j′

24: end if
25: Return w′ #Eliminate considering feature j′

26: end if
27: Let a = 2T (j′,w′), b = 3T (j′,w′) #Take 3X distance suggested by thresholding operation
28: Get Llow = QuadCut1(a, f(·))
29: if Llow ≥ Lbest then
30: Return w′ #Stop considering feature j′ and exit early
31: end if
32: if f ′(0)f ′(b) < 0 then
33: Go to line 17.
34: else
35: Get Llow = QuadCut1(b, f(·))
36: if Llow ≥ Lbest then
37: Return w′ #Stop considering feature j′ and exit early
38: end if
39: Go to line 21. #Minimum is far from starting point. Swap the feature to see if there’s improvement.
40: end if

Algorithm 5 FindNewCoefficient(w′, j′)

Input: coefficients w, coordinate j′, iteration steps max iter=10 (default)
Output: updated coefficient wj′ for coordinate j′

1: for t in 1, 2, ..., max iter do
2: w′ = w′ − wj′ej′ + T (w′, j′)ej′ #Apply the thresholding operation on coordinate j′

3: end for
4: Return w′j′

Fast Sparse Classification for Generalized Linear and Additive Models

C EXPERIMENTAL DETAILS

We next present the datasets used in our experiments, our preprocessing steps, and the experimental setup.

C.1 Datasets

We present results using 5 datasets: two synthetic datasets (one in which the features are highly correlated for
binary classification and the other in which the features are highly correlated for linear regression), the Fair Isaac
(FICO) credit risk dataset (FICO et al., 2018) used for the Explainable ML Challenge, two recidivism datasets:
COMPAS (Larson et al., 2016) and Netherlands (Tollenaar and Van der Heijden, 2013). We predict whether an
individual will default on a loan for the FICO dataset, which individuals are arrested within two years of release
on the COMPAS dataset, and whether defendants have any type of charge within four years on the Netherlands
dataset.

Dataset Name n p
Highly Correlated (classification) 800 1000
Highly Correlated (regression) 2000 2000
FICO 10459 1917
COMPAS 6907 134
NETHERLANDS 20000 2024

Table 1: Datasets and their number of samples (n) and number of features (p).

C.2 Data Generation and Preprocessing

Synthetic Datasets

Binary Classification: we generate synthetic datasets according to the generation process in L0Learn (Dedieu
et al., 2021). We first sample the data features xi ∈ Rp from a multivariate Gaussian distribution N (0,Σ)
with mean 0 and covariance matrix Σ. Then, we create the coefficient vector w with k nonzero entries, where
wi = 1 if i mod (p/k) = 0. Lastly, we sample the data labels yi ∈ {−1,+1} from a Bernoulli distribution
P (yi = 1 | xi) = 1

1+exp(−wTxi)
. In our experiments, we generate 800 training and 160 test samples with feature

dimension p = 1000. The data are highly correlated with Σij = 0.9|i−j|. Additionally, we set the number of true
sparsity k = 25. We generate this setting 5 times with 5 different random seeds (in total we have 5 datasets,
each with (800 + 160) = 960 samples).

Linear Regression: we generate the synthetic dataset according to the generation process in L0Learn (Hazimeh
and Mazumder, 2020) as explained in Section 5.3.1. We first sample the data features xi ∈ Rp from a multivariate
Gaussian distribution N (0,Σ) with mean 0 and covariance matrix Σ. Then, we create the coefficient vector w
with k nonzero entries, where wi = 1 if i mod (p/k) = 0. Lastly, we sample yi = xTi w+εi with εi generated from

a Gaussian distribution N (0, σ2). The signal-to-noise ratio (SNR) is defined as SNR = Var(Xw)
Var(ε) = wT Σw

σ2 , where

each row of X is xi. In our experiments, we generate 2000 data samples with feature dimension p = 2000. The
data are highly correlated with Σij = 0.9|i−j| and SNR = 5. Additionally, we set the true sparsity as k = 100.

