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Supplementary Methods

Measurements of environmental parameters

Vertical profiles of temperature and oxygen were measured down to the lake sediment with a multi-
sampling probe (RBR Ltd.; Ottawa, Canada, Sea & Sun Technology GmbH, Trappenkamp, Germany or
bbe Moldaenke GmbH, Schwentinental, Germany) at a resolution of 0.5 m and on the following dates
(yyyy-mm-dd): 2017-11-08, 2017-11-21, 2017-12-05, 2018-01-09, 2018-01-23, 2018-02-06, 2018-02-
20, 2018-03-13, 2018-03-27, 2018-04-10, 2018-04-24, 2018-05-22, 2018-06-05, 2018-06-19, 2018-07-
03, 2018-07-31, 2018-08-14, 2018-09-21, 2018-10-09, 2018-10-23, 2018-11-22, 2018-12-04, 2018-12-
18, 2019-01-11, 2019-02-12, 2019-02-26, 2019-03-12, 2019-03-27, 2019-04-09, 2019-04-25, 2019-06-
18, 2019-07-02, 2019-07-31, 2019-08-13, 2019-08-28, 2019-09-24, 2019-10-08, 2019-10-23, 2019-11-
04, 2019-11-19.

Vertical profiles of nitrate and total ammonium (NH4* + NHs) were measured for the same dates as
used for gPCR analyses. Nitrate and total ammonium concentrations were determined using the
auto-analyzer and Seal analytics methods G-172-96 Rev. 12 and G-171-96 Rev. 14, respectively (SEAL
Analytical GmbH, Norderstedt, Germany). For these measurements, 20 ml water each from 13
depths at 1, 5, 10, 15, 20, 25, 30, 40, 50, 60, 85, 110 and 135 m were taken, filtered through a
Chromafil® GF/PET-20/25 filter (pore size 1.0 and 0.2 um, VWR, Vienna, Austria) and stored at —20°C
until analysis. Samples obtained between July and November 2019 were measured by an alternative

method: Nitrate was measured by ion chromatography (5150 Chromatography System, SYKAM) and
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total ammonium was measured fluorometrically by the ortho-phthaldialdehyde method [1].
Chlorophyll a was sampled from 22 depths over a gradient of 0-60 m and analyzed
spectrophotometrically after extraction in hot ethanol as described previously [2], but without

correcting for pheopigments.

DNA and RNA extraction

For DNA extraction, 0.22 pum-filters (47 mm diameter) were placed in 2 ml-screw cap tubes and
vortexed for 15 min in a solution containing 500 pl TE-buffer (10 mM Tris-HCI pH 8.0, 1 mM EDTA),
12.5 pl 20% sodium lauryl sulfate-solution (SLS; Sigma-Aldrich, Taufkirchen, Germany), 500 pl phenol-
chloroform-isoamylalcohol 25:24:1 (Carl Roth GmbH), and 200 pl pre-combusted zirconium beads
(0.1 mm in diameter, Carl Roth GmbH, Karlsruhe, Germany). After centrifugation (4°C, 10 min,
18,620 xg), the supernatant was washed once with 500 ul chloroform-isoamylalcohol 24:1 (Carl Roth
GmbH). This mixture was centrifuged again and DNA precipitated from the separated supernatant
over night at —20°C using a mixture of 0.1 volume 3 M sodium acetate (pH 4.8), 2.5 volume molecular
grade ethanol (Carl Roth GmbH) and 1 pl glycogen (20 mg ml™%, Thermo Fisher Scientific, Waltham,
MA, USA). Precipitated DNA was centrifuged, washed twice with 80% molecular grade ethanol, and
dissolved in nuclease-free water (MP biomedicals, Eschwege, Germany). RNA was removed by an
RNase ONE™ ribonuclease treatment following kit instructions (Promega, Fitchburg, WI, USA) and

DNA samples were stored at —20°C until processing.

