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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

I. Deep Networks & Datasets 

I.A. Ell-50 Network 

I.A.1. Narrative. Ell-50 is a special form of FBPConvNet, which is a classic 
neural network for CT imaging proposed in Ref. 1. The FBPConvNet with 
multiple-solution decomposition and residual learning2 was proposed to remove 
sparse-data artifacts and preserve image features and structures. The 
reconstruction performance of the FBPConvNet was validated, outperforming 
the total variation-regularized iterative reconstruction using the realistic 
phantoms. Besides, it was very fast to reconstruct an image on GPUs. In this 
study, the training dataset mainly contains ellipses with different intensities, 
sizes and locations. The network is named Ell-50, indicating that the 
measurements were collected from 50 different views. This network was trained 
by the authors of Ref. 1, which can be freely downloaded 
(https://github.com/panakino/FBPConvNet). 

I.A.2. Network Architecture. The Ell-50 network was trained to reconstruct 𝒇 
from measurements 𝒑 = 𝑨𝒇, where A represents a subsampling system matrix, 
with which only 50 uniformly spaced radial lines are collected. Because the 
FBPConvNet is an image post-processing network, it is trained from filtered 
backprojection (FBP) reconstruction images rather than directly learning a 

mapping from 𝒑 to 𝒇. The network first employs FBP to convert 𝒑 to �̂� = 𝑨+𝒑 
where 𝐀+ represents the FBP and is considered as the first layer of the neural 
network.   

The FBPConvNet is a useful model based on U-Net3, which is considered 
as an encoder-decoder pair. The main features of U-Net based FBPConvNet 
are summarized as the following three features: multilevel decomposition, 
multichannel filtering, and skip connections (including concatenation operator 
and residual learning). The network input is an image with 512 ×512 pixels, 
where it is first down-sampled 4 times for encoding, and then the resultant low-
dimensional image features are up-sampled to 512 ×512 pixels. Besides, the 
skip concatenation operator is employed in this network. The Ell-50 network 
consists of convolutional and deconvolutional layers, and each convolutional 
and deconvolutional layer is followed by batch normalization (BN) and ReLU 
layers. The sizes of filters and stride in the Ell-50 network were set to 3×3 and 
1×1, respectively. Moreover, the Ell-50 network details are shown in Fig. S1. 

I.A.3. Network Training. The few-view and full-view FBP images are treated 
as the input and ground-truth of the Ell-50, respectively. In this study, the 
network was implemented using the MatConvNet4 toolbox with a slight 
modification to train and evaluate the performance. To prevent the divergence 
of the cost function, the MatConvNet4 toolbox was slightly modified by clipping 
the computed gradients to a fixed range5. In this study, we only used the pre-
trained network weights of Ref. 1 that were publicly available at GitHub  
(https://github.com/panakino/FBPConvNet). Such a configuration is consistent 
with the literature 6. The loss function plays an important role in controlling the 
image quality, and the mean square error (MSE) between the network output 
and the ground truth is considered in Ell-50. Since the employed network was 
performed on a TITAN Black GPU graphic processor (NVIDIA Corporation), the 
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total training time took about 15 hours with 101 epochs6. Regarding the learning 
rate, it was decreased logarithmically from 0.01 to 0.001. Besides, the batch 
size, momentum, and clipping value were set to 1, 0.99 and 10−2, respectively. 
For the Ell-50 network, it was implemented in MATLAB with the MatConvNet 
platform based on Window 10 system with one NVIDIA TITAN XP graphics 
processing units (GPUs) installed on a PC (16 CPUs @3.70GHz, 32.0GB RAM 
and 8.0GB VRAM). 
 

 

Fig. S1. Architecture for Ell-50. 

I.A.4. Training Data. Regarding the training dataset, the number of training 
images is 475. The training images were reconstructed via FBP with sparse-
view measurement. The dynamic range of the reconstructed images was 
controlled to the range of [−500, 500] HU. Since only ellipses with different sizes, 
locations and intensities were simulated, the projections were accurately and 
analytically computed7. The scanning geometry was set to produce parallel 
beams8. The number of full projections and the number of detector units were 
set to 1,000 and 729, respectively. Especially, the functions of radon and iradon 
in MATLAB were employed to realize the projection and backprojection 
operations. For sparse-data reconstruction, only 50 views were extracted from 
full projections, and then FBP reconstructed images were input to the selected 
networks in this paper. This case is a typical sparse-view reconstruction9-11. The 
ground truths are FBP images from full projections (i.e., 1000 views). 

I.A.5. Test Data. To demonstrate the instability of neural network (i.e., Ell-50), 

the additional symbol “ ” and the text “CAN YOU SEE IT” were first embedded 
in the original image, which was provided by the authors of Ref. 6. These 
artificial features were to mimic the structure changes and further validate the 
instability of the neural network in this case (see Fig. S2). In this study, the 
image with the symbol “ ” and text “CAN YOU SEE IT” was also treated as case 

C1 to validate the instability of Ell-50 and the stability of our proposed ACID 
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method. Besides, a slightly complicated phantom with the inserted logo of a bird 
and text “A BIRD?” was provided by the authors of Ref. 12 and downloaded 
from Ref. 6, which is defined as case C2. The test image consists of 512×512 
pixels, and it contains structural features without tiny perturbation. To generate 
adversarial attacks, the proposed method in 6 was employed to induce tiny 
perturbations. For case C3, an original image was randomly selected from the 
test datasets of https://github.com/panakino/FBPConvNet, which contains no 
perturbation. Here, the tiny perturbation is added to the original image with the 
same technique used in Ref. 6, and then we obtained the case C3. Regarding 
case C4, the same technique used in Ref. 6 was employed to generate the tiny 
perturbation and then embedded into case C1 to obtain C4. Furthermore, a 
Gaussian noise image with zero mean and standard deviation of 15 in HU over 
the pixel value range was superimposed to case 1 to obtain C5 image. To 
validate the ability of ACID against adversarial attacks, the adversarial samples 
(see Section III in this supplementary information for details) for the whole ACID 
were generated and added into the C3 and C1 images respectively to obtain 
the cases of C6 and C7. The searched adversarial attacks in the whole ACID 
flowchart are greater than those used in a single neural network (i.e., Ell-50) in 
terms of L2-norm.  

  

Fig. S2. Test images used to validate the effectiveness of ACID in stabilizing Ell-50 for CT study. (a)-

(g) correspond to the C1-C7 cases, respectively. The display window is [-150, 150] HU. 

