Supplementary information

Sucrose synthases are not involved in starch synthesis in *Arabidopsis* leaves

In the format provided by the authors and unedited

Supplementary Figure S1. ¹³C-labelling kinetics of phosphorylated intermediates and nucleotide sugars in wild-type Arabidopsis Col-0 leaves

Plants were grown in 12-h photoperiod. At 28 days after germination, rosettes were pulse labelled with ¹³CO₂ (400 ppm) in the light (irradiance 150 µmol m⁻² s⁻¹) for 0, 1 or 20 min. (between ZT4-ZT7) and isotopomers were quantified by LC-MS/MS as described in Szecowka et al. (2013) to calculate % enrichment (glucose moiety only for nucleotide sugars). Data are mean \pm S.D. from three individual rosettes (n=3 Abbreviations: biological replicates). 3PGA. 3-phosphoglycerate; DHAP, dihydroxyacetone-phosphate; Fru16BP, fructose-1,6-bisphosphate; Fru6P, fructose 6-phosphate; Sed17BP, sedoheptulose-1,7-bisphosphate, Sed7P, sedoheptulose 7phosphate; Ru5P + Xu5P, ribulose 5-phosphate + xylulose 5-phosphate; R5P, ribose 5-phosphate; Ru15BP, ribulose-1,5-bisphosphate; Glc6P, glucose 6-phosphate; ADPG, ADP-glucose; UDPG, UDP-glucose. Supplementary Table S1 contains the original data.

Supplementary Figure S2. Schematic diagram of the gene edited mutations in the Arabidopsis *SUS5* and *SUS6* genes.

(A) *SUS5* gene showing the wild-type (Col-0) sequence, the *sus5-1* allele containing a single base (C) insertion (shown in red) and the *sus5-2* allele containing a 20-bp deletion. (B) *SUS6* gene showing the wild-type (Col-0) sequence and the *sus6* allele containing a 16-bp deletion. All mutations generated premature STOP codons (shown in red). The dark grey and white boxes indicate translated and untranslated regions, respectively.

Supplementary Figure S3. PCR genotyping of Arabidopsis sus mutants.

(A) T-DNA insertions in the *SUS1*, *SUS2*, *SUS3* and *SUS4* genes were confirmed by PCR using gene specific (LP) and T-DNA border primers (LBb1.3 for *sus1*, *sus2*, *sus3* and P66 for *sus4*). (B) Homozygosity of T-DNA insertion loci in the *SUS1*, *SUS2*, *SUS3* and *SUS4* genes was confirmed by genomic PCR using *SUS* gene specific primers (LP and RP) that flank the respective T-DNA insertions. (C) Identification of mutations in the *SUS5* gene by genomic PCR (using primers sus5-Fw and sus5-Rv) and restriction with Hinfl, yielding two fragments (75 and 37 bp) from the wild-type *SUS5* gene. (D) Identification of mutations in the *SUS6* gene by genomic PCR (using primers sus6-Fw and sus6-Rv) and restriction with Van91I, yielding two fragments (471 and 235 bp) from the wild-type *SUS6* gene. Abbreviations: L, GeneRuler 1-kb Plus DNA Ladder (Thermo Scientific); Col-0, wild type Columba-0; *Sus^q*, *sus12345¹⁶* sextuple mutant; *sus^{s-1}*, *sus12345¹⁶* sextuple mutant; *sus^{s-2}*, *sus12345²⁶* sextuple mutant. PCR genotyping was performed twice for the *SUS1-SUS4* genes (A-B) and three times for the *SUS5* (C) and *SUS6* (D) genes with consistent results.

Supplementary Figure S4a. Expression atlas of Arabidopsis *SUS1* and *SUS2* transcripts.

SUS1 (At5g20830) and *SUS2* (At5g49190) transcript abundance in different Arabidopsis tissues and developmental stages based on Affymetrix ATH1 array data from Schmid et al. (2005), and visualized with the Plant eFP browser (<u>https://bar.utoronto.ca/eplant;</u> Winter et al. (2007); Waese et al. (2017).

Supplementary Figure S4b. Expression atlas of Arabidopsis *SUS3* and *SUS4* transcripts.

SUS3 (At4g02280) and *SUS4* (At3g43190) transcript abundance in different Arabidopsis tissues and developmental stages based on Affymetrix ATH1 array data from Schmid et al. (2005), and visualized with the Plant eFP browser (<u>https://bar.utoronto.ca/eplant;</u> Winter et al. (2007); Waese et al. (2017).

Supplementary Figure S4c. Expression atlas of Arabidopsis *SUS5* and *SUS6* transcripts.

