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Supplementary Information
Supplementary Note 1: Cryptography Glossary
Here, we provide a summary of the cryptography terms that are frequently used throughout this paper.
Multiparty Homomorphic Encryption: a set of protocols that enable a group of parties to securely compute joint functions over
their private inputs by using homomorphic encryption. Compared to LSSS-based (linear secret-sharing scheme) approaches,
these protocols scale linearly with the number of parties and do not require private channels.
Ring Learning With Errors (RLWE): a computational problem based on the difficulty of solving linear equations that are
perturbed by an error. The security of the cryptographic schemes used in this work is based on this problem.
Ring Degree (N ): the degree of the RLWE cyclotomic polynomial XN +1.
Packing: the act of encrypting multiple scalar values in a single ciphertext by using ciphertext slots.
Secret Key: a secret value used to decrypt a ciphertext and to generate the encryption key and evaluation keys.
Collective Public Key: a public key generated with the interaction of a set of parties and that can be used by any party to encrypt.
The decryption of a ciphertext that is encrypted with the collective key requires all parties to participate in the decryption
protocol.
Evaluation Keys: special public keys used during the homomorphic evaluation of a circuit (e.g., homomorphic slot rotations).
Ciphertext Slots: available space in a ciphertext to encrypt multiple values. In CKKS, the maximum number of slots that a
ciphertext can have is half of the dimension of the ring degree, i.e. N /2.
Slots Rotation: cyclic shift of the values encrypted in a ciphertext.
Single Instruction, Multiple Data (SIMD) Operations: the ability to carry out operations in parallel on a batch of data that is
encrypted in one ciphertext by using ciphertext slots, in the context of this work.
Bootstrapping: the act of homomorphically refreshing a ciphertext to allow for further computations.
Distributed Bootstrapping: bootstrapping that requires interaction between the parties but that is less computationally expensive
than its non-interactive variant.
Collective Key Switching: an interactive re-encryption of a ciphertext to a different secret key.

Supplementary Note 2: Symbols and Notations
Table S.1 summarizes the symbols and notation used throughout the paper.

Supplementary Note 3: Data Preprocessing and Parameter Selection
Our data preprocessing is similar to the one used in CellCnn1. To address the distributed setting, we split individual donors in
the training set to N institutions. Each party then generates the multi-cell inputs similar to CellCnn (Figure 1B) by selecting c
cells per sample, and z samples per class or per patient, depending on the experiment. As a result, each multi-cell input sample
has a size of c×m, where m is the number of markers; and the total training set per party has o× z multi-cell inputs, where o is
the number of labels when the data is generated in a per class-basis. The total training set has p× z multi-cell inputs, where p is
the number of patients in that institution when the data is generated in a per patient-basis.

For accuracy evaluation, we use two test datasets for each experimental setting: One is generated by multi-cell inputs of c
cells and z samples drawn from test set as in training set, and one is generated with the g of cells per individual to predict the
phenotype where g is the minimum of all available cells per individual in the test set. Lastly, for a fair comparison, we use the
same test set generated in all settings per dataset.

For all experimental settings, we scale and standardize the marker distributions, based on the training data.
Below, we give the parameters for each experimental setting.

RRMS/NIND experiments. For RRMS and NIND experiments in Figures 4 and 5, we generate two training datasets: (i)
multi-cell inputs with 100 cells were drawn for each class label to generate a dataset of 30000 samples (phenotype-based) and
(ii) multi-cell inputs with 2000 cells were drawn from each patient to generate 480 samples (patient-based). We report the
median accuracy in Figures 4 and 5, for patient-based multi-cell input generation in Table S.2.

The size of the test set for multi-cell inputs, is set to 10000 for the phenotype-based multi-cell generation, and to 96 for
patient-based multi-cell generation setting. The test set for phenotype classification is 12 donors for all RRMS and NIND
experiments.
CMV experiments. We transform the marker measurement with the inverse hyperbolic sine function with a cofactor of 5. The
training and test datasets respectively comprise 14 and 6 donors.

For the CellCnn results in Table S.2, 200 cells were drawn for each class label to generate one multi-cell sample and 2000
samples are generated per label. For all distributed settings, we also generate 200 cells per sample and gradually decrease the
number of samples bagged in each party for a fair comparison.