For RNA extraction, 0.22 um-filters (142 mm diameter) filters were cut with a sterilized scissor into
thirds and extracted as described above except for the following modifications: filters were extracted
in extraction buffer (50 mM sodium acetate and 10 mM EDTA, pH 4.2) with 0.025% SLS (Sigma-
Aldrich) and phenol-chloroform-isoamylalcohol 25:24:1 (Roti-Aqua-P/C/I 4.5-5.0, Carl Roth GmbH).
Washing of the aqueous phase with chloroform-isoamylalcohol 24:1 was done in the presence of 0.1
volume 3 M sodium acetate. RNA was finally precipitated with 1 volume ice-cold isopropanol in the
presence of 1 pl glycogen (35 mg ml™, RNase-free, VWR), washed as stated above, and eluted in
nuclease-free water (MP biomedicals). DNA was digested with the TURBO DNA-free™ kit (Thermo

Fisher Scientific) and RNA samples were stored afterwards at —80°C until sequencing.

Determination of AOA abundance by CARD-FISH

Before CARD-FISH, cells on the filter sections were immobilized by embedding in 0.1% low-gelling
agarose (Metaphor). CARD-FISH was performed using a specific HRP-labeled oligonucleotide probe
for Nitrososphaeria (HRP-labeled Thaum726 [GCTTTCATCCCTCACCGTC] and unlabeled competitors
[Thaum726_compA: GCTTTCGTCCCTCACCGTC, Thaum726_compB: GCTTTCATCCCTCACTGTC]) [3, 4]
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as described previously [5]. Negative controls using NonEUB [6] to exclude unspecific signals were
performed according to a defined protocol [7]. Briefly, endogenous peroxidases were inactivated by
incubation in 0.01 M HCI for 10 min. Cells were permeabilized by HCI (0.1 M HCI for 1 min) and
subsequently washed with MilliQ water. Filter pieces were hybridized with HRP probes and the
respective competitor probes at 25% formamide concentration at 46°C for up to 3 h. After a 5 min
washing step at 48°C and HRP probe equilibration in 1x PBS for 5 to 15 min, signal amplification was
performed with OregonGreen488-labeled tyramides at 48°C for 30 min. Cells were counterstained
with 4’,6-diamidino-2-phenylindole (DAPI, 10 ug mlI™?, 5 min at room temperature). Filter sections
were mounted onto glass slides, and embedded in a 4:1 mixture of Citifluor AF1 and Vectashield
(Citifluor Ltd, London, UK; Vector Laboratories, Burlingame, CA, USA). Nitrososphaeria and DAPI

signals were counted on an Axiophot or Axioplan 2 microscope (Zeiss, Germany).

Next generation sequencing and bioinformatics processing

Metagenome sequencing libraries were prepared with the NEBNext® Ultra™ DNA Library Prep Kit for
Ilumina® (New England Biolabs GmbH, Frankfurt am Main, Germany) and sequenced on an Illumina
NextSeq500 sequencer using 2 x 150 bp. This resulted in 0.6-2.7 x 10® reads per metagenome with
an average of 1.3 x 10% reads (8.8-41 Gbp, average 20 Gbp). Raw Illlumina reads were quality checked
with FastQC v.0.11.8 [8] and subsequently quality filtered and trimmed using Sickle v1.33 [9].
Thereafter, reads were assembled with Megahit v1.1.2 [10] and binned with maxbin2 v2.2.4 [11]. A
co-assembly of the November 2017, December 2017, and February 2018 metagenomes resulted in
the best AOA bin. To refine this bin, DNA from November 2017 was sequenced in addition by PacBio
sequencing on a Sequel instrument (Pacific Biosciences, Menlo Park, CA, USA) using circular
consensus sequencing with a target length of 2 kbp. Raw PacBio reads were quality controlled with
smrt analysis using an accuracy of 0.999; the number of resulting CCS bases was 0.55 Gbp. The
original lllumina AOA bin was used as trusted contigs in spades v3.11.1 [12] and re-assembled with
Sequel-reads for gap closure. A subsequent binning in metabat2 v2.12.1 [13] resulted in the final
MAG AOA-LC4. MAGs related to AOB, NOB or comammox could not be further refined by long PacBio
reads. All MAGs were tested for completeness, strain heterogeneity, and contamination using
CheckM v1.0.7 [14] and for their index of replication using iRep v1.10 [15]. MAGs and single contigs
were screened for the presence of the functional marker genes amoA and nxrB by both blastp
v2.10.1 [16] (e-value threshold 171°) and hmm-search v3.3 [17] (e-value threshold 17°). The latter was
based on hmm-models retrieved from the fungene database with manual curation [amoA_AOA.hmm
(Feifei Liu), amoA_AOB.hmm (RDP) amoA_comammox.hmm (Yang Ouyang), nxrB.hmm (RDP),
fungene.cme.msu.edu] [18]. MAG AOA-LC4 was annotated using the Microscope platform [19]. The