I.B. DAGAN Network 

I.B.1. Narrative. The DAGAN network is to reduce aliasing artifacts with the U-
Net3 based generator13. To enhance the ability of the reconstruction method in 
preserving image texture and edges, DAGAN incorporates an innovative 
content loss and adversarial loss. Besides, it also introduces frequency-domain 
features to encourage coherence in image and frequency domains. Compared 
with the traditional CS-based and some other deep learning methods14-16, the 
DAGAN method achieved superior performance in retaining image details. 
Besides, as one of the post-processing methods, the speed of DAGAN 
reconstruction is very fast. In this study, the DAGAN network was tested on a 
single-coil MRI with 10% and 20% subsampling rates. The trained weights are 
not available online, however, the authors of Ref. 13 provide the implementation 
details of DAGAN. With this help, we retrained the DAGAN with different 
subsampling rates and masks. The architecture, training parameters, and test 
data are summarized in the following subsections. 
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I.B.2. Network Architecture. The DAGAN13 network was proposed for fast 
MRI reconstruction from subsampled measurement data. In the case of 
DAGAN, the measurement data is 𝒑 = 𝑨𝒇, where 𝑨 is the subsampled discrete 
Fourier transform. The aim of DAGAN is to recover 𝒇  from the degraded 

image �̂�   that is reconstructed directly via inverse Fourier transform from the 
zero-filled measurement data. 

To restore high-quality MR images from measurement, DAGAN adopted a 
conditional generative adversarial network (GAN)17-19 model. It consists of two 
modules: generator and discriminator. The generator is to recover the image, 
and the discriminator is to distinguish the recovered image and the ground-truth. 
The goal is to make the discriminator fail, and hence improve the recovered 
image quality. The authors of Ref. 13 provided three variants of DAGAN, and we 
selected the full model version (Pixel-Frequency-Perceptual-GAN-Refinement) 
in our experiments. According to parameter settings in Ref. 13 and the codes 
provided by the authors of Ref. 6, we retrained the DAGAN. 

The architecture of the generator is illustrated in Fig. S3. It adopted the basic 
U-Net type structure, which contains 8 convolutional layers and 8 
deconvolutional layers. All of them are followed by batch normalization layers 
to accelerate training convergence and overcome overfitting. The leaky ReLU 
layers are adopted as the activation function with a slope equal to 0.2 when the 
input is less than 0. Additionally, skip connections are employed to concentrate 
on encoder and decoder features to gain reconstruction details and promote 
the information flow. The hyperbolic tangent function is applied as the activate 
function for the output of the last convolutional layer. Then a global skip 
connection, adding the input data and the output of the hyperbolic tangent 
function together, is then clipped by a ramp function to scale the output of the 
generator to the range [-1,1]. The global skip connection can accelerate the 
training convergence and improve the performance of the network. The DAGAN 
network architecture was shown in Fig. S3. For more detailed information on 
the DAGAN network, please refer to Ref. 13. 

 
Fig. S3. The architecture of the DAGAN network. 

I.B.3. Training Parameters. The loss function of DAGAN is formulated as 
follows: 

𝐿𝐷𝐴𝐺𝐴𝑁 = 𝜎1𝐿𝐼𝑚𝑔 + 𝜎2𝐿𝑓𝑟𝑞 + 𝜎3𝐿𝑉𝐺𝐺 + 𝜎4𝐿𝐷  𝑠. 𝑡. 𝜎1, 𝜎2, 𝜎3, 𝜎4 >  0 ,    (S.1.1) 

where 𝐿𝐼𝑚𝑔 computes the Euclidean distance in the image domain between the 

generated image and ground truth, and 𝐿𝑓𝑟𝑞 accounts for the counterpart in the 

k-space. To constrain the similarity loss 𝐿𝑉𝐺𝐺 in the feature space, the trained 
VGG-16 was used to optimize the 𝐿2 -distance between feature maps of the 
generated image and ground truth, which is the same as Ref. 20. In particular, 
the feature maps generated of the conv4 layer in VGG-16 were used to 
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calculate 𝐿𝑉𝐺𝐺. Last, 𝐿𝐷 is the adversarial loss using a cross entropy to make 
the generated image more realistic. 𝜎1, 𝜎2, 𝜎3, 𝜎4  are the hyper-parameters to 
balance different constraint terms. According to Ref. 13, they were set to 15, 
0.1, 0.0025 and 1, respectively. The generator and the discriminator were 
optimized using the Adam algorithm21 with 𝛽1 = 0.5   and 𝛽2 = 0.999 . 
Specifically, the learning rate was initially set to 0.0001, which was decreased 
half every 5 epochs, and the batch size is 25. To prevent overfitting, an early 
stopping strategy was adopted via measuring the loss 𝐿𝑓𝑟𝑞 on the validation set, 

and the stopping number was set to 10. 

I.B.4. Training Data. The datasets for training the DAGAN network were 
provided by the MICCAI 2013 Grand Challenge and are publicly available in 
https://my.vanderbilt.edu/masi/workshops/. More details about the training 
datasets are given in https://github.com/tensorlayer/DAGAN. Specifically, to 
exclude the negative influence on the DAGAN network, all the images that have 
more T% background pixels were dropped. In our experiments, the threshold T 
was set to 90. After data preprocessing, there are 15,912 images for training 
and 4,977 images for testing. All the images are T1-weighted brain MR images. 
Again, the data augmentation methods were applied to eliminate overfitting, 
including image flipping, rotation, shifting, and so on13. 

In the experiments, the DAGAN is to recover images from 10% subsampling 
rate using a 2D Gaussian mask and the radial mask of a 20% subsampling rate, 
respectively. Two models of the DAGAN network were trained for these two 
subsampling masks. All the codes were implemented with TensorLayer and 
Tensorflow frameworks13.  

I.B.5. Testing Data. To test the robustness of DAGAN in terms of small 
structural changes, adversarial attacks and noise, the symbols “HELLO 
NATURE” and “CAN YOU SEE IT” were embedded in two different original 
images, which are denoted as Cases M1 and M2, respectively. Specifically, the 
image with the symbol “CAN YOU SEE IT” was provided by the authors of Ref. 
6 (download in https://github.com/vegarant/Invfool). The original image with the 
symbol “HELLO NATURE” was produced (downloaded from 
https://github.com/tensorlayer/DAGAN). In cases M1 and M2, there are two test 
images used to demonstrate the instability of the DAGAN network with respect 
to small structural changes. Next, to explore the performance of the DAGAN 
network in terms of adversarial attacks and small structural changes, the tiny 
perturbations derived from Ref. 6 were added into cases M1 and M2 to generate 
cases M3 and M4. Last, to test the DAGAN network in terms of anti-noising, the 
noise was superimposed to cases M1 and M2 to obtain cases M5 and M6. In 
our ablation study of ACID, we randomly selected one original image as M7 
from the DAGAN test dataset (https://github.com/tensorlayer/DAGAN). 
Furthermore, cases M8 and M9 were generated by applying the radial mask of 
a 20% subsampling rate on the M1 and M2 images, which were used to 
compare the performances between ACID and the classic Alternating Direction 
Method of Multipliers (ADMM)-net22. Regarding the stability of ACID, the tiny 
perturbations from ACID were added into M7, M1 and M2, and then the images 
with tiny perturbations were marked as M10, M11 and M12. The tiny 
perturbations from M11 and M12 are greater than the perturbations within M3 
and M4 in terms of the L2-norm. Except for M8 and M9, all the rest of the images 
were recovered from the k-space data collected at a 10% subsampling rate 
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using the Gaussian mask. All the images from the references of M1-M12 are 
shown in Fig. S4. 

  
Fig. S4. Test images for showing the instability of neural networks. (a)-(l) correspond to the 
M1-M12 cases, respectively. 

