Supplementary information

A lightweight deep learning model for automatic segmentation and analysis of
ophthalmic images

Authors:

Parmanand Sharma,>>®" Takahiro Ninomiya,*” Kazuko Omodaka,>* Naoki Takahashi,* Takehiro Miya,'*
Noriko Himori,® Takayuki Okatani’ and Toru Nakazawa'!™ 2

Affiliations:

!Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Japan

2Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University Graduate
School of Medicine, Sendai, Japan

3Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai,
Japan

“Department of Ophthalmic Imaging and Information Analytics, Tohoku University Graduate School of

Medicine, Sendai, Japan

®Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine,
Sendai, Japan

Department of Aging Vision Healthcare, Tohoku University Graduate School of Biomedical
Engineering, Sendai, Japan

"Graduate School of Information Sciences, Tohoku University, Sendai, Japan

* Co-first authorship

8Email address for correspondence: sharma@oph.med.tohoku.ac.jp, and ntoru@oph.med.tohoku.ac.jp

mailto:sharma@oph.med.tohoku.ac.jp
mailto:ntoru@oph.med.tohoku.ac.jp

-“

Fig.S1 Some examples of noisy OCTA images (3 x 3 mm?) from the testing dataset of 145 images. This dataset is
used to test the segmentation accuracy of all the models. The images in this dataset were never exposed to training
and validation of the models.

Fig.S2 Some examples of visually clear OCTA images (3 x 3 mm?) with clear FAZ boundary in the testing dataset
of 145 images.

Original OCTA image Segmented with Unet_AB LWBNA_Unet

Original OCTA image Segmented with Unet_AB LWBNA_Unet
‘ e .

200

Fig. S3 OCTA images (3 x 3 mm?, and 320 x 320 pixels) with their segmented FAZ by DL models Unet_AB and
LWBNA _Unet. The number on the right side of each image corresponds to the data points (the most scattered)
marked with blue circle in Fig. 5(b) of the main manuscript.

EarlyStopping Fixed 500 Epochs

Architecture of DeepLabV3+

Ref: Chen, L.-C et al.,in Computer Vision — ECCV 2018.
833-851 (Springer International Publishing).

{Encoder

Resnet-50 . Cone =
Image __ooNN ~3"raatg°5""‘ —.ﬁ 0.6 q
L | - e
el SR (4 VYV w_‘.ﬁ ’% 0.4} + -
Image ‘_._
Pusing | i ; 0.2 | Total params: 17,836,867 i
-"‘DecouerL . — Trainable params: 17,802,083
oo [Jl;‘— s | Non-trainable params: 34,784 ()
2 coms] == [[| concat) —» | [x3 cons| —={ VP53 _ Training | Validation | Testing
@) ot con m (ot ﬁ e 300 80 145

Fig. S4 (a) Architecture of the DeepLabv3+ model used for the segmentation of FAZ in OCTA images. The
encoder network Resnet-50 was used with the pretrained weights of imagenet dataset, (b) Boxplot showing
spread in D for our OCTA testing dataset (segmentation of FAZ area) obtained from Deeplabv3+ model.
Model was trained for 10 times using ‘callbacks’ function of tensorflow, and for fixed epochs of 500. The best
trained model in each case is shown with the magenta and orange colors. Generalization of model for the
testing dataset of 145 OCTA images is similar in both the cases, suggesting that the pretrained weights from
imagenet are very effective as compared to training of the model from scratch.

3

(@ (b) ©

Fig. S5 LWBNA_Unet trained on (a) 3mm x 3mm, SVP OCTA images, can segment (b) 4.5 mm x 4.5 mm
SVP OCTA images, and (¢) 3mm x 3mm OCTA-DCP images. These results point towards the good
generalization of model on different types of images.

Original image Training ground truth Predicted image

Image from Berkley segmentation dataset

Segmentation of boundaries of images which are very different than the images used for training the model

.

Fig.S6 LWBNA _Unet model trained for detecting object boundaries in general images (Berkley segmentation
dataset: https://wwwz2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) can segment cell boundaries (red
color, images were obtained from the freely available dataset). These results, again point towards the good
generalization of our model for the segmentation of images, which are very different from the images used for
the training of the model.