Real Datasets

FICO: We use all continuous features in this dataset. We did not consider missing data values as separate
dummy variables.

COMPAS: We selected features sex, age, juv fel count, juv misd count, juv other count, priors count, and
c charge degree and the label two year recid.

NETHERLANDS: We translated the feature names from Dutch to English and then used features sex, country
of birth, log # of previous penal cases, 11-20 previous case, and >20 previous case, age in years, age at first
penal case, offence type, and the label recidivism in 4y.

For FICO and COMPAS, we convert each continuous variable x·,j into a set of highly correlated dummy variables
x̃·,j,θ = 1[x·,j≤θ], where θ are all unique values that have appeared in feature column j. For NETHERLANDS,

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

we convert continuous variables into a set of dummy variables in the same way except for variables age in years
(which is real-valued, not integer) and age at first penal case. For these two real-valued variables, instead of
considering all unique values that have appeared in the feature column, we consider 1000 quantiles.

C.3 Evaluation Platform

All experimental results were run on a 2.40GHz 30M Cache (256GB RAM 48 hyperthreaded cores) Dell R620
with 2 Xeon(R) CPU E5-2695 v2. We ran all experiments using 8 cores per task.

C.4 Software Packages Used

We list all software packages used in this section. Details about hyperparameter selection are in Appendix D.

• `1 regularized logistic regression: We run `1 regularized logistic regression using glmnet package (Friedman
et al., 2010).

• Minimax Concave Penalty (MCP): We run MCP using ncvreg package (Breheny and Huang, 2011).

• L0Learn: We run L0Learn using the R implementation from (Dedieu et al., 2021)1.

• Ours: We build our method based on L0Learn’s codebase, so that we could use its preprocessing steps, and
pipeline for running the full regularization path of λ0 values.

There are some other baselines such as GraSP (Bahmani et al., 2013) and NHTP (Zhou et al., 2021). However,
previous work (Dedieu et al., 2021) has shown that they have a considerable number of false positives on the
synthetic dataset and have large support sizes for their solutions, so we omit running these two baselines.

C.5 Evaluation Metrics

We use the same evaluation metrics used in Dedieu et al. (2021).

• AUC: The area under the ROC curve.

• Accuracy: 1−
∑n

i=1 1[yi 6=ŷi]
n .

• Recovery F1 score: 2PR
P+R , where P = |supp(ŵ) ∩ supp(w∗)|/|supp(ŵ)| is the precision and R = |supp(ŵ) ∩

supp(w∗)|/|supp(w∗)| is the recall. supp(·) stands for the support (indices with nonzero coefficients) of a
solution. We can only use recovery F1 score for synthetic datasets since we need to know the support of w∗

to calculate it.

D ADDITIONAL EXPERIMENTS

We first elaborate on hyperparameters used for different software packages. We then present extra experimental
results that were omitted from the main paper due to space constraints.

Collection and Setup: we ran the experiments on the two simulated datasets and 3 real datasets: FICO,
COMPAS, and Netherlands. For each dataset, we trained the model using varying configurations. On the
simulated classification task, we ran on 5 datasets, each generated by a different random seed. On the real
datasets, we performed 5-fold cross validation to measure training time, training accuracy, and test accuracy for
each fold.

To get the support versus AUC, accuracy, and F1 score curves, for MCP, the sequence of 100 λ values was set to
the default values of ncvreg, and we chose the second parameter γ by using 10 values between 1.5 and 25, where
we show results of γ being 1.5 and 25 for each λ. Curves for other γ values are between these extremes. For `1
regularized logistic regression, the choice of 100 λ values was set to the default sequence chosen by glmnet. For
L0Learn, we set the penalty type to “L0L2” and γ to {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}. The regularization

1https://github.com/hazimehh/L0Learn

Fast Sparse Classification for Generalized Linear and Additive Models

0.8 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0

0

1

2

3

4

5

6

7

8

Ti
m

e
(s

)

0 2 4 6 8
Time (s)