I.C. AUTOMAP Network 

I.C.1. Narrative. Proposed as a framework for image reconstruction, the 
automated transform by manifold approximation (AUTOMAP) transfers sensor 
data to a high-quality image with a mapping function between the sensor and  
image domains23. The AUTOMAP demonstrated its advantages in various 
magnetic resonance imaging acquisition modes using the same architecture 
and hyperparameters. In this study, the AUTOMAP neural network was tested 
on the single-coil MRI with subsampled data. The trained ATUOMAP used in 
our experiments is provided by Ref. 6. The architecture, training details, and 
test data of AUTOMAP are in the following sub-sections. 

I.C.2. Network Architecture. The AUTOMAP23 presents a framework for 
image reconstruction by translating sensor-domain signals into the image 
domain directly via domain-transform manifold learning. For MRI reconstruction, 
four subsampling strategies were applied to access the performance of the 
AUTOMAP, which are Radon projection, spiral non-Cartesian Fourier, under-
sampled Cartesian Fourier, and misaligned Fourier.  

The AUTOMAP network takes a vectorized measurement data as input 
which is sub-sampled from the full-sampled k-space data. First, we can obtain 
the complex k-space data using the discrete Fourier transform on the MR 
images. Then, the subsampled k-space data are generated via a subsampling 
mask. Next, these measurement data are reshaped into vectors. Last, the 
vectorized measurement data are fed into the AUTOMAP network. In this paper, 
the images with the size of 128×128 and 60% subsampling rate are tested for 
MRI reconstruction. There are two fully connected layers in the AUTOMAP 
network, which have 25,000 and 128x128 nodes, respectively. The activate 
function of the first fully connected layer is the hyperbolic tangent function, and 
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the output of the second fully connected layer then subtracts the mean value of 
itself. Next, it is reshaped into a feature map with the same size as the 
reconstructed image. Furthermore, two convolutional layers are applied to 
extract essential features from their input data. Each of them contains 64 filters 
with a size of 5×5 and the stride of 1×1. The activation function of the first 
convolution layer is a hyperbolic tangent function and the other is rectified linear 
unit (ReLU). The last convolutional layer has one filter with the size of 7×7 and 
a stride of 1×1. The output of the network is the corresponding reconstruction 
image. The trained weights were provided by the authors of Ref. 6. 

I.C.3. Training Parameters. The whole optimization problem of the AUTOMAP 
is defined as follow: 

𝐿𝐴𝑈𝑇𝑂𝑀𝐴𝑃 = 𝐿𝑟𝑒𝑐 + 𝜆1𝐿𝑓𝑒𝑎 .                                    (S.1.2) 

The loss function of AUTOMAP 𝐿𝐴𝑈𝑇𝑂𝑀𝐴𝑃 consists of two terms, i.e., 𝐿𝑟𝑒𝑐 and 
𝐿𝑓𝑒𝑎 . 𝐿𝑟𝑒𝑐  is employed to evaluate the Euclidean distance between the 

predicted image provided by the AUTOMAP network and the ground-truth 
image. 𝐿𝑓𝑒𝑎 is l1-norm to constrain the feature maps produced by the activation 

function of the second convolutional layer. 𝜆1 > 0 is to balance the two terms. 
The total loss function is optimized by the RMSProp algorithm with momentum 
0 and decay 0.923. The learning rate is 0.00002 and the batch size is 100. The 
network was trained and stopped after 100 epochs.   

I.C.4. Training Data. Selected in the MGH-USC HCP public dataset 
(http://www.humanconnectomeproject.org/data/), there are 50,000 images from 
131 subjects in total. Specifically, the training images are 128×128 matrices, 
which were subsampled from the central part cropped from the original image. 
Meanwhile, all the training datasets were scaled to a given range. In the Fourier 
space, the subsampled measurement data were produced by a Poisson-disk 
mask of a 60% subsampling rate. 

To improve the generalization ability of the AUTOMAP network, the data 
augmentation strategy was applied. 1.0% multiplicative noise was added to the 
input to promote manifold learning during the course of network training, and it 
is beneficial for the trained network learning robust representations from 
corrupted inputs. In fact, the specific additional noise distribution of the 
corruption process is not subject to the additive Gaussian noise during the 
process of evaluation. The corresponding training datasets with the size of 

128×128 are cropped from original MR images by using four types of reflections. 
All the related codes were implemented in the TensorFlow framework6.  

I.C.5. Testing Data. To validate the instability of the AUTOMAP network, the 
symbol “♡” was first added to the original MR image, which was also provided 
by the author 6. This simple symbol was used to simulate small structural 
changes in the patient and then test the instability of the AUTOMAP network 
reconstruction. All the test data were downloaded from Ref. 6. In addition, the 
“HELLO NATURE”, “CAN U SEE IT” and “” were added to the original test 
image to generate A1 and A2 with the structural changes. The resultant tiny 
perturbations were added to A1 and A2 images to obtain A3 and A4 images 
(see Fig. S5).  

I.C.6. Reconstruction Results. Here, to demonstrate the advantages of ACID, 
a typical reconstruction network, AUTOMAP, was selected as an example, and 
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the reconstruction results of Fig. S5 (a) are in Fig. S6. As shown in Fig. S6, 
ACID produced significantly better image quality than AUTOMAP. The PSNR 
was improved by ACID to 36.0 dB, well above 27.8 dB of AUTOMAP. Also, the 
SSIM of ACID reached 0.971, while the counterpart of AUTOMAP was 0.730. It 
further demonstrates that ACID achieves better image quality than AUTOMAP. 
The related reconstruction results of A1-A4 are in the main body of the paper. 

 

  
Fig. S5. Test images with a structural change and tiny perturbations for evaluation of the 
AUTOMAP stability. (a) was the test image provided in Ref. 6, and (b)-(e) represent the test 
images of A1-A4.  

 
Fig. S6. ACID deep reconstruction with the embedded AUTOMAP network. (a) represents the 
original brain phantom, (b) and (c) represent the reconstructed results by AUTOMAP and ACID 
respectively.  

I.D. ADMM-net 

 
Fig. S7. The flowchart of the ADMM-net. 𝒇(𝑘) , 𝒄(𝑘) , 𝒕(𝑘)  and  𝒎(𝑘)  represent the construction 
layer, convolution layer, nonlinear transform layer, and multiplier update layer in the k-th stage. 

I.D.1 Narrative. Inspired by the traditional Alternating Direction Method of 
Multipliers (ADMM) iterative optimization algorithm for CS-based MRI24, the 
ADMM-net defined over a data flow graph was first proposed in Ref. 22. 
Regarding the training procedure, the network parameters (e.g. image 
shrinkage functions, transforms) are trained into an end-to-end architecture 
using the L-BFGS algorithm25. Regarding the testing step, it needs a similar 
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computational overhead with the ADMM. However, there is only one parameter 
to be chosen initially in the ADMM-net since others are automatically learned 
during the training step. The superior experiments on MRI image reconstruction 
demonstrate the advantages over fast MRI imaging and higher image quality. 
In this study, the ADMM-net is tested on the single-coil MRI with 20% 
subsampling and the trained weights are provided by the authors of Ref. 22. 
The architecture, training parameters and test data of ADMM-net are 
summarized in the following sections. The workflow of ADMM-net is given in 
Fig. S7. 