TIFTETTTsEy TETTITY T TTTvT T T
.« 3 ke ¢ TT ’Efici:o Efa ’Eia' ?3‘
*
o8} « o x X . ox * w ost $ 4 v LR % usto.;{ggx
b3 3 x . X *
— - ¥ b3 — * * — M
g |% - + g |5 . x g x . .
= 06} = 06 * = 06} . 4
3 3 . * 3 .
ke g ke
5 5 5 * M
80.47 80.4 - 80.47
o (s} o
02 B 0.2+ B 02+ X
. No midblock . 128 M 64 x
[} SR S b ffshirhutut bt i Y I S il SRY I R SV
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 T 2 3 4 5 6 7 8 9 10
1.0 10 1.0
T FTTTTY TETTTTVTTY OgpvTTTiTYTY
+ - * A X . x x -
4 L -
08} + X % X 2 i M 08 A ¥ - A4 . 08 x * " w . - i(x
>
g * :(- g v x|l a * *
E 06 - g E 06 g g 06
2 2 2
£ £ £
S 04l S 04 S o4l 1
[} o o -
8 8 8
a a a
0.2+ B 021 B 0.2
-
32 16 8
0.0 L e ool v v T 00

Fig. S7 Box plot showing effect of channel narrowing with attention at the bottleneck of lightweight model
(LWBNA_Unet) developed in present study. The numbers on the x axis are the number of times the model is trained
under same conditions. Red curve is the best among the 10 times training. The numbers in the bottom are the final
number channels when reduced from 128. Here the training of model was stopped early once the validation
loss meet certain conditions.

[
o

FIEEP+797TTT OTTiTTessys wrTTvTTss
I x? ‘xaf’, I ‘Eiaz ‘T . B’ 1 ox .3?&,
8Ly x X P 08F ¥ X M 3 . $ * o8l ¥ Ts x M £
~ - ~ * + x v ° ~ *
g |« x .. M <l g g
g 0.6 | * % 06 E 06|
£ £ £
8 04l & 04l & 04l
o o (8]
a a a
02} e 02 e 02} e
v No midblock 128 64
ool e e
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
FETTTTTYYTY O FTeTTTTYY “FFF ¥
: TTo o347 TTY Ty veaTTTTYT
+« X r X T X - 3 M > - ;< -
08} c X » - « . C 08} x 4 08} x . 1
g . g g *
E 06| g 06 E 06|
£ £ £
8 04l * 8 04l 8 04l
o o (8]
8 8 8
a a a
02+ B 02+ B 02+
32 16 8
I 00 ool
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Fig. S8 Box plot showing effect of channel narrowing with attention at the bottleneck of lightweight model
(LWBNA_Unet) developed in present study. The numbers on the x axis are the number of times the model is trained
under same conditions. Red curve is the best among the 10 times training. The numbers in the bottom are the final
number channels when reduced from 128. Here the training of models was performed for a fixed number of
epochs of 500.

Original-OCTA image Ground Truth image of FAZ

by i‘" 3. "“

No midblock

Early stopping

Fixed 500 epochs -

Fig. S9 Effect of bottleneck narrowing with attention in lightweight model LWBNA_Unet. The OCTA image (3 x
3 mm?) is same as in Fig. 3(b) of the main manuscript. Visually, the image quality is not so bad, but most of the
models trained in present work produced low D repeatedly. From these results we can notice that the segmentation
improves on reduction of number of channels at the bottleneck, and well consistent with the statistical analysis on
145 testing images. It is to be noted that the D obtained for reducing the channel is slightly lower than the one shown
in Fig. 3(g), even though the image and training epoch are same, and model is selected as a best from the training
for 10 times. Statistically, this has slightly lower spread for most of the outliers in the whole dataset as compared to
the one shown in Fig. 3(a). For individual images there is always a possibility for minor changes from one training
to another. This is basically due to reproducibility issues with all the deep learning models, as discussed in the
section, “Reproducibility of lightweight DL model, and a comparison with other models” in the manuscript.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
Nvidia’s Jetson Xavier NX 8 GB RAM