The size of the test set including multi-cell inputs is set to 4000 and the size of the test set for phenotype classification is 6
donors.



Notation Description
Pi ith Party

Xi Input matrix of Pi

yi True labels of Pi

N Total number of parties

s Total number of samples over parties

Ln×c×m Batch of samples

Cm×h Convolution filters (weights)

Wh×o Weight matrix of dense layer

n Number of data samples in a batch (batch size)

c Number of cells in multi-cell input

m Number of features (markers)

h Number of filters

o Number of labels (phenotype)

η Learning rate

µ Momentum

⊙ Element-wise multiplication

× Matrix or vector multiplication

|| Concatenation

Cryptographic Parameters and Operations

AAAℓ Encryption of A (bold-face) at level ℓ

N Ring degree

RQ The ring ZQ[X ]/(XN +1), with N = 2d

MultImag(·) Multiply the slots by the imaginary unit i

Conjugate(·) Complex conjugate of the slots

Rotatei(·) Rotate the slots by i to the left

InnerSumi, j(·) Sum j batches of i slots

Replicatei, j(·) Replicate batches of i slots j times

Table S. 1. Frequently Used Symbols and Notations.

AML Experiments. For the AML experiments in Table S.2, we draw 200 cells per class label to generate multi-cell samples
and 1000 samples generated per label. Note that there are 3 class labels for this set of experiments. For all distributed settings,
we generate 200 cells per sample and gradually decrease the number of samples, as in other experimental settings. The size of
the test set including multi-cell inputs, is set to 3000 and the size of the test set for phenotype classification is 6 donors.
Machine Learning Parameters. For all accuracy experiments, we use 8 filters, average pooling, 1 local iteration per party
before aggregating local gradients, identity activation after convolution, and an approximated sigmoid activation for the
dense layer. For the baseline (CellCnn), we rely on their original optimizer, ADAM, and for PriCell, we use SGD with
momentum (µ) to enable efficient training of the neural network under encryption. We vary µ = 0.5−0.9 and the learning rate
η = 0.0001−0.01 for the distributed setting.

For the RRMS and NIND experiments, we use a batch size of 64 for the baseline (CellCnn) and gradually decrease the
batch size proportionally to the number of parties when data is distributed. For example, when the number of parties is 4, the
local batch size is 16. We use the approximated sigmoid activation in [−1,1] with a polynomial degree of 3 for the dense layer,



and 30 epochs.
For the CMV experiments, we use a batch size of 200 for the baseline (CellCnn) and gradually decrease the batch size

proportionally to the number of parties when the data is distributed. For example, when the number of parties is 2, the local
batch size is 100. We use an approximated sigmoid activation in [−3,3] with a polynomial degree of 3 for the dense layer, and
20 epochs.

For all AML experiments, we use a batch size of 200 for the baseline (CellCnn) and 100 for the local batch size in the
distributed setting with 2 parties. We use an approximated sigmoid activation in [−3,3] with a polynomial degree of 3 for the
dense layer, and 20 epochs.

Lastly, for the Local training in Figures 2, 3, and 4 or the Local row in Table S.2, we use the original CellCnn architecture,
with the same baseline parameters and average the accuracy, precision, and recall over N local parties’ models.
Security Parameters. Unless otherwise stated, all experiments use a cyclotomic polynomial ring of dimension N = 215 and
an initial level L = 10, which provides 214 slots per ciphertext and allows for a depth-10 circuit before bootstrapping is needed
(10 operations to be carried out before bootstrapping). For the inference times given in Table 1 (main text), we start with an
initial level of 4 as we do not need the backpropagation. This enables a more efficient forward pass as operations carried out on
a ciphertext with a lower level are less expensive. All our cryptographic parameters ensure at least 128-bit security level during
the training and up to 256-bit security during the inference.