I.D.2. Network Architecture. ADMM-net22 is a classical unrolled iterative 
optimization algorithm for MRI reconstruction. Different from the traditional 
compressed sensing (CS) based methods26 and data-driven based methods, 
ADMM-net can be trained end-to-end by incorporating a physic-guided model, 
and it achieves excellent performance in MR imaging with much less 
computational cost. The ADMM-net is derived from the ADMM algorithm via 
solving the sub-problem with deep learning networks. The CS-MRI model can 
be described as: 

argmin
𝒇

1

2
‖𝑨𝒇 − 𝒑(0)‖

𝐹

2
+ ∑ 𝜆𝑙𝑔(𝐷𝑙(𝒇))𝐿

𝑙=1                            (S.1.3) 

where 𝒇 ∈ 𝐶𝑁  is the MR image to be reconstructed, 𝒑(0) ∈ 𝐶𝐻  denotes the 
under-sampled measurement data, 𝑨 is the Fourier translation based system 
matrix with an under-sampled mask, 𝐷𝑙 represents the transform operation,  𝑔 

is the regularization function, and 𝜆𝑙  is the regularization parameter. By 
introducing 𝑡𝑙 = 𝐷𝑙(𝒇) , 𝑙 = 1, … , 𝐿 , (S.1.3) is converted into the following 
constraint optimization problem: 

argmin
𝒇,{t𝑙}𝑙=1

𝐿

1

2
‖𝑨𝒇 − 𝒑(0)‖

𝐹

2
+ ∑ 𝜆𝑙𝑔(t𝑙)

𝐿
𝑙=1 ,    t𝑙 = 𝐷𝑙(𝒇), 𝑙 = 1, … 𝐿.          (S.1.4) 

(S.1.4) is a constraint programming procedure and it can be further converted 
into the following unconstraint problem 

argmin
𝐟,{t𝑙}𝑙=1

𝐿 ,{𝛼𝑙}𝑙=1
𝐿

1

2
‖𝑨𝒇 − 𝒑(0)‖

𝐹

2
+ ∑ 𝜆𝑙𝑔(t𝑙) −𝐿

𝑙=1 ∑ 〈t𝑙 − 𝐷𝑙(𝒇), 𝛼𝑙〉
𝐿
𝑙=1 +

1

2
∑ 𝛾𝑙‖t𝑙 −𝐿

𝑙=1

𝐷𝑙(𝒇)‖𝐹
2 ,                                                                                (S.1.5) 

where 𝛼𝑙  (𝑙 = 1, … , 𝐿)  are Lagrange multipliers and 𝛾𝑙  (𝑙 = 1, … , 𝐿)  are the 
corresponding penalty parameters. (S.1.5) can be solved using the ADMM 
algorithm 27 as the following three sub-problems: 

𝒇(𝑘+1) = argmin
𝒇

1

2
‖𝐀𝐟 − 𝒑(0)‖

𝐹

2
− ∑ 〈t𝑙

(𝑘)
− 𝐷𝑙(𝐟), 𝛼𝑙

(𝑘)〉𝐿
𝑙=1 +

1

2
∑ 𝛾𝑙‖t𝑙

(𝑘)
−𝐿

𝑙=1

𝐷𝑙(𝒇)‖
𝐹

2

          ,                                                                (S.1.6) 

t𝑙
(k+1) = argmin

 {t𝑙}𝑙=1
𝐿

𝜆𝑙𝑔(t𝑙) − 〈t𝑙 − 𝐷𝑙(𝒇(k+1)), 𝛼𝑙〉 +
1

2
𝛾𝑙‖t𝑙 − 𝐷𝑙(𝒇(k+1))‖

𝐹

2
, 𝑙 =

1, … , 𝐿,                                                              (S.1.7) 

𝛼𝑙
(k+1) = 𝛼𝑙

(k) + t𝑙
(k+1) − 𝐷𝑙(𝒇(𝑘+1)), 𝑙 = 1, … , 𝐿.                              (S.1.8) 

Finally, these three sub-problems can be updated iteratively using deep neural 
blocks. Regarding the ADMM-net, the above optimization with one separate 
variable update can be generalized as four type layers: reconstruction layer 

(𝒇(𝑘+1)), convolutional layer ({𝐷𝑙(𝒇(𝑘+1))}𝑙=1
𝐿 ), non-linear layer ({𝑡𝑙

(k+1)}𝑙=1
𝐿 ), and 

multiplier update layer ({𝛼𝑙
(k+1)}𝑙=1

𝐿 ). More details related to the construction 
and organization of the layers in ADMM-net can be referred to Ref. 22. The 
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ADMM-net takes the sub-sampled k-space data as the input and finally 
generates the reconstructed image through the iterative process.  

I.D.3. Training Parameters. The ADMM-net adopts the normalized mean 
square error (NMSE) as the loss function to optimize the neural network. The 
image reconstructed from fully-sampled k-space data was used as the 
reference image and the corresponding under-sampling data in the k-space 
was used as the input. The loss function is defined as 

𝐿𝑁𝑀𝑆𝐸 =
1

𝑁1
∑

√‖�̂�𝑛1(𝛩)−𝒇𝑛1‖
𝐹

2

√‖𝒇𝑛1‖
𝐹

2

𝑁1
𝑛1=1   ,                                (S.1.9) 

where �̂�𝑛1
 and 𝒇𝑛1

 are the generated image from ADMM-net and the reference 

image (as the label), respectively. N1 is the number of training samples. Θ 
denotes parameters needed to be optimized in ADMM-net. The L-BFGS 
algorithm was used to minimize the loss function 𝐿𝑁𝑀𝑆𝐸.  

I.D.4. Training Data. The ADMM-net is trained with brain and chest MR image 
datasets (https://my.vanderbilt.edu/masi/workshops/). For each dataset, 100 
images were randomly selected for training and 50 images for testing. In our 
experiments, all the under-sampled k-space data were generated with the radial 
mask of a 20% subsampling rate, as shown in Fig. S8. All the codes are in 
MATLAB with Intel core i7-4790k CPU, and the training and testing datasets 
were downloaded from https://github.com/yangyan92/Deep-ADMM-Net.  
 

 
Fig. S8. Radial sampling mask of a 20% subsampling rate. 

 
I.D.5. Testing Data. To validate the performance of ADMM-net about small 
structural changes, the same images as those in Fig. 2 in the main text of the 
paper with the symbols “CAN YOU SEE IT” and “HELLO NATURE” were 
employed with the radial mask of a 20% subsampling rate. 

II. CS Based Reconstruction Methods 

II.A. CS-inspired Reconstruction 

II.A.1. Narrative. To demonstrate the advantages of our ACID in terms of 
stability against the benchmark compressed sensing (CS)-based methods28-31, 
the related experiments are performed, and the reconstruction results are 
provided using the established methods32-34. Since the total variation 
minimization (individual or combination) is popular in the image reconstruction 
field with consideration of sparsity prior, it is respectively chosen for CT and 
MRI image reconstruction in this study. The specific details are given as follows. 