GPU NVIDIA Volta architecture with 384 NVIDIA
CUDAZ® cores and 48 Tensor cores

CPU 6-core NVIDIA Carmel ARM®v8.2 64-bit CPU 6
MB L2 +4 MB L3

Mechanical 103 mm x 90.5 mm x 34.66 mm

Number of model parameter: Average FAZ segmentation time
(frames per second (fps)

Deeplabv3+: 17.84 million 3.44
Unet : 28.34 million 2.56
Our model: 2.95 million 2.75

Fig.S10 We have tested the prediction time of FAZ segmentation in OCTA images (size -320 x 320x3
pixels) with Nvidia’s Jetson Xavier NX, Al computer module running on Jetpack 4.6. Under the
identical conditions, the average time of prediction for 145 OCTA images is ~ 2.75 fps, 2.56 fps and
3.44 fps for LWBNA _Unet, Unet and Deeplabv3+, respectively. Our model, LWBNA _Unet has
advantage for loading/running multiple models at the same time due to very low memory (35 MB) of
trained model. However, it is difficult to load and run 3 or more Unet models at the same time because
of limitations in GPU memory.

Summary of the lightweight model developed in the current study.

The command, ‘model.summary()’ from tensorflow-keras was used to print the model summary.

Model: "LWBNA_Unet"

Layer (type) Output Shape Param # Connected to
input_7 (InputLayer) [(None, 320, 320, 3)] 0

conv2d_144 (Conv2D) (None, 320, 320, 128) 3584 input_7[0][0]
batch_normalization_108 (BatchNormalization) (None, 320, 320, 128) 512 conv2d_144[0][0]

activation_264 (Activation) (None, 320, 320, 128) 0 batch_normalization_108[0][0]

activation_264[0][0]

batch_normalization_109[0][0]

global_average_pooling2d_78[0][0]

conv2d_145 (Conv2D) (None, 320, 320, 128) 147584

batch_normalization_109 (BatchNormalization) (None, 320, 320, 128) 512 conv2d_145[0][0]
activation_265 (Activation) (None, 320, 320, 128) 0

global_average_pooling2d_78 (Global AveragePooling2D) (None, 128) 0 activation_265[0][0]
dense_78 (Dense) (None, 128) 16512

activation_266 (Activation) (None, 128) 0 dense_78[0][0]
activation_267 (Activation) (None, 128) 0 activation_266[0][0]
multiply_78 (Multiply) (None, 320, 320, 128) 0

activation_265[0][0]

activation_267[0][0]

max_pooling2d_24[0][0]

dropout_48[0][0]

batch_normalization_110[0][0]

activation_268[0][0]

batch_normalization_111[0][0]

global_average_pooling2d_79[0][0]

max_pooling2d_24 (MaxPooling2D) (None, 160, 160, 128) 0 multiply_78[0][0]
dropout_48 (Dropout) (None, 160, 160, 128) 0

conv2d_146 (Conv2D) (None, 160, 160, 128) 147584
batch_normalization_110 (BatchNormalization) (None, 160, 160, 128) 512 conv2d_146[0][0]
activation_268 (Activation) (None, 160, 160, 128) 0

conv2d_147 (Conv2D) (None, 160, 160, 128) 147584
batch_normalization_111 (BatchNormalization) (None, 160, 160, 128) 512 conv2d_147[0][0]
activation_269 (Activation) (None, 160, 160, 128) 0

global_average_pooling2d_79 (Global AveragePooling2D) (None, 128) 0 activation_269[0][0]
dense_79 (Dense) (None, 128) 16512

activation_270 (Activation) (None, 128) 0 dense_79[0][0]
activation_271 (Activation) (None, 128) 0 activation_270[0][0]
multiply_79 (Multiply) (None, 160, 160, 128) 0

activation_271[0][0]

activation_269[0][0]

max_pooling2d_25[0][0]

dropout_49[0][0]

batch_normalization_112[0][0]

activation_272[0][0]

batch_normalization_113[0][0]

global_average_pooling2d_80[0][0]

max_pooling2d_25 (MaxPooling2D) (None, 80, 80, 128) 0 multiply_79[0][0]
dropout_49 (Dropout) (None, 80, 80, 128) 0