automated annotation was manually refined using annotation rules laid out before [20]. Additional
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MAGs were annotated with PROKKA v1.12 [21] and curated manually for their functional marker

genes amoABC, hao, and nxrAB, where appropriate.

For metatranscriptome sequencing, messenger RNA (mRNA) was enriched from total RNA extracts by
depleting ribosomal RNA with the Ribo-off rRNA Depletion Kit for bacteria (Vazyme, Nanjing, China).
Thereafter, the sequencing library was prepared with the TruSeq® Stranded mRNA Library Prep
(llumina) and sequenced on a NextSeq500 sequencer using 2 x 150 bp. The sequencing depth
ranged between 0.7-1.9 x 108 reads per metatranscriptome with an average of 1.2 x 10® reads
(10-27 Gbp, average 17 Gbp). Raw reads were quality filtered and trimmed using trimmomatic v0.38
[22] and the fastx toolkit v0.0.14 (hannonlab.cshl.edu/fastx_toolkit). Residual ribosomal reads were
removed using SortMeRNA v2.1b [23]. Curated metatranscriptome reads were mapped against
MAGs and contigs of interest using bowtie2 v2.30 [24] to determine the transcription levels of
individual genes. Subsequent network analysis of co-transcribed genes of MAG AOA-LC4 was based
on genes with transcription values higher than the median transcription of all AOA-LC4 genes (35.35
FPKM). Transcription values were correlated pairwise using Spearman correlation; only significant
(FDR-corrected p-value < 0.05) correlations with a correlation coefficient of rs > 0.8 were further
processed. For the final network construction, only genes, which correlated in their transcriptional
response to at least two of the either amoA, amoB or amoC were taken into account. The network

was created with the R package igraph v1.2.5 [25] and refined with cytoscape v3.8.1 [26].

A gene-centric analysis was performed to gain an overview of all ammonia transporter (amt) and
urea transporter (dur3) or urea transport system substrate-binding protein (urtA) gene sequences in
Lake Constance. Therefore, single assemblies of all 9 metagenomes were annotated with DRAM [27].
The retrieved amt, dur3 and urtA sequences were de-replicated with cd-hit-est [28, 29]. Curated
metatranscriptomes were mapped onto unique amt, dur3 and urtA sequences using bowtie2 v2.30

[24] to compare their transcription levels with AOA-LC4.

Phylogenetic analyses

Phylogenomic analyses of the nitrifying MAGs were performed on the basis of concatenated amino
acid alignments of 122 translated archaeal or 120 bacterial single copy genes [30, 31]. Alignments
were generated using GTDB-Tk v0.3.2 [32] and maximum likelihood trees were constructed using 1Q-
tree v1.6.12 [33]. Branch support was tested with the Shimodaira—Hasegawa approximate likelihood-
ratio test [34] and ultrafast bootstrap [33] options in IQ-tree. Genome-wide average nucleic and
amino acid identities (ANl and AAIl, respectively) were calculated with the online tool (enve-
omics.ce.gatech.edu) developed previously [35] using default settings. Maximum likelihood trees for
AOB-amoA, comammox-amoA and NOB/comammox-nxrB genes were constructed in 1Q-tree based

on manually curated alignments established in ARB v6.0.3 [36].
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Supplementary Results