II.A.2. X-ray CT Reconstruction. The re-weighting technique35 combining both 
shearlets36 and TV37 was proposed to validate the stability in Ref. 6. In this study, 
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it served as a state-of-the-art CS-based comparison method for CT. The details 
can be found in Refs. 37 and 6. Here we only provide a brief summary as follows.  

The mathematical model for this method is formulated as 

𝑎𝑟𝑔𝑚𝑖𝑛
𝒇

𝜔

2
‖𝑨𝒇 − 𝒑‖𝐹

2 + ∑ 𝜗𝑗‖𝑊𝑗𝜓𝑗𝒇‖
1

𝐽
𝑗=1 + 𝑇𝐺𝑉𝜚(𝒇),                   (S.2.1) 

where 𝜗𝑗  represents the j-th balance factor, 𝑊𝑗  is a diagonal matrix, and 𝜓𝑗 

represents the j-th subband from the corresponding shearlet transformation. 

The TGV𝜚(𝐟)  stands for the total generalized variation with the parameter 𝜚 . 

TGV𝜚(𝐟) is combined with the components from the first and second orders of 

the total variation of the reconstructed image. Furthermore, the parameters 𝜚 is 

introduced to balance these two terms. 𝜔 > 0 is to balance data fidelity and 
regularization of sparsity prior.  

To solve the optimization problem (S.2.1), 𝒅 = 𝜓′𝒇  is introduced to 

represent the matrix format of ∑ 𝜓𝑗𝒇𝐽
𝑗=1   and (S.2.1) is split into three sub-

problems: 

{𝒇(𝑘+1), 𝒅(𝑘+1)} = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒇,𝒅

𝜔

2
‖𝑨𝒇 − 𝒚(𝑘)‖

𝐹

2
+ ‖𝑊𝒅‖1 +

𝜔1

2
‖𝒅 − 𝜓′𝒇 − 𝒃(𝑘)‖

𝐹

2
+

𝑇𝐺𝑉𝜚(𝒇),                       (S.2.2) 

𝒃(𝑘+1) = 𝒃(𝑘) + 𝜓′𝒇(𝑘+1) − 𝒅(𝑘+1),                               (S.2.3) 

𝒚(𝑘+1) = 𝒚(𝑘) + 𝒑 − 𝑨𝒇(𝑘+1).                                    (S.2.4) 
where W is the matrix format of 𝜗𝑗𝑊𝑗

. In (S.2.2)-(S.2.4), the four variables are 

updated iteratively. First, the minimization problem in (S.2.2) is optimized 
utilizing the multiple non-linear block Gauss-Seidel iterations38. Compared with 
the original re-weighting strategy35, the weights in W are not only updated after 
convergence to the solution of (S.2.2), but also are put into the following split 
process. This unique weight updating strategy is further described in Ref. 6. In 
this work, the same strategy and configuration6 were used (including the 
parameters, the number of iterations, etc.). Note that the number of iterations 
and the regularization parameters can be further optimized. 

II.A.3. MRI Reconstruction. By extending the iteratively regularized Gauss–
Newton method (IRGN) with variational penalties39,40, the total generalized 
variation (TGV) based IRGN (IRGN-TGV) was proposed41, and better 
reconstruction quality was achieved by combining estimation of image and coil 
sensitivities with TGV regularization. Indeed, the IRGN-TGV had superior noise 
suppression because of the TGV regularization. In addition, the IRGN-TGV 
approach can remove sampling artifacts arising from pseudorandom and radial 
sampling patterns. In this study, it was employed as a state-of-the-art to perform 
CS-based MRI experiments. Here we also give a brief summary of this method. 

Mathematically, MRI is a typical inverse problem with the sampling operator 
A and the correspondingly k-space data p from the receivers. Besides, the spin 
density is given as h, and c represents the unknown set of coil sensitivities. For 

the current iteration index k with the given 𝒇(𝑘) ≔ (𝒉(𝑘), 𝒄(𝑘)), the solution ∆𝒇 ≔
(∆𝒉, ∆𝒄) is sought to minimize the following objective function: 

𝑎𝑟𝑔𝑚𝑖𝑛
∆𝒇

1

2
‖𝑨′(𝒇(𝑘))∆𝒇 + 𝑨(𝒇(𝑘)) − 𝒚‖

𝐹

2
+

𝛼𝑘

2
‖𝑊1(𝒄(𝑘) +∆𝒄)‖

1
+ 𝜌𝑘𝑅(𝒉(𝑘) +∆𝒉). 

(S.2.5) 

Given 𝛼𝑘 > 0  ,  𝜌𝑘 > 0 , we have 𝒇(𝑘+1) ≔ 𝒇(𝑘) +∆𝒇 , 𝛼𝑘+1 = 𝑞𝑎𝛼𝑘 and 𝜌𝑘+1 =
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𝑞𝑏𝜌𝑘  and 0 < 𝑞𝑎, 𝑞𝑏 < 1 . 𝑨′(𝒇(𝑘))  represents the derivative of 𝑨(𝒇(𝑘))  with 

respect to 𝒇(𝑘). The term  𝑊1(𝒄(𝑘) +∆𝒄) represents the penalty on the Fourier 

coefficients, and 𝑅 is a regularization term. In the original IRGN method, the 
conventional L2 was considered. Since the TV regularization can introduce 
stair-casing artifacts and reduce the image quality if the penalty parameter is 
too large, the authors of Ref. 41 considered the second-order TGV (total 
generalization variation, TGV), which is a generalized TV. Compared with the 
conventional TV, the TGV avoids stair-casing in regions of smooth signal 
changes and improves the image quality30,42. Therefore, the authors of Ref. 41 
employed TGV in IRGN and then generated IRGN-TGV for MRI. More details 
are in Ref. 30 and the corresponding code can be downloaded from 
https://www.tugraz.at/fileadmin/user_upload/Institute/IMT/files/misc/irgntv.zip. 
The parameters can be further tuned, depending on experimental designs30.  

II.B. Dictionary Learning-Based Reconstruction  

II.B.1. Narrative. As a successful example, dictionary learning-based methods 
were developed for tomographic reconstruction, including MRI43-45, Optical 
Coherence Tomography46-49 and CT33,50-52. Dictionary learning based 
reconstruction methods explored the intrinsic properties using the trained 
dictionary with initial reconstruction results. The reconstruction process is 
usually divided into two steps: dictionary learning and image reconstruction. 
Without loss of generality, we compare the dictionary learning-based 
reconstruction method with our proposed ACID for CT and MRI. 