Supplementary Note 4: Detailed Neural Network Circuit
Notations. We denote a batch of samples, the convolution layer and the dense layer matrices by Ln×c×m, CCCm×h and WWW h×o,
respectively, with n the number of samples, c the number of cells per sample per batch, m the number of features (markers), h
the number of filters and o the number of output classes (labels). When there is no ambiguity, we eliminate the sub-index of
the matrices, e.g., CCCm×h is often referred to as CCC. We recall that encrypted matrices are denoted in boldface. We denote the
plaintext of binary values as mask. When multiplied with a ciphertext, mask selects specific slots of the ciphertext by setting the
other slots to zero. The terms row, column and diagonal encoding of a matrix denote the mapping of a 2D matrix on a 1D
vector by concatenating each row, each column or each diagonal of the matrix respectively.
Convolution With Pre-Pooling. Given a hyper-cube batch of samples Ln×c×m, we first preprocess L by applying the average
pooling across the cells. As the convolution, average pooling and the activation of this step are all linear transformations, their
order is interchangeable. This preprocessing reduces the size of the hyper-cube from n× c×m to only n×m, thus removing its
dependency on c. The convolution is computed with a single matrix multiplication PPPn×h = Ln×m×CCCm×h, with a row-encoded
PPPn×h matrix where each row stores the result of the convolution layer for one sample. In the rest of this section, we describe
how we pack Ln×m and CCCm×h in order to enable an efficient convolution through SIMD operations.

We evaluate the convolution with a diagonally-encoded plaintext and row-encoded ciphertext matrix multiplication. As we
operate with non-square matrices, we pad the matrix CCC with the copies of itself until its number of rows reaches n. As such, the
result will yield n rows, each of h values. With this approach, the convolution can be evaluated with only m plaintext-ciphertext
multiplications and additions, and m−1 rotations. If m×n is not a power of two, cyclic rotations of the ciphertext slots will not
result in a cyclic rotation of the flattened matrix. Instead, it requires using the masking and rotations, which consumes a level.
To overcome this, we pad the flattened matrix with additional copies of itself until it reaches a total of n+(m−1) rows (hence
the final size of the flattened matrix is h(n+m−1)). This enables us, at the expense of more slots used, to simulate a cyclic
rotation. Note that those extra rows are removed by the plaintext multiplication by L that also acts as a masking.

We further reduce the number of operations by making use of complex arithmetic, which is natively provided by the CKKS
scheme. Using the following, we compute the dot product of ⟨(a0,a1),(b0,b1)⟩ in a single multiplication:

(a0− ia1) · (b0 + ib1) = (a0b0 +a1b1)+ i(a0b1−a1b0).

Hence, the convolution of two half-sized complex matrices L′n,m/2×B′m/2,h is sufficient to compute the convolution of the
real matrices Ln×m×CCCm×h:a1,1 . . . a1,m

...
. . .

...
an,1 . . . an,m

×
b1,1 . . . b1,h

...
. . .

...
bm,1 . . . bm,h

→
a1,1− ia1,2 . . . a1,m−1− ia1,m

...
. . .

...
an,1− ian,2 . . . an,m−1− ian,m

×
 b1,1 + ib2,1 . . . b1,m + ib2,m

...
. . .

...
bn−1,1 + ibn,1 . . . bn−1,m−1 + ibn,m

 .

The extraction of the real part can be done with complex conjugation and addition. The mapping from CCCm,h to CCC′m/2,h is
straightforward and can be homomorphically computed with CCC′ =CCC+Rotateh(MultImag(CCC)). Note that it requires CCC to be
padded with an additional row. The encoding of the plaintext matrix Ln,m is done by encoding each diagonal of L′n,m/2 in a
separate plaintext.



The matrix multiplication L′×CCC′ is then done with

PPP′n×h =
m/2−1

∑
i=0

L′n×m/2⊙Rotate2hi(CCC′m/2×h).

The result is a row-encoded n×h complex matrix. We remove its imaginary part PPP = 1
2 (PPP

′′′+Conjugate(PPP′′′)) with the
1
2 factor being pre-applied to L′. Because the number of rotations is reduced by a factor of two, the number of rows for the
padding must also be readjusted:

n︸︷︷︸
result

+(⌈m/2⌉−1) ·2︸ ︷︷ ︸
rotations

+ 1︸︷︷︸
i repacking

,

and the total number of slots used to encode CCCm×h is nh+(⌈m/2⌉−1)2h+h. We give an overview of how CCCn×h and PPPn×h are
each encoded on a vector:

CCCm×h = (CCC(1,1), . . . ,CCC(1,h),CCC(2,1), . . . ,CCC(2,h), . . . ,CCCm,1, . . . ,CCC(m,h),CCC(1,1), . . .︸ ︷︷ ︸
nh+(m/2−1)2h+h

,0, . . . ,0),

PPPn×h =
(
PPP(1,1), . . . ,PPP(1,h), . . . ,PPP(n,1), . . . ,PPP(n,h),0, . . . ,0

)
.