0.727

0.730

0.732

0.735

0.737

0.740

0.742

0.745

Tr
ai

n
AU

C

0 2 4 6 8
Time (s)

0.715

0.720

0.725

0.730

0.735

0.740

0.745

Te
st

 A
UC

COMPAS Dataset with 2=1e-05

0.8 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0

0
1
2
3
4
5
6
7
8

Ti
m

e
(s

)

0 2 4 6 8
Time (s)

0.727

0.730

0.732

0.735

0.737

0.740

0.742

0.745
Tr

ai
n

AU
C

0 2 4 6 8
Time (s)

0.715

0.720

0.725

0.730

0.735

0.740

0.745

Te
st

 A
UC

COMPAS Dataset with 2=0.001

ours Exp-L0
ours LogRegQuad-L0

ours LogRegQuad-L0 without dynamic ordering
ours LogRegLinCut-L0 without dynamic ordering

L0Learn LogReg-L0

Figure 6: Computational times of different methods. “Exp” stands for exponential loss, “LogReg” stands for
logistic loss, and “Quad” stands for quadratic cuts. Note that there is no `2 penalty for the exponential loss.
Our Exp-L0 method is generally about 4 times faster than L0Learn. Note that the AUC axes indicate practically
similar performance for these particular methods; the training time is what differentiates the methods.

choices for the `0 term were set to the 100 default values of L0Learn. For our methods, we also set the penalty
type and γ (which is λ2) in the same way as the setting for L0Learn and use the same λ values as in the L0Learn
algorithm.

In addition, we set 56 pairs of λ (resp. λ0) and γ (resp. λ2) values for comparing the run times obtained by our
methods and by L0Learn: λ ∈ {0.8, 1, 2, 3, 4, 5, 6, 7} and γ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10}.

D.1 Run Time Savings for Linear Regression

Although our method is designed for classification problems, the proposed dynamic ordering technique can also
speed up the local swap process for linear regression. For the full regularization path with 100 different λ0 values,
the total time difference between local swaps without dynamic ordering and local swaps with dynamic ordering
improved computation time by 36% (from 184 seconds to 117 seconds).

D.2 Run Time Savings from First and Second Methods

We show results on time savings from our first method (linear cut, quadratic cut, and dynamic ordering) and our
second method (exponential loss). The general trends are: i) Using the quadratic cut makes the algorithm faster
than the linear cut, i.e., there is more time saved with stronger `2 regularization. ii) Using dynamic ordering
and the quadratic cut together makes the algorithm much faster than using the quadratic cut alone. iii) When
features are binary, using the exponential loss has the greatest computational advantage. These trends are shown
fairly uniformly across datasets. Results for each dataset are shown in Figures 6-7.

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

0.8 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0

0

20

40

60

80

100

Ti
m

e
(s

)

0 20 40 60 80 100
Time (s)

0.768

0.770

0.772

0.774

0.776

0.778

0.780

Tr
ai

n
AU

C

0 20 40 60 80 100
Time (s)

0.760

0.762

0.764

0.766

0.768

0.770

0.772

Te
st

 A
UC

NETHERLANDS Dataset with 2=1e-05

0.8 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0

0

20

40

60

80

100

Ti
m

e
(s

)

0 20 40 60 80 100
Time (s)

0.768

0.770

0.772

0.774

0.776

0.778

0.780
Tr

ai
n

AU
C

0 20 40 60 80 100
Time (s)

0.760

0.762

0.764

0.766

0.768

0.770

0.772

Te
st

 A
UC

NETHERLANDS Dataset with 2=0.001

ours Exp-L0
ours LogRegQuad-L0

ours LogRegQuad-L0 without dynamic ordering
ours LogRegLinCut-L0 without dynamic ordering

L0Learn LogReg-L0

Figure 7: Computational times of different methods. “Exp” stands for exponential loss, “LogReg” stands for
logistic loss, and “Quad” stands for quadratic cuts. Note that there is no `2 penalty for the exponential loss.
Our Exp-L0 method is generally about 4 times faster than L0Learn. Note that the AUC axes indicate practically
similar performance for these particular methods; the training time is what differentiates the methods.