II.B.2. Dictionary Learning Model. A number of image patches 𝒇𝑖𝑑
∈ 𝓡𝑠×𝑠 , 

𝑖𝑑 = 1, … , 𝐼𝑑, are extracted from the training datasets 𝒇 , and 𝑠 represents the 
size of image patches. The set of 𝒇𝑖𝑑

, 𝑖𝑑 = 1, … , 𝐼𝑑  is employed to train the 

global dictionary 𝑫𝑖𝑐 ∈ 𝓡𝑆×𝑇𝑑, where 𝑆 = 𝑠 × 𝑠 and 𝑇𝑑 is the number of atoms. 
The aim of dictionary learning is to search representation coefficients with 

sparse-level space constrained by 𝓺 ∈ 𝓡𝑇𝑑×𝐼𝑑  based on the dictionary 𝑫𝑖𝑐 . It 
can be explained by solving the following optimization expression: 

{𝑫𝑖𝑐
∗ , 𝓺∗} = 𝑎𝑟𝑔𝑚𝑖𝑛 

1

2
∑ ‖ 𝒇𝑖𝑑

− 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2𝐼𝑑
𝑖𝑑=1    s. t.  ‖𝓺𝑖𝑑

‖
0

≤ 𝐿𝑑𝑙 ,          (S.2.6) 

where 𝐿𝑑𝑙 is the sparsity level of dictionary learning, ‖∙‖0 represents the quasi-

𝑙0 norm, 𝓺𝑖𝑑
∈ 𝓡𝑇𝑑×1 represents sparse representation coefficients for the 𝑖𝑑–

th image patch. (S.2.6) is a constrained problem, and it is equivalent to the 
following unconstrained problem under a certain condition: 

{𝑫𝑖𝑐
∗ , 𝓺∗} = 𝑎𝑟𝑔𝑚𝑖𝑛 (∑ (

1

2
‖𝒇𝑖𝑑

− 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2
+ ℎ𝑖𝑑

‖𝓺𝑖𝑑
‖

0
)

𝐼𝑑
𝑖𝑑=1 ),    (S.2.7) 

where ℎ𝑖𝑑
  represents a Lagrange multiplier, which needs to be optimized. 

Furthermore, (S.2.7) can be solved by an alternating minimization scheme. First, 
we need to update 𝓺𝑖𝑑

 with a fixed dictionary 𝑫𝑖𝑐,  

𝓺∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ (
1

2
‖𝒇𝑖𝑑

− 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2
+ ℎ𝑖𝑑

‖𝓺𝑖𝑑
‖

0
)

𝐼𝑑
𝑖𝑑=1  .                (S.2.8) 

(S.2.8) can be solved using the matching pursuit (MP)53 or orthogonal matching 
pursuit (OMP) algorithm54.Then, we can update the dictionary with a fixed 
sparse representation coefficients 𝓺. Many methods can be employed to train 
the dictionary 𝑫𝑖𝑐, such as K-SVD55, discriminate K-SVD56, coupled dictionary 
training57, online learning technique58 and online robust learning59. In this study, 
the K-SVD was employed. 
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II.B.3. Dictionary Learning-Based CT Reconstruction. The conventional 
dictionary learning was first employed to MR reconstruction from under-
sampled k-space data43. Then, the dictionary learning was utilized to low-dose 
CT imaging in our previous work33, few-view CT reconstruction28 and material 
decomposition60. In this study, we only consider the dictionary learning-based 
sparse data CT reconstruction. The mathematical model of dictionary learning-
based CT reconstruction can be written as follows: 

argmin
𝒇,𝓺

1

2
‖𝒑(𝟎)  − 𝑨𝒇‖

2

2
+ 𝜍 ∑ (

1

2
‖℘𝑖𝑑

𝒇 − 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2
+ ℎ𝑖𝑑

‖𝓺𝑖𝑑
‖

0
)

𝐼𝑑
𝑖𝑑=1 ,   (S.2.9) 

where 𝜍 > 0 represents the regularization penalty parameter. ℘𝑖𝑑
 is an operator 

to extract 𝑖𝑑–th image patch from 𝒇. Regarding the optimization of (S.2.9), there 
are many strategies to reach such a goal. Here, the split-Bregman method is 
used to obtain its solution. First, we introduce a new variable  𝒃 to replace 𝒇 
and (S.2.9) can be converted into the following constraint programming problem 

argmin
𝒇,𝓺

1

2
‖𝒑(𝟎)  − 𝑨𝒇‖

2

2
+ 𝜍 ∑ (

1

2
‖℘𝑖𝑑

𝒃 − 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2
+ ℎ𝑖𝑑

‖𝓺𝑖𝑑
‖

0
)

𝐼𝑑
𝑖𝑑=1 , 𝑠. 𝑡. , 𝒇 = 𝒃 . 

(S.2.10) 
To optimize (S.2.10), it can be further converted into 

argmin
𝒇,𝒃,𝝌,𝓺

1

2
‖𝒑(𝟎)  − 𝑨𝒇‖

2

2
+ 𝜍 ∑ (

1

2
‖℘𝑖𝑑

𝒃 − 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2
+ ℎ𝑖𝑑

‖𝓺𝑖𝑑
‖

0
)

𝐼𝑑
𝑖𝑑=1 +

𝜍1

2
‖𝒇 − 𝒃 − 𝝌‖2

2,                                                 (S.2.11) 

where 𝜍1 > 0  represents the coupling factor, and 𝝌  is the error feedback. In  
(S.2.11), there are four variables 𝒇, 𝒃, 𝓺 and 𝝌. It can be split into the following 
three sub-problems: 

argmin
𝒇

1

2
‖𝒑(𝟎)  − 𝑨𝒇‖

2

2
+

𝜍1

2
‖𝒇 − 𝒃(𝑘) − 𝝌(𝑘)‖

2

2
,                   (S.2.12) 

argmin
𝒃,𝓺

∑ (
1

2
‖℘𝑖𝑑

𝒃 − 𝑫𝑖𝑐𝓺𝑖𝑑
‖

2

2
+ ℎ𝑖𝑑

‖𝓺𝑖𝑑
‖

0
)

𝐼𝑑
𝑖𝑑=1 +

𝜍1

2
‖𝒇(𝑘+1)  − 𝒃 − 𝝌(𝑘)‖

2

2
, 

(S.2.13) 

𝝌(𝑘+1) = 𝝌(𝑘) − 𝜏𝑑(𝒇(𝑘+1) − 𝒃(𝑘+1)),                                           (S.2.14) 

where 𝜏𝑑 > 0  represents the step length and it was set to 1 in this study. 
Regarding (S.2.12), it is solved by using the separable surrogate method61 

𝒇𝑗1𝑗2

(𝑘+1)
= 𝒇𝑗1𝑗2

(𝑘)
−

[𝑨𝑻( 𝑨𝒇(𝑘)−𝒑(𝟎))]
𝑗1𝑗2

+𝜍1[𝒇(𝑘) −𝒃(𝑘)−𝝌(𝑘)]
𝑗1𝑗2

[𝑨𝑻𝑨+𝜍1]𝑗1𝑗2

,           (S.2.15) 

where[. ]𝑗1𝑗2
 represents the (𝑗1, 𝑗2)𝑡ℎ pixel in the matrix. In practice, (S.2.15) was 

performed using two steps:  

𝒇
𝑗1𝑗2

(𝑘+
1

2
)