SUS5 (At5g37180) and *SUS6* (At1g73370) transcript abundance in different Arabidopsis tissues and developmental stages based on Affymetrix ATH1 array data from Schmid et al. (2005), and visualized with the Plant eFP browser (<u>https://bar.utoronto.ca/eplant;</u> Winter et al. (2007); Waese et al. (2017).

Supplementary Figure S5. Metabolite levels in wild-type Arabidopsis and *sus* mutants.

Wild-type Col-0, and the *sus1234* mutant (*sus^{quad}*) and *sus12345¹6* (*sus^{sext-1}*) mutants were grown in long-day conditions (16-h photoperiod). At 25 days after germination, rosettes were harvested just before dawn (ZT-0.2) and at intervals from ZT0.5 to ZT12 for measurement of: (A) fructose 6-phosphate (Fru6P), (B) UDP-glucose, (C) dihydroxyacetone-phosphate (DHAP), (D) sucrose, (E) glucose and (F) fructose. Data are from the same experiment as Fig. 5 and presented as mean \pm S.D. (*n*=3 biological replicates). *P*-values for all genotype x genotype comparisons are shown in Supplementary Table S3.

Supplementary Figure S6. Starch and sugar levels in wild-type Arabidopsis (Col-0) and the *sus12345*²6 mutant (*sus*^{sext-2})

Plants were grown in long-day conditions (16-h photoperiod). At 25 days after germination, rosettes were harvested just before dawn (ZT-0.2) and at intervals from ZT0.5 to ZT12 for measurement of: (A) starch, (B) sucrose, (C) glucose and (D) fructose. Data are mean \pm S.D. from three independently pooled batches of five rosettes (*n*=3 biological replicates).

Supplementary Table S2. Statistical analysis of metabolite data in Figure 3.

Metabolite levels in rosettes of Col-0, *sus1234* (*sus^{quad}*), *pgm* and *adg1* were compared across all sampling times by two-way ANOVA with Tukey's honestly significant difference test. In columns 2-5, letters indicate significant differences between genotypes, with the *P*-value shown in column 6 and level of significance in column 7. **P*<0.05; ***P*<0.01; ****P*<0.001; n.s., not significant.

Metabolite	Col-0	SUS ^{quad}	pgm	adg1	<i>P</i> -value	Significance
Glc6P	b	ab	а	а	<0.001	***
Glc1P	bc	ab	С	а	0.166	n.s.
ADP-Glc	а	а	b	b	<0.001	***
Starch	а	а	b	b	<0.001	***

Supplementary Table S3. Statistical analysis of metabolite data in Figure 5 and Supplemental Figure S5.

Metabolite levels in rosettes of Col-0, *sus1234* (*sus^{quad}*) and *sus123456* (*sus^{sext}-1*) were compared across all sampling times by two-way ANOVA with Tukey's honestly significant difference test. In columns 2-4, letters indicate genotypes that were not significantly different for a given metabolite, with the *P*-value shown in column 5 and level of significance in column 6. n.s., not significant.

Metabolite	Col-0	SUS ^{quad}	sus ^{sext} -1	<i>P</i> -value	Significance
Glo6P	2	2	2	0.518	ne
	a	a	a	0.010	11.5.
GICTE	a	a	a	0.302	n.s.
ADPG	а	а	а	0.774	n.s.
Starch	а	а	а	0.228	n.s.
Fru6P	а	а	а	0.981	n.s.
UDPG	а	а	а	0.752	n.s.
DHAP	а	а	а	0.973	n.s.
Sucrose	а	а	а	0.360	n.s.
Glucose	а	а	а	0.535	n.s.
Fructose	а	а	а	0.471	n.s.

Primer	Sequence (5´→3´)			
SUS genomic primers				
SUS1-LP	ATGGCAAACGCTGAACGTATG			
SUS1-RP	CTCAAGAGTGCAAGGATCAGG			
SUS2-LP	ATGCGGAGACAAAATCACAAC			
SUS2-RP	TAAGACTGTGAAAGTTGATGG			
SUS3-LP	ATCGATGTGTTTGATCCGAAG			
SUS3-RP	TTGGAGACCAGCGTCTGATAC			
SUS4-LP	ATGGCAAACGCAGAACGTGTAA			
SUS4-RP	CTTAGTCTTCTCCAAAGCATG			
sus5-Fw	CGGATGACTCTATCTATTTCCCT			
sus5-Rv	GAGACGTACATGTGTTCGTCATTC			
sus6-Fw	ATGCTTGCTGTGATTGTTGTCTCG			
sus6-Rv	CGAGGTAAGGGTAGATATCGAATC			

Supplementary Table S4. Oligonucleotide primers for PCR genotyping.

T-DNA left border primers

LBb1.3	ATTTTGCCGATTTCGGAAC
P66	CCCCTGCGCTGACAGCCGGAACACG