D.3 Support versus AUC, Accuracy, and F1 Score

We provide the full regularization paths for the FICO dataset (see Figure 8). Our first method (quadratic cut
+ dynamic ordering) and second method (exponential loss) obtain high-quality solutions and their AUC and
accuracy curves are similar to those from other methods. Our methods have computational advantages over
L0Learn, as shown in Section D.2.

0 10 20 30 40 50 60
Support Size

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Tr
ai

n
Ac

cu
ra

cy

0 10 20 30 40 50 60
Support Size

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ur
ac

y

0 10 20 30 40 50 60
Support Size

0.68

0.70

0.73

0.75

0.78

0.80

0.83

Tr
ai

n
AU

C

0 10 20 30 40 50 60
Support Size

0.68

0.70

0.73

0.75

0.78

0.80

0.83

Te
st

 A
UC

FICO Dataset

MCP 1.5
MCP 25
LASSO

L0Learn LogReg-L0 2=0.001
L0Learn LogReg-L0 2=1e-05
ours LogRegQuad-L0 2=0.001

ours Exp-L0
ours LogRegQuad-L0 2=1e-05

Figure 8: Results on the FICO dataset. See Figure 5 in the main paper for results on the COMPAS and
NETHERLANDS datasets. The L0Learn points are mostly overlapping with points from our methods.

To investigate whether a small `2 regularization would help with the LASSO baseline, we provide a comparison
between our method and the the ElasticNet method on the highly correlated synthetic dataset for the classification
task. We used the glmnet R package for the ElasticNet baseline. The hyperparameter α ∈ [0, 1] controls the
balance between `1 and `2 regularization. The LASSO method corresponds to α = 1.0. Besides α = 1.0, we

Fast Sparse Classification for Generalized Linear and Additive Models

also consider α ∈ {0.9, 0.7, 0.5, 0.3, 0.1, 0.001}. As shown in Figure 9, a small `2 regularization term does not
improve the LASSO method much. When α decreases, the solution quality degrades. This is potentially because
more `2 regularization leads to non-sparse solutions with small coefficients, neither of which will lead to better
performance here.

0 20 40 60 80 100
Support Size

0.7

0.8

0.9

1.0

Tr
ai

n
AU

C

0 20 40 60 80 100
Support Size

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 A
UC

0 20 40 60 80 100
Support Size

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Re

co
ve

ry
-F

1
Sc

or
e

0 20 40 60 80 100
Support Size

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Pr

ec
isi

on

0 20 40 60 80 100
Support Size

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

n
Re

ca
ll

Highly Correlated Synthetic Data

ElasticNet =1.0
ElasticNet =0.9
ElasticNet =0.7

ElasticNet =0.5
ElasticNet =0.3

ElasticNet =0.1
ElasticNet =0.001

ours LogRegQuad-L0 2=1e-05
ours LogRegQuad-L0 2=0.001

Figure 9: ElasticNet and our methods’ results on the highly correlated synthetic dataset.

D.4 Samples of Sparse Models on the FICO and NETHERLANDS datasets

We provide some sample sparse models produced by minimizing the exponential loss and minimizing the logistic
loss (quadratic cut + dynamic ordering) on the FICO and NETHERLANDS datasets.

The FICO dataset has 10459 samples and 1917 features. The NETHERLANDS dataset has 20000 samples and
2024 features. All models were developed from the third fold of our 5-fold cross validation split.

FICO Baseline Performance: The sparse models below approximately match the performance of black-box
models shown in previous works (Chen et al., 2021). We also ran a GBDT model (Friedman, 2001) with max
depth set to be 3 and number of boosting stages set to be 100. The AUC on the training set is 0.8318± 0.0028,
and the AUC on the test set is 0.7959± 0.0133. The result on the test set is comparable to what we have shown
in Figure 3. The models are in Figures 10-11.