= 𝒇𝑗1𝑗2

(𝑘)
−

[𝑨𝑻( 𝑨𝒇(𝑘)−𝒑(𝟎))]
𝑗1𝑗2

[𝑨𝑻𝑨+𝜍1]𝑗1𝑗2

,                             (S.2.16) 

and  

𝒇𝑗1𝑗2

(𝑘+1)
= 𝒇

𝑗1𝑗2

(𝑘+
1

2
)

−
𝜍1[𝒇(𝑘) −𝒃(𝑘)−𝝌(𝑘)]

𝑗1𝑗2

[𝑨𝑻𝑨+𝜍1]𝑗1𝑗2

.                         (S.2.17) 

In fact, the number of iterations for 𝒇
𝑗1𝑗2

(𝑘+
1

2
)
 in (S.2.16) needs to be set to a good 

number (it was set to 10 in this study), and then 𝒇𝑗1𝑗2

(𝑘+1)
 is updated. Since 𝜍1 is 

specific to scanning geometry, it is normalized into a new parameter 𝛾1 so that 

𝜍1 = 𝛾1‖𝑨𝑻𝑨‖   that is, we only need to select a geometrically-invariant 𝛾1 . 
Regarding the optimization of (S.2.13), it is a typical dictionary learning-based 
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signal recovery problem, and there are a large number of algorithms to solve 
this problem55,57. To control the image recovery via dictionary learning, the 
parameters of sparsity level 𝐿𝑑𝑙 and the precision level 𝜁 should be chosen  for 
more details, see our previous studies28,33,62.  

II.B.4. Dictionary Learning-Based MRI Reconstruction. The conventional 
dictionary learning methods are common for MR reconstruction43,63-65. In this 
study, the dictionary learning-based MRI (DLMRI)43 was employed to highlight 
the advantages of the ACID with built-in DAGAN and TV. Regarding the 
reconstruction process of DLMRI, it is similar to the process for CT 
reconstruction. It is also divided into two steps: dictionary learning and image 
updating. Regarding the dictionary learning step, both MRI and CT are the 
same except that training images are different. Again, the dictionary used in CT 
reconstruction was trained from FBP results or updated results within the 
iteration process. In contrast, the dictionary utilized in MRI was trained from the 
inverse Fourier transform results. Regarding the image updating step, it is not 
necessary to update the image based on the fast Fourier transform. More 
details can be found in Ref. 43. 

II.B.5. Experimental Results. To validate the outperformance of ACID in 
comparison with the dictionary learning-based CT reconstruction method 
(DLCT), we repeated the experiments design for the cases C1 and C2. Here, 
we adopt the FBP method to reconstruct images. Then, the FBP results were 
employed to train the dictionaries. In this study, only 1.0x104 image patches 
were extracted from FBP images to train the dictionary by the K-SVD algorithm. 
The size of extracted image patches was set to 6 × 6 . The dictionary 𝑫𝑖𝑐  is 
overcomplete, and it can benefit the sparsity level enforcement. The number of 
atoms was set to 512. The sparsity level 𝐿𝑑𝑙 in the dictionary training can be set 
empirically, and it was chosen as 6. The number of iterations for the training 
dictionary was set to 100.  

Note that the total variation is still treated as the compressed sensing-based 
sparsity for the built-in component in the ACID. Here, the parameters of 𝛾1, 𝐿𝑑𝑙 

and 𝜁 in DLCT were set to 0.22, 8 and 0.06, respectively. The number of outer 
iterations was set to 200. The implementation environment for training and 
reconstruction is the same as Ell-50. Specifically, the computational costs of 
dictionary training and reconstruction consume 139 and 561 seconds. However, 
the whole ACID with the built-in Ell-50 consumes about 70.5 seconds. In other 
words, the ACID is faster than the DLCT method.  

The reconstruction results from DLCT and ACID with C1 and C2 are in Fig. 
S9. It is observed that DLCT provides higher image quality than that obtained 
by the CS method. However, it is still worse than those obtained by the ACID. 
Besides, the proposed ACID method obtains better image edges and avoids 
blurred artifacts compared with the DLCT method. Especially, the insert texts in 
DLCT results (i.e., “CAN U SEE IT” and “A BIRD?”) are very blurry, and they 
failed to be discriminated against. These texts are clearly observed in ACID 
results. Regarding small features (i.e., the symbol “ ”), they are totally missing 
in the DLCT result. However, they were still recovered by the ACID. In terms of 
quantitative assessment, our proposed ACID obtained the best results 
remarkably. More details for codes and test data are at 
https://zenodo.org/record/5497811. 
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To show the advantages of ACID with the built-in DAGAN, the reconstruction 
results in the M2 case from ACID and DLMRI are given in Fig. S10. The DLMRI 
obtained higher image quality than that obtained by the conventional CS 
method in the main text. However, it is still worse than those obtained by the 
ACID. Besides, the proposed ACID method obtained better image edges and 
avoided blurry artifacts compared with the DLMRI method. Especially, the 
inserted texts in DLCT results (i.e., “CAN U SEE IT”) are very blurry, and they 
could not be discriminated. These texts are clearly observed in the ACID results. 
The small symbol was totally blurred in DLMRI result, which was still recovered 
by ACID. In terms of quantitative assessment, our proposed ACID obtained 
better results than those achieved by DLMRI method. The MATLAB code of the 
MRIDL method can be downloaded from 
http://www.ifp.illinois.edu/~yoram/DLMRI-Lab/DLMRI.html. The reconstruction 
parameters within DLMRI were optimized. Regarding the computational cost, 
under the same computing environment, DLMRI took 606.3 seconds, which is 
higher than that of CS reconstruction methods in the main text (i.e., 127.8 
seconds). Our proposed ACID only took 9.2 seconds. 

 
Fig. S9. Comparison study on the DLCT and ACID methods. (a) and (c), (b) and (d) are 
reconstructed results from DLCT and ACID, respectively. The numbers represent the 
quantitative results in terms of PSNR and SSIM, and the display window is [-150, 150] HU.  

 
Fig. S10. Comparison study on the DLMRI and ACID methods. (a) and (b) are the reconstructed 
results from DLCT and ACID respectively. The numbers represent the quantitative results in 
terms of PSNR and SSIM.  

III. ACID Implementation & More Results 

III.A. ACID Implementation 

For an implementation of the whole ACID system, it is considered as an iterative 
framework and listed in Algorithm 1. In the whole ACID framework, we need to 

have input data 𝒑(0) , a neural network Φ  and a system matrix A. Then, we 
should specify the stopping condition  i.e., the maximum number of iterations K. 