Dense Layer. The input to the dense layer is a row-encoded PPPn×h matrix that is multiplied with the WWW h×o matrix. As the
matrix PPPn×h is row-encoded and requires a homomorphic extraction of its diagonals, the technique used in the convolution step
becomes costly for the dense layer. Instead, we use the multiply-then-inner-sum approach, as in POSEIDON 2. The values of
WWW h×o are grouped by samples. We first preprocess PPP by duplicating it o times for each label. This duplication is done with
log2(o)+hw(o)−1 rotations. The matrix WWW h×o is column-encoded (row-encoding of its transpose), with each of its columns
replicated n times (for each sample):

WWW h×o =
(
(WWW (1,1), . . . ,WWW (h,1)), . . . ,(WWW (1,1), . . . ,WWW (h,1))︸ ︷︷ ︸

n×h

, . . . ,(WWW (1,o), . . . ,WWW (h,o)), . . . ,(WWW (1,o), . . . ,WWW (h,o)),0, . . . ,0
)
.

The multiplication UUUn×o = PPPn×h×WWW h×o is carried on with a single ciphertext-ciphertext multiplication, followed by an
inner-sum of batch n and h (log2(h)+hw(h)−1 rotations). The resulting vector has a size of onh:

UUUn×o =
(
(UUU (1,1),×, . . . ,×), . . . ,(UUU (n,1),×, . . . ,×)︸ ︷︷ ︸

n×h

, . . . ,(UUU (1,o),×, . . . ,×), . . . ,(UUU (n,o),×, . . . ,×),0, . . . ,0,(×, . . . ,×︸ ︷︷ ︸
h−1

)
)
,

with × denoting unusable by-product values in the ciphertext slots.
Repacking for Bootstrapping. We repack the following elements in a single ciphertext for the optimized bootstrapping:

• UUUn×o: the result of the dense layer, which uses onh+h−1 slots.

• PPPn×h: the result of the convolution layer, which uses nh slots.

• WWW h×o: the dense layer matrix, which uses onh slots.

• ∇∇∇WWW prev
h×o : the updated dense layer weights of the previous backward pass, which uses onh slots.

• ∇∇∇CCCprev
m×h: the updated convolution layer weights of the previous backward pass, which uses size nh+(⌈m/2⌉−1) ·2h+h

slots.

The repacking is done solely with additions and rotations, concatenating the empty slots of UUUn×o:

DDDrepack =UUUn×o +Rotate−onh(PPPn×h)+Rotate−2onh(WWW h×o)+Rotate−3onh(∇∇∇WWW prev
h×o )+Rotate−4onh(∇∇∇CCCprev

m×h).

Bootstrapping and Repacking for Backward Pass. The goal of this step is to refresh the ciphertext DDDrepack to a higher level,
to enable more computation and to re-arrange its slots optimally for the backward pass.



• UUUn×o : We re-order the slots to arrange them first by samples then by classes, and we duplicate each value h times
(replacing the non-zero by-product slots):

UUUbackW =
(
(UUU (0,0), . . . ,UUU (0,0),UUU (0,1), . . . ,UUU (0,1)︸ ︷︷ ︸

2h

), . . . ,(UUU (n−1,0), . . . ,UUU (n−1,0),UUU (n−1,1), . . . ,UUU (n−1,1))
)
.

We note that the size of this vector remains onh. UUUbackW will be used to compute the dense layer error for the updated
dense layer weights. We pack an additional copy of UUU , UUUbackC, which is pre-formatted for the convolution layer error
and clustered by sample. By computing twice the same values in parallel, but packed in two different ways (one for the
dense layer, one for the convolution layer), we avoid expensive and level-consuming repacking procedures, at the cost of
more slot usage. Hence for each label, we pad the nh values with (m/2−1)2h+h additional copies of the relevant rows.
The used size is therefore (nh+(m/2−1)2h+h)o.