conv2d_148 (Conv2D) (None, 80, 80, 128) 147584
batch_normalization_112 (BatchNormalization) (None, 80, 80, 128) 512 conv2d_148[0][0]
activation_272 (Activation) (None, 80, 80, 128) 0

conv2d_149 (Conv2D) (None, 80, 80, 128) 147584
batch_normalization_113 (BatchNormalization) (None, 80, 80, 128) 512 conv2d_149[0][0]
activation_273 (Activation) (None, 80, 80, 128) 0
global_average_pooling2d_80 (Global AveragePooling2D) (None, 128) 0 activation_273[0][0]
dense_80 (Dense) (None, 128) 16512

activation_274 (Activation) (None, 128) 0 dense_80[0][0]

activation_275 (Activation)

(None, 128)

0

activation_274[0][0]

multiply_80 (Multiply)

(None, 80, 80, 128)

0

activation_273[0][0]

activation_275[0][0]

max_pooling2d_26[0][0]

batch_normalization_114[0][0]

activation_276[0][0]

batch_normalization_115[0][0]

global_average_pooling2d_81[0][0]

max_pooling2d_26 (MaxPooling2D) (None, 40, 40, 128) 0 multiply_80[0][0]
dropout_50 (Dropout) (None, 40, 40, 128) 0

conv2d_150 (Conv2D) (None, 40, 40, 128) 147584 dropout_50[0][0]
batch_normalization_114 (BatchNormalization) (None, 40, 40, 128) 512 conv2d_150[0][0]
activation_276 (Activation) (None, 40, 40, 128) 0

conv2d_151 (Conv2D) (None, 40, 40, 128) 147584
batch_normalization_115 (BatchNormalization) (None, 40, 40, 128) 512 conv2d_151[0][0]
activation_277 (Activation) (None, 40, 40, 128) 0

global_average_pooling2d_81 (Global AveragePooling2D) (None, 128) 0 activation_277[0][0]
dense_81 (Dense) (None, 128) 16512

activation_278 (Activation) (None, 128) 0 dense_81[0][0]
activation_279 (Activation) (None, 128) 0 activation_278[0][0]
multiply_81 (Multiply) (None, 40, 40, 128) 0

activation_277[0][0]

activation_279[0][0]

max_pooling2d_27[0][0]

global_average_pooling2d_82[0][0]

max_pooling2d_27 (MaxPooling2D) (None, 20, 20, 128) 0 multiply_81[0][0]
dropout_51 (Dropout) (None, 20, 20, 128) 0

conv2d_152 (Conv2D) (None, 20, 20, 128) 147584 dropout_51[0][0]
global_average_pooling2d_82 (Global AveragePooling2D) (None, 128) 0 conv2d_152[0][0]
dense_82 (Dense) (None, 128) 16512

activation_280 (Activation) (None, 128) 0 dense_82[0][0]
activation_281 (Activation) (None, 128) 0 activation_280[0][0]
multiply_82 (Multiply) (None, 20, 20, 128) 0 conv2d_152[0][0]

activation_281[0][0]

global_average_pooling2d_83[0][0]

conv2d_153 (Conv2D) (None, 20, 20, 64) 73792 multiply_82[0][0]
global_average_pooling2d_83 (Global AveragePooling2D) (None, 64) 0 conv2d_153[0][0]
dense_83 (Dense) (None, 64) 4160

activation_282 (Activation) (None, 64) 0 dense_83[0][0]
activation_283 (Activation) (None, 64) 0 activation_282[0][0]
multiply_83 (Multiply) (None, 20, 20, 64) 0 conv2d_153[0][0]

activation_283[0][0]

conv2d_154 (Conv2D)

(None, 20, 20, 32)