Finally, the parameters λ  and 𝜀 should be given to control the iterative process 
and the regularization strength, all of which can be empirically picked up. When 

k=1, we need to compute Φ(𝒑(0)) and then normalize Φ(𝒑(0)). The goal of the 

normalization operator is to facilitate the adjustment of the regularization 

parameters for different applications. Then, we obtain the updated 𝒃(𝟏)  using 
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the second formula in (1) in the main body of this paper. Next, 𝒇(𝟏) is updated 

by de-normalizing  𝒃(𝟏). When 1<k<K+1, we need to compute the residual data 

by 𝒑(𝒌+𝟏) =
𝜆(𝒑(𝟎)−𝑨𝒇(𝒌))

1+𝜆
. Since the residual data are not in the dynamic range of 

the original data, the residual data should be normalized into the original range 
to make sure the efficiency of the neural network (Line #9 in Algorithm 1). After 
the neural network predicts a residual image, the de-normalization operator 
should be applied on the prediction to ensure the consistency of the 

reconstruction results. Then, 𝒇(𝑘) +
1

𝜆
Φ(𝒑(𝒌+𝟏))  is normalized and fed to the 

compressed sensing-based regularization module to encourage image sparsity. 

Finally, we obtain the updated image 𝒇(𝑘+1)  after the de-normalization. More 
details on our codes and other materials are available at 
https://zenodo.org/record/5497811. 
 

Algorithm 1. Pseudocode of the ACID workflow. 
Input: Data 𝒑(0), neural network Φ, system matrix A, maximum number of iterations K, auxiliary 

parameters  λ, 𝜀, and k=1  
1. If k<K+1 do  
2.     if  k=1 do  

3.        Computing Φ(𝒑(0))  

4.        Normalizing Φ(𝒑(0))  

5.        Updating 𝒃(𝟏) where the normalized Φ(𝒑(0)) is treated as the input  

6.        Updating 𝒇(𝟏) by de-normalizing  𝒃(𝟏)  
7.     else do 

8.        Computing residual data using 𝒑(𝒌+𝟏) =
𝝀(𝒑(𝟎)−𝑨𝒇(𝒌))

1+𝜆
  

9.        Normalizing the residual data 𝒑(𝒌+𝟏) into the input range of neural network to obtain �̅�(𝒌+𝟏)   

10.        Inputting �̅�(𝒌+𝟏) into the neural network Φ and obtaining Φ(�̅�(𝒌+𝟏))  

11.        De-normalizing Φ(�̅�(𝒌+𝟏)) to obtain Φ(𝒑(𝒌+𝟏))  

12.        Normalizing 𝒇(𝑘) +
1

𝜆
Φ(𝒑(𝒌+𝟏))  

13.        Updating 𝒃(𝑘+1)  

14.        Updating 𝒇(𝒌+𝟏) by de-normalizing 𝒃(𝑘+1)  
15.     end 
16. end 

17. return 𝒇(𝐾) 

Output: Reconstructed image 𝒇(𝐾)  

 

III.B. Difference Images for Figures 2-4  

Here we provide the difference images for figures 2-4 in the main text. Fig. S11 
includes the difference images of Figure 2 in the main text. It can be seen that 
the results provided by ACID is closer to the ground truth. In addition, the 
differences of the text symbols in the competing approaches are more obvious 
than that obtained by our ACID. It further demonstrates our ACID can effective 
stabilize the deep tomographic network against structure changes. 

Fig. S12 includes the difference images of Figure 3 in the main text. It can 
be seen that the results provided by ACID is also closer to the ground truth. In 
addition, the differences of inserted text symbols in the competing algorithms 
are more obvious than that obtained by our ACID. Fig. S12 further 
demonstrates our ACID can effectively stabilize the deep tomographic network 
against adversarial attacks. The difference images of ACID against noise are 
also provided in Fig. S13. It can be observed that the difference images with 
our ACID are the smallest among all the algorithms. 
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Fig. S11. Difference images of ACID with small structural changes in the CT and MRI 
cases. The 1st- 3rd rows are the difference images of Ell-50, CS-inspired and ACID results 
respectively with respect to the ground truth.  The 1st-4th columns correspond to CT cases C1 
and C2, and MRI cases M1 and M2, respectively. The sub-sampling rate of MRI is 10%. The 
display windows for CT and MRI are [-70 70] HU and [-0.5 0.5], respectively.  

 

 
Fig. S12. Difference images of ACID with adversarial attack in the CT and MRI cases. The 
1st -3rd rows are the difference images of Ell-50, CS-inspired and ACID results respectively with 
respect to the ground truth. The 1st-4th columns correspond to CT cases C3 and C4, and MRI 
cases M3 and M4, respectively. Each CT dataset contains 50 projections, and the sub-sampling 
rate of MRI is 10%. The display windows for CT and MRI are [-70 70] HU and [-0.5 0.5], 
respectively.  
 

III.C. ACID Performance on Real CT Dataset  

To validate the proposed ACID on real datasets, here we retrained the 
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FBPConvNet on mayo clinical datasets and the reconstruction results are  
 

 

Fig. S13. Difference images in the C5, M5 and M6 cases against noise. In the first column, 
(a), (d) and (g) present the difference images between ground truth and that of Ell-50, CS and 
ACID results on C5. The second and third columns are the counterparts of M5 and M6  showing 
the difference images between the ground truth and that of DAGAN, CS and ACID results, 
respectively.  

 

  

Fig. S14. Reconstruction performance of ACID on Mayo clinical datasets. In the first 
column, (a), (e) and (i) are the ground truth, FBPConvNet and ACID results. The second column 
are the magnified ROI in the first column. The third and fourth columns are the counterparts of 
the first and second columns with structural changes. The numbers indicate the PSNR and 
SSIM values, and the display window is [-160, 240] HU. 

further given in Fig. S14. There are two cases in Fig. S14, where one has no 
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structural changes and the other has structural changes. For the case without 
structural changes, our ACID built with FBPConvNet can provide higher 
reconstructed image quality than FBPConvNet itself. For the case with 
structural changes, our ACID obviously provides clearer insert symbols than 
FBPConvNet. Furthermore, ACID has higher quantitative PSNR and SSIM 
results than the FBPConvNet. 

III.D. ACID Against Distributional Robustness 

As for robustness, distributional robustness is very important for image 
reconstruction. To further demonstrate the advantages of the generalization 
ability from our ACID, here we first use the test dataset of DAGAN to test 
AUTOMAP. Then, we also use the test datasets from AUTOMAP to test DAGAN. 
The results of Fig. S15 demonstrate the DAGAN has a relative weakness 
distributional robustness since its results contain several structural artifacts. 
However, these artifacts can be removed by our ACID framework with built-in 
DAGAN network. In addition, our ACID also provides higher PSNR as well as 
SSIM. The results of Fig. S16 demonstrate the AUTOMAP has good 
distributional robustness, but it also contains structure and other artifacts. 
However, these artifacts can be removed by our ACID framework with built-in 
AUTOMAP network. In addition, our ACID also provides higher PSNR as well 
as SSIM. 

 

  
Fig. S15. Distributional robustness of DAGAN against AUTOMAP test datasets. (a)-(c) are the 
ground truth, DAGAN result and ACID result with built-in DAGAN network. (d)-(f) are the 
counterparts of (a)-(c) for another case. The numbers indicate PSNR and SSIM values. 

 
Fig. S16. Distributional robustness of AUTOMAP against DAGAN test datasets. (a)-(c) are 
ground truth, AUTOMAP result and ACID result with built-in AUTOMAP network. (d)-(f) are 
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counterparts of (a)-(c) for another case. The numbers indicate PSNR and SSIM values. 
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