NETHERLANDS Baseline Performance: The sparse models below approximately match the performance
of black-box models. We ran a GBDT model (Friedman, 2001) with max depth set to be 3 and number of
boosting stages set to be 100. The AUC on the training set is 0.7850 ± 0.0014, and the AUC on the test set
is 0.7696 ± 0.0062. The result on the test set is comparable to what we have shown in Figure 7. (For the
NETHERLANDS dataset, ages are collected in terms of months. That is why age thresholds are shown with
float numbers.) The models are in Figures 12-13.

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

FICO model using the exponential loss:

λ0 = 5:

score =− 0.2584626

+ 0.1825955× 1A≤63 + 0.1387806× 1A≤70

+ 0.2286364× 1A≤74 + 0.2569742× 1A≤83 # A :ExternalRiskEstimate

+ 0.1840013× 1B≤51 + 0.172138× 1B≤75 # B :AverageMInFile

+ 0.2015039× 1C≤13 + 0.1923697× 1C≤31 # C :NumSatisfactoryTrades

+ 0.2654667× 1D≤96 # D :PercentTradesNeverDelq

+ 0.2320259× 1E≤33 # E :MSinceMostRecentDelq

+ 0.1009372× 1F≤8 # F :NumTotalTrades

− 0.2311165× 1G≤46 # G :PercentInstallTrades

− 0.7723769× 1H≤−8 + 0.3636577× 1H≤0 # H :MSinceMostRecentInqexcl7days

− 0.2762694× 1I≤5 # I :NumInqLast6M

− 0.1897788× 1J≤37 − 0.2742168× 1J≤73 # J :NetFractionRevolvingBurden

− 0.1038025× 1K≤5 − 0.1938047× 1K≤7 # K :NumRevolvingTradesWBalance

0 20 40 60 80 100
ExternalRiskEstimate

0

1

0 50 100 150 200 250 300
AverageMInFile

0.00

0.25

0 10 20 30 40 50 60 70 80
NumSatisfactoryTrades

0.0

0.5

0 20 40 60 80 100
PercentTradesNeverDelq

0.00

0.25

0 20 40 60 80
MSinceMostRecentDelq

0.0

0.2

0 20 40 60 80 100
NumTotalTrades

0.0

0.1

0 20 40 60 80 100
PercentInstallTrades

0.2

0.0

5 0 5 10 15 20 25
MSinceMostRecentInqexcl7days

0.5
0.0
0.5

0 10 20 30 40 50
NumInqLast6M

0.25

0.00

0 25 50 75 100 125 150 175
NetFractionRevolvingBurden

0.5

0.0

0 5 10 15 20 25 30
NumRevolvingTradesWBalance

0.25

0.00

Figure 10: FICO score contributions with the exponential loss and λ0 = 5. Training duration is 3.15 seconds.
Note that no monotonicity constraints were imposed.

Fast Sparse Classification for Generalized Linear and Additive Models

FICO model using the logistic loss (quadratic cut + dynamic ordering):
λ0 = 5, λ2 = 0.001:

score =2.805021

+ 0.4071199× 1A≤63 + 0.310368× 1A≤70

+ 0.4604512× 1A≤74 + 0.5471219× 1A≤83 # A :ExternalRiskEstimate

+ 0.408959× 1B≤51 + 0.3283239× 1B≤75 # B :AverageMInFile

+ 0.4225237× 1C≤13 + 0.3396898× 1C≤31 # C :NumSatisfactoryTrades

+ 0.525166× 1D≤96 # D :PercentTradesNeverDelq

+ 0.4427697× 1E≤33 # E :MSinceMostRecentDelq

− 0.4317725× 1F≤46 # F :PercentInstallTrades

− 1.576435× 1G≤−8 + 0.5045199× 1G≤0

+ 0.2874494× 1G≤1 # G :MSinceMostRecentInqexcl7days

− 3.97116× 1H≤11 # H :NumInqLast6M

− 0.3657186× 1I≤37 − 0.5681891× 1I≤73 # I :NetFractionRevolvingBurden

− 0.4969551× 1J≤7 # J :NumRevolvingTradesWBalance

0 20 40 60 80 100
ExternalRiskEstimate

0

2

0 50 100 150 200 250 300
AverageMInFile

0.0

0.5

0 10 20 30 40 50 60 70 80
NumSatisfactoryTrades

0.0
0.5

0 20 40 60 80 100
PercentTradesNeverDelq

0.0

0.5

0 20 40 60 80
MSinceMostRecentDelq

0.0

0.5

0 20 40 60 80 100
PercentInstallTrades

0.5

0.0

5 0 5 10 15 20 25
MSinceMostRecentInqexcl7days

1
0
1

0 10 20 30 40 50
NumInqLast6M

5

0

0 25 50 75 100 125 150 175
NetFractionRevolvingBurden

1

0

0 5 10 15 20 25 30
NumRevolvingTradesWBalance

0.5

0.0

Figure 11: FICO score contributions with the logistic loss and λ0 = 5, λ2 = 0.001. Training duration is 5.95
seconds.

Jiachang Liu1, Chudi Zhong1, Margo Seltzer2, Cynthia Rudin1

NETHERLANDS model using the exponential loss:

λ0 = 7:

score =3.114342

− 0.1439394× 1A==female # A :sex

− 0.4739628× 1B≤0.0 − 0.3336059× 1B≤1.098612289

− 0.3083761× 1B≤1.609437912 # B :log # of previous penal cases

+ 0.2887266× 1C≤22.26146475 + 0.2354507× 1C≤28.48266213076

+ 0.1951787× 1C≤39.07432555374 + 0.2304243× 1C≤46.91581109 # C :age in years

− 0.1674992× 1D≤28.069209540720003 # D :age at first penal case

+ 0.1526613× 1E≤7.0 # E :offence type

− 1.381801× 1F≤0.0 # F :11-20 previous case

− 1.856642× 1G≤0.0 # G :>20 previous case

female male
sex

0.1

0.0

0 1 2 3 4
log # of previous penal cases

1

0

0 10 20 30 40 50 60 70 80
age in years

0

1

0 10 20 30 40 50 60 70 80
age at first penal case

0.2

0.1

0.0

0 2 4 6 8
offence type

0.0

0.1

0 5 10 15 20 25
previous case

3

2

1

Figure 12: NETHERLANDS score contributions with the exponential loss and λ0 = 7. Training duration is 2.73
seconds. Note that there are no monotonicity constraints imposed.

Fast Sparse Classification for Generalized Linear and Additive Models

NETHERLANDS model using the logistic loss (quadratic cut + dynamic ordering):
λ0 = 7, λ2 = 0.001:

score =6.259994

− 0.3092142× 1A==female # A :sex

− 0.7374188× 1B≤0.0 − 0.4302188× 1B≤0.693147181

− 0.2888496× 1B≤1.098612289 − 0.3933033× 1B≤1.386294361

− 0.5383587× 1B≤1.945910149 # B :log # of previous penal cases

+ 0.3877289× 1C≤18.94046991832 + 0.5554352× 1C≤23.01017483608

+ 0.4700141× 1C≤31.552317465359998 + 0.6324188× 1C≤43.91512663 # C :age in years

− 0.2645467× 1D≤27.986380572549994 # D :age at first penal case

+ 0.2861914× 1E≤7.0 # E :offence type

− 2.655844× 1F≤0.0 # F :11-20 previous case

− 3.605789× 1G≤0.0 # G :>20 previous case

female male
sex

0.2

0.0

0 1 2 3 4
log # of previous penal cases

2

0

0 10 20 30 40 50 60 70 80
age in years

0

2

0 10 20 30 40 50 60 70 80
age at first penal case

0.2

0.0

0 2 4 6 8
offence type

0.0

0.2

0 5 10 15 20 25
previous case

6

4

2

Figure 13: NETHERLANDS model score contributions with logistic loss, λ0 = 7, and λ2 = 0.001. Training
duration is 7.2 seconds.