18464

multiply_83[0][0]

global_average_pooling2d_84 (Global AveragePooling2D) (None, 32) 0 conv2d_154[0][0]

dense_84 (Dense) (None, 32) 1056 global_average_pooling2d_84[0][0]
activation_284 (Activation) (None, 32) 0 dense_84[0][0]

activation_285 (Activation) (None, 32) 0 activation_284[0][0]

multiply_84 (Multiply) (None, 20, 20, 32) 0 conv2d_154[0][0]

activation_285[0][0]

conv2d_155 (Conv2D) (None, 20, 20, 16) 4624 multiply_84[0][0]
global_average_pooling2d_85 (Global AveragePooling2D) (None, 16) 0 conv2d_155[0][0]

dense_85 (Dense) (None, 16) 272 global_average_pooling2d_85[0][0]
activation_286 (Activation) (None, 16) 0 dense_85[0][0]

activation_287 (Activation) (None, 16) 0 activation_286[0][0]

multiply_85 (Multiply) (None, 20, 20, 16) 0 conv2d_155[0][0]

activation_287[0][0]

conv2d_156 (Conv2D)

(None, 20, 20, 128) 18560 multiply_85[0][0]

add_30 (Add)

(None, 20, 20, 128) 0 conv2d_156[0][0]
conv2d_152[0][0]

conv2d_157 (Conv2D) (None, 20, 20, 128) 147584 add_30[0][0]
batch_normalization_116 (BatchNormalization) (None, 20, 20, 128) 512 conv2d_157[0][0]
activation_288 (Activation) (None, 20, 20, 128) 0 batch_normalization_116[0][0]
conv2d_158 (Conv2D) (None, 20, 20, 128) 147584 activation_288[0][0]
batch_normalization_117 (BatchNormalization) (None, 20, 20, 128) 512 conv2d_158[0][0]
activation_289 (Activation) (None, 20, 20, 128) 0 batch_normalization_117[0][0]
global_average_pooling2d_86 (Global AveragePooling2D) (None, 128) 0 activation_289[0][0]

dense_86 (Dense) (None, 128) 16512 global_average_pooling2d_86[0][0]
activation_290 (Activation) (None, 128) 0 dense_86[0][0]

activation_291 (Activation) (None, 128) 0 activation_290[0][0]
multiply_86 (Multiply) (None, 20, 20, 128) 0 activation_289[0][0]

activation_291[0][0]

up_sampling2d_24 (UpSampling2D)

(None, 40, 40, 128) 0 multiply_86[0][0]

add_31 (Add)

(None, 40, 40, 128) 0 up_sampling2d_24[0][0]
multiply_81[0][0]

dropout_52 (Dropout) (None, 40, 40, 128) 0 add_31[0][0]
conv2d_159 (Conv2D) (None, 40, 40, 128) 147584 dropout_52[0][0]
batch_normalization_118 (BatchNormalization) (None, 40, 40, 128) 512 conv2d_159[0][0]

activation_292 (Activation)

(None, 40, 40, 128) 0 batch_normalization_118[0][0]

conv2d_160 (Conv2D) (None, 40, 40, 128) 147584 activation_292[0][0]
batch_normalization_119 (BatchNormalization) (None, 40, 40, 128) 512 conv2d_160[0][0]

activation_293 (Activation) (None, 40, 40, 128) 0 batch_normalization_119[0][0]
global_average_pooling2d_87 (Global AveragePooling2D) (None, 128) 0 activation_293[0][0]

dense_87 (Dense) (None, 128) 16512 global_average_pooling2d_87[0][0]
activation_294 (Activation) (None, 128) 0 dense_87[0][0]

activation_295 (Activation) (None, 128) 0 activation_294[0][0]

multiply_87 (Multiply) (None, 40, 40, 128) 0 activation_293[0][0]

activation_295[0][0]

up_sampling2d_25 (UpSampling2D)

(None, 80, 80, 128) 0 multiply_87[0][0]

add_32 (Add)