Phylogenetic analysis of bacterial ammonia oxidizers

Phylogenomic maximum likelihood tree construction revealed that MAG AOB-LC263 formed a stable
cluster with other freshwater MAGs, which represented a sister clade to bona fide Nitrosospira
species (Fig. S3). This was corroborated by phylogenetic analysis of its amoA gene (Fig. S5). Closest
relatives of AOB-LC263 were MAGs retrieved from Lake Baikal, the Great Lakes, and Lake Biwa. Based
on the currently proposed species and genus delineation thresholds of ca. <95% ANI and <65% AAlI,
respectively [37], AOB-LC263 would represent a new species and genus within the
Nitrosomonadaceae (Fig. S4). The phylogenetic affiliation of contigs AOB-LC199628 and AOB-
LC368213 could only be assessed based on their amoA genes. Contig AOB-LC199628 clustered in a
stable clade consisting of environmental sequences that was distinct from the AOB-LC263 and
Nitrosospira clusters. Its closest cultured relative was Nitrosospira sp. Np39-19 as based on 78.3%
amoA nucleotide identity. Contig AOB-LC368213 clustered within sequences affiliated with
Nitrosomonas species with its closest cultured relative being Nitrosomonas ureae Nm10 with 89.9%
amoA nucleotide identity (Fig. S5). Comparison of the retrieved amoA sequences to a previous
bacterial amoA clone library obtained from Lake Constance waters [38] revealed that the amoA gene
of contig AOB-LC199628 was 100% identical (nucleic acid identity) to clone BmcYyy23.2
(MH780622.1) from OTU1 [38]. Furthermore, the amoA of MAG AOB-LC263 was 99.8% identical to
clone BmcYyy33 (MH780602.1) from OTU2. Since only two OTUs were detected previously [38],

contig AOB-LC368213 had no representatives in the earlier amoA clone library.

Phylogenetic analysis of nitrite-oxidizing bacteria and comammox bacteria

Phylogenomic maximum likelihood tree construction placed the two MAGs NOB-LC29 and NOB-LC32
into Nijtrospira lineage Il but outside the intra-lineage comammox clades A and B (Fig. S6). This was
corroborated by phylogenetic analysis of their nxrB genes (Fig. S8). The two MAGs shared an ANI and
AAIl of 85% and 85%, respectively, indicating that they represent two separate species within the
genus Nitrospira (Fig. S7). Phylogenomic tree construction of MAG COM-LC224 placed it into
comammox clade B within Nitrospira lineage 1l (Fig. S6), which was corroborated by phylogenetic
placement of its single genes nxrB and amoA (Fig. S8 and S9). Interestingly, COM-LC224 showed
<65% AAI to both type and Candidatus species within the genus Nitrospira (Fig. S7), but at the same
time exhibited AAl values of >65% with freshwater Nitrospira like NOB-LC29 and NOB—-LC32. Without

further data, its affiliation at the taxonomic rank of a genus is currently inconclusive.
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Supplementary Tables

Table S1. Overview of metagenome-assembled genomes (MAGs) and contigs related to the nitrifying

community in the hypolimnion of Lake Constance.

Table S2. Annotation and seasonally resolved transcription of MAG AOA-LC4 genes involved in

nitrogen metabolism, vitamin synthesis, carbon fixation, cell division, replication, transport systems,

respiration and the TCA-cycle.

Table S3. NCBI accession numbers or Taxon IDs of all species, MAGs and clones, which are part of the

phylogenetic trees of Nitrososphaeria, Nitrosomonadaceae and Nitrospira (Figures 2, S3, S5, S6, S8,

and S9).
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Supplementary Figures

67 m CARD-FISH
O amoA gPCR

AOA cells or amoA copies (10* mI™)
w

June November

Figure S1. AOA abundance in hypolimnetic water from 85 m depth as measured by archaeal amoA-
targeted gqPCR or CARD-FISH using a Nitrososphaeria-specific probe (probe Thaum726), which
currently encompasses all AOA. Samples were taken on June 18™ and November 5" 2019. CARD-FISH
was performed on water samples used for nitrification rate measurements after 67 h (June) or 48 h
(November) of incubation at 4°C in the dark. Hybridized filters were counted either 10 times (June) or