(None, 80, 80, 128) 0 up_sampling2d_25[0][0]

multiply_80[0][0]

dropout_53 (Dropout) (None, 80, 80, 128) 0 add_32[0][0]

conv2d_161 (Conv2D) (None, 80, 80, 128) 147584 dropout_53[0][0]
batch_normalization_120 (BatchNormalization) (None, 80, 80, 128) 512 conv2d_161[0][0]
activation_296 (Activation) (None, 80, 80, 128) 0 batch_normalization_120[0][0]
conv2d_162 (Conv2D) (None, 80, 80, 128) 147584 activation_296[0][0]
batch_normalization_121 (BatchNormalization) (None, 80, 80, 128) 512 conv2d_162[0][0]
activation_297 (Activation) (None, 80, 80, 128) 0 batch_normalization_121[0][0]
global_average_pooling2d_88 (Global AveragePooling2D) (None, 128) 0 activation_297[0][0]

dense_88 (Dense) (None, 128) 16512 global_average_pooling2d_88[0][0]
activation_298 (Activation) (None, 128) 0 dense_88[0][0]

activation_299 (Activation) (None, 128) 0 activation_298[0][0]
multiply_88 (Multiply) (None, 80, 80, 128) 0 activation_297[0][0]

activation_299[0][0]

up_sampling2d_26 (UpSampling2D)

(None, 160, 160, 128) 0 multiply_88[0][0]

add_33 (Add)

(None, 160, 160, 128) 0 up_sampling2d_26[0][0]

multiply_79[0][0]

dropout_54 (Dropout)

(None, 160, 160, 128) 0 add_33[0][0]

conv2d_163 (Conv2D)

(None, 160, 160, 128) 147584 dropout_54[0][0]

batch_normalization_122 (BatchNormalization) (None, 160, 160, 128) 512 conv2d_163[0][0]
activation_300 (Activation) (None, 160, 160, 128) 0 batch_normalization_122[0][0]
conv2d_164 (Conv2D) (None, 160, 160, 128) 147584 activation_300[0][0]

batch_normalization_123 (BatchNormalization)

(None, 160, 160, 128) 512 conv2d_164[0][0]

activation_301 (Activation)

(None, 160, 160, 128) 0 batch_normalization_123[0][0]

global_average_pooling2d_89[0][0]

global_average_pooling2d_89 (Global AveragePooling2D) (None, 128) 0 activation_301[0][0]
dense_89 (Dense) (None, 128) 16512

activation_302 (Activation) (None, 128) 0 dense_89[0][0]
activation_303 (Activation) (None, 128) 0 activation_302[0][0]
multiply_89 (Multiply) (None, 160, 160, 128) 0 activation_301[0][0]

activation_303[0][0]

up_sampling2d_27 (UpSampling2D)

(None, 320, 320, 128) 0

multiply_89[0][0]

add_34 (Add)

(None, 320, 320, 128) 0
multiply_78[0][0]

up_sampling2d_27[0][0]

dropout_55 (Dropout)

(None, 320, 320, 128) 0

add_34[0][0]

conv2d_165 (Conv2D)

(None, 320,320, 128) 147584

dropout_55[0][0]

batch_normalization_124 (BatchNormalization)

(None, 320, 320, 128) 512

conv2d_165[0][0]

activation_304 (Activation)

(None, 320, 320, 128) 0

batch_normalization_124[0][0]

conv2d_166 (Conv2D)

(None, 320,320, 128) 147584

activation_304[0][0]

batch_normalization_125 (BatchNormalization)

(None, 320, 320, 128) 512

conv2d_166[0][0]

activation_305 (Activation)

(None, 320, 320, 128) 0

batch_normalization_125[0][0]

global_average_pooling2d_90[0][0]

global_average _pooling2d_90 (Global AveragePooling2D) (None, 128) 0 activation_305[0][0]
dense_90 (Dense) (None, 128) 16512

activation_306 (Activation) (None, 128) 0 dense_90[0][0]
activation_307 (Activation) (None, 128) 0 activation_306[0][0]

multiply_90 (Multiply)

(None, 320, 320, 128) 0

activation_305[0][0]

activation_307[0][0]

conv2d_167 (Conv2D)

(None, 320, 320, 3) 3459

multiply_90[0][0]

Total params: 2,958,819
Trainable params: 2,954,211
Non-trainable params: 4,608

Attached video file: The video file, LWBNA_ Unet FAZ predicted fps with i9 cpu 2080Ti_gpu.avi’
shows the automatic segmentation of FAZ area (red color) for the testing dataset.

Attached PNG file: The, ‘Model LWBNA _Unet.png’ is the plot of our lightweight model generated by

the Tensorflow(keras).