25 times (November) independently.
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S2. Pairwise genome-wide average nucleotide identities (ANI) and average amino acid
identities (AAl) of MAG AOA-LC4 (shown in bold) in comparison to representatives of the family

Nitrosopumilaceae. MAG AOA-LC4 represents a novel species together with Casp-thaumal and
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Baikal-Deep-G182 in the genus Nitrosopumilus based on the species-level threshold of 95% for ANI

[37] and genus-threshold of 65% for AAI [37].
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Figure S3. Phylogeny of MAG AOB-LC263 in relation to closely related freshwater MAGs and pure
cultures of the ammonia-oxidizing bacteria within the genera Nitrosomonas and Nitrosospira. The
phylogenomic maximum likelihood tree was constructed using the IQ-tree algorithm [33] on the
basis of a concatenated amino acid alignment of 120 translated single copy genes that were

established by the GTDB-based taxonomy for phylogenetic inference of bacteria [30, 31]. Branch
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support was tested with the Shimodaira—Hasegawa approximate likelihood-ratio test (SH-aLRT; 1000
replicates) and ultrafast bootstraps (1000 replicates) within IQ-tree. Branch support was set as
significant at 280% for SH-aLRT and 295% for ultrafast bootstrap values (black semi-circles for
significant and white for non-significant). MAGs or species with freshwater-origin are colored blue.
Methylotenera mobilis (NCBI accession number GCA_000023705.1), Methylovorus glucosetrophus
(NC_012969.1) and Methylobacillus flagellates (GCA_000013705.1) were used as outgroup. The scale
bar indicates 10% estimated amino acid sequence divergence. All accession numbers can be found in

Table S3.
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Figure S4. Pairwise genome-wide average nucleotide identities (ANI) and average amino acid (AAl)
identities for MAG AOB-LC263 (shown in bold) in comparison to closely related MAGs and
representatives of the genus Nitrosospira. AOB-LC263 represents a novel genus compared to

described Nitrosospira species based on the threshold of 65% for AAI [37].
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Figure S5. Phylogeny of MAG AOB-LC263 and contigs AOB-LC199628 and AOB-LC368213 in relation
to ammonia-oxidizing bacteria and environmental sequences affiliated with the family
Nitrosomonadaceae as based on the functional marker gene amoA. The maximum likelihood tree
was inferred by the IQ-tree algorithm [33] using 459 unambiguous alignment positions of the
bacterial amoA gene. Branch support was tested with the Shimodaira—Hasegawa approximate

likelihood-ratio test (SH-aLRT; 1000 replicates) and ultrafast bootstraps (1000 replicates) within 1Q-
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tree. Branch support was set as significant at 280% for SH-aLRT and 295% for ultrafast bootstrap
values (black semi-circles for significant and white for non-significant). MAGs, clones or species with
freshwater-origin are colored blue. Nitrosococcus watsonii (NC_014315) and Nitrosococcus oceani
(NC_007484) amoA genes were used as outgroup. The scale bar indicates 10% estimated nucleic acid

sequence divergence. Accession numbers can be found in Table S3.
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Figure S6. Phylogeny of MAGs NOB-LC29, NOB-LC32, and COM-LC224 in relation to representatives
of Nitrospira lineage | and Il. MAGs affiliated with either comammox clade A or B were taken from
the literature [39, 40]. Clade classification of comammox bacteria is based on their amoA gene as
proposed by Daims et al. [41] and Pjevac et al. [42]. The phylogenomic maximum likelihood tree was
constructed using the IQ-Tree algorithm [33] on the basis of a concatenated amino acid alignment of
120 translated single copy genes that were established by the GTDB-based taxonomy for
phylogenetic inference of bacteria [30, 31]. Branch support was tested with the Shimodaira—
Hasegawa approximate likelihood-ratio test (SH-aLRT; 1000 replicates) and ultrafast bootstraps (1000
replicates) within 1Q-tree. Branch support was set as significant at 280% for SH-aLRT and 295% for

ultrafast bootstrap values (black semi-circles for significant and white for non-significant). MAGs or
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species with freshwater-origin are colored blue. Leptospirillum ferriphilum (GCA_900198525.1) and
Leptospirillum ferrooxidans (GCA_000284315.1) were used as outgroup. The scale bar indicates 10%

estimated amino acid sequence divergence. Accession numbers can be found in Table S3.
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Figure S7. Pairwise genome-wide average nucleotide identities (ANI) and average amino acid

and COM-LC224

’

identities (AAl) for lineage Il Nitrospira including MAGs NOB-LC32, NOB-LC29

(shown in bold).
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Figure S8. Phylogeny of MAGs NOB-LC29, NOB-LC32, and COM-LC224 as based on the functional

marker gene nxrB. Classification of the comammox MAGs into clade A or B was transferred from the

phylogenomic tree (Fig. S6), as comammox species cannot be distinguished based on their nxrB gene

from canonical Nitrospira species [41, 43]. The maximum likelihood tree was inferred by the IQ-tree

algorithm [33] using 1,205 unambiguous alignment positions of the nxrB gene. Branch support was

tested with the Shimodaira—Hasegawa approximate likelihood-ratio test (SH-aLRT; 1000 replicates)
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and ultrafast bootstrap (1000 replicates) within the |Q-tree software package. Branch support was
set as significant at 280% for SH-aLRT and >95% for ultrafast bootstrap values (black semi-circles for
significant and white for non-significant). MAGs, clones or species with freshwater-origin are colored
blue. Hydrogenobaculum sp. (NC_011126), Natronomonas pharaonis (NC_007426.1) and Candidatus
Kuenenia stuttgartiensis (CT573072) narH-like genes were used as outgroup. The scale bar indicates

10% estimated nucleic acid sequence divergence. Accession numbers can be found in Table S3.
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Figure S9. Phylogeny of COM-LC224 as based on the functional marker gene amoA. Classification into
clade A or B was done as proposed by by Daims et al. [41] and Pjevac et al. [42]. The maximum
likelihood tree was inferred by the IQ-tree algorithm [33] using 414 unambiguous alignment
positions of the amoA gene. Branch support was tested with the Shimodaira—Hasegawa approximate
likelihood-ratio test (SH-aLRT; 1000 replicates) and ultrafast bootstrap (1000 replicates) within the
IQ-tree software package. Branch support was set as significant at 280% for SH-aLRT and 295% for
ultrafast bootstrap values (black semi-circles for significant and white for non-significant). MAGs or
species with freshwater-origin are colored blue. Nitrosospira multiformis (U91603), Nitrosospira sp.
(WP_041514847.1), Nitrosomonas europaea (L08050) and Nitrosomonas communis
(WP_046851395) amoA genes were used as outgroup. The scale bar indicates 10% estimated nucleic

acid sequence divergence. Accession numbers can be found in Table S3.
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Figure S10. Network analysis of ammonia oxidation-related and co-transcribed AOA-LC4 genes over

the yearly cycle. Only genes with a strong and significant (Spearman’s r > 0.8, FDR-corrected p-value

<0.05) correlation to at least two of the amoABC genes and an average expression higher than the

median of all transcribed genes were considered for the network analysis. Correlation coefficient’s

strength is visualized by increasing width of the edges. Detailed gene annotation and transcription

values can be found in Table S2.
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Figure S11. >N-nitrite/nitrate production from **N-ammonium in incubations of hypolimnetic water
taken from 85 m depth. Produced °N-nitrite/nitrate is shown in relation to the first sampling time
point. Linear regression through the time points was used to infer ammonia oxidation rates. All
incubations were performed in biological triplicates at 4°C in the dark over a period of 48 h, except
for June with 67 h. Samples were taken in 2019 on June 18", July 29*, August 28" and November 5.

Incubations started within 1-7 h after sampling.
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