UUUbackC =
((

UUU (1,1), . . . ,UUU (1,1)︸ ︷︷ ︸
h

, . . . ,UUU (n,1), . . . ,UUU (n−1,0),UUU (1,1),...

︸ ︷︷ ︸
nh+(m/2−1)2h+h

)
, . . . ,

(
UUU (1,o), . . . ,UUU (1,o), . . . ,(UUU (n,o), . . . ,UUU (n,o),UUU (1,o), . . .

))
.

• PPPn×h: The result of the convolution layer, which is an n×h row-encoded matrix, is re-arranged by duplicating each of its
rows for each class of the dense layer (2 in this example) and multiplied by the learning rate (η).

PPPback = η
(
(PPP(1,1), . . . ,PPP(1,h),PPP(1,1), . . . ,PPP(1,h)︸ ︷︷ ︸

2h

), . . . ,(PPP(n,1), . . . ,PPP(n,h),PPP(n,1), . . . ,PPP(n,h))
)
.

• WWW h×o: The dense layer matrix, which is an h×o column-encoded matrix, is re-arranged by padding each column with
itself such that each column has a size of nh+(m/2− 1)2h+ h, for a total size of o(n× h+(m/2− 1)2h+ h) and is
multiplied by the learning rate (η).

WWW back = η
(
(WWW (1,1), . . . ,WWW (h,1),WWW (1,1), . . .︸ ︷︷ ︸

nh+(m/2−1)2h+h

), . . . ,(WWW (1,o), . . . ,WWW (h,o),WWW (1,o), . . .)
)
.

• ∇∇∇WWW prev
h×o : The previous dense layer updated weights, of size nho. The format is preserved (column encoded matrix of size

ho with each column replicated n times), but the values are multiplied by the momentum (µ).

∇WWW back = µ
(
(∇WWW (1,1), . . . ,∇WWW (h,1)), . . . ,(∇WWW (1,1), . . . ,∇WWW (h,1))︸ ︷︷ ︸

n×h

, . . . ,(∇WWW (1,o), . . . ,∇WWW (h,o)), . . . ,(∇WWW (1,o), . . . ,∇WWW (h,o))
)
.

• ∇∇∇CCCprev
m×h: The previous convolution layer updated weights, of size n×h+(m/2−1)2h+h. The format is preserved (row

encoded matrix, padded), but the values are multiplied by the momentum (µ).

∇∇∇CCCback = µ(∇∇∇CCC(1,1),∇∇∇CCC(1,2), . . . ,∇∇∇CCC(1,h),∇∇∇CCC(2,1), . . . ,∇∇∇CCC(2,h), . . . ,∇∇∇CCC(m,h),∇∇∇CCC(1,1), . . .︸ ︷︷ ︸
nh+(m/2−1)2h+h

).

In summary, the bootstrapped ciphertext contains the following elements:

DDDboot =UbackW︸ ︷︷ ︸
onh

|| UbackC︸ ︷︷ ︸
o(nh+(m/2−1)2h+h)

|| Pback︸ ︷︷ ︸
onh

|| Wback︸ ︷︷ ︸
o(nh+(m/2−1)2h+h)

|| ∇Wback︸ ︷︷ ︸
onh

|| ∇Cback︸ ︷︷ ︸
nh+(m/2−1)2h+h

,



and the total number of slots used in the ciphertext must respect

3onh+(2o+1)(nh+(m/2−1)2h+h)≤N /2

for the ring degree N . Therefore, a bootstrapped ciphertext can hold up to n = ⌊(N/(2h)−(2o+1)(m−1))/(5o+1)⌋ samples.
For example, given N = 215, m = 38, h = 8 and o = 2, the ciphertext holds 169 samples. This number is smaller than the
number of samples that can be repacked in a single ciphertext before the bootstrapping, hence it sets an upper bound for the
number of samples that can be trained in a single batch.
Backward Pass. The backward pass is computed using the ciphertext DDDboot. The different values contained in DDDboot are
accessed via rotations and ciphertext duplication. Masking is used only at the very end to minimize the use of levels. We start
by computing the error of the dense layer formatted for the dense layer update (EEE1) and formatted for the convolution layer
(EEE ′1) at the same time:

(EEE1||EEE ′1) = σ
′(UUUbackW||UUUbackC)⊙

(
σ(UUUbackW||UUUbackC)− (YbackW||YbackC)

)
,

with YbackW||YbackC, the plaintext labels, accordingly encoded and formatted. We then compute in parallel the updated weights
of each sample of the dense layer and the partial error of the convolution layer by multiplying EEE1||EEE ′1 with PPPback||WWW back. Note
that PPPback||WWW back can be accessed and aligned with a rotation on DDDboot.

∇∇∇WWW ||EEE0 = (EEE1||EEE ′1)⊙ (PPPback||WWW back).

∇∇∇WWW is clustered by samples, hence we add a summation across the n samples to obtain the updated dense layer weights
of the batch. The output contains only a single copy, column-encoded, of ∇∇∇WWW , and of size oh. An additional step first adds,
then masks and extracts, each column of the result and replicates them n times to expand its size back to onh and to match the
original encoding format of W (this masking also removes all the unwanted by-product values). ∇∇∇WWW back is added to the result
to get the final updated weights of the dense layer.

We finalize the computation of E0 by a summation across the labels, reducing its size to nh+(m/2− 1)2h+ h). E0 is
already formatted to be multiplied with the plaintext transposed sample matrix η ·LT (pre-pooled and multiplied by η). This
step is same as the convolution layer matrix multiplication:

∇∇∇CCC = η ·LT ×EEE0.

The result is of size nh, with no by-product garbage slots due to the plaintext multiplication, but it needs to be extended to a
size of nh+(m/2−1)2h+h to comply with the formatting of CCC. This is done by replicating the nh slots until it reaches at
least this amount of slots and by masking the overflow of slots. Similarly, ∇∇∇CCCback is added to ∇∇∇CCC, and the result is stored as the
newly updated weights for the next batch of samples.

We summarize the given steps in Algorithm 1. Note that the algorithm describes the local computations. Then, the parties
collectively aggregate and update the global model, which includes the additional step of taking the mean of ∇∇∇WWW and ∇∇∇CCC
across all the parties.



Algorithm 1: The local computation algorithm for encrypted CellCnn training. The exponent of encrypted values
(e.g., y for CCCy) denotes the current ciphertext level. Encryption, encoding, and detailed steps of the repacking during
the bootstrapping are omitted for clarity and are described in the Experimental Procedures section. The value csize
represents nh+(⌈m/2⌉−1)2h+h. We give the function definitions in Table S.1.

Input: X and Y set of samples and labels, learning rate η , momentum µ , batch size n, number of iterations d, number of features m,
number of filters h, number of labels o, maskW a masking vector containing ones in the first onh slots, maskWi a set of o
masking vectors containing ones in the slots inh to (i+1)nh slots for 0 < i < o, and maskC a masking vector containing ones
in the first csize slots.

Output: The encrypted weights CCC and WWW .
1 CCC4← Init(m,h),WWW 3← Init(h,o) // Initialize convolution and dense weights

2 ∇∇∇W 5
prev,∇∇∇C4

prev← 0 // Initialize previous updated weights

3 for i = 0; i < d; i = i+1 do
4 Batch Selection
5 Xbatch← Selectn(X) // Select a batch of random samples
6 Ybatch← Selectn(Y ) // Select the corresponding labels
7 Lpool← Pre-pooling(Xbatch) // Apply the pre-pooling to the batch

8 Forward Pass
9 CCC4

tmp←CCC4 +Rotateh(MultImag(CCC4)) // Preprocessing for complex matrix multiplication

10 PPP3← ∑
⌈m/2⌉−1
i=0 Ldiag[i]

pool ⊙Rotate2hi(CCC4
tmp) // Convolution

11 PPP3← Replicatenh,o(PPP
3) // Replicate the result for each label

12 UUU2← InnerSum1,h(PPP3⊙WWW 3) // Dense layer
13 Bootstrapping
14 DDD2

repack =UUU2 +Rotate−nho(PPP3)+Rotate−2nho(WWW 3)+Rotate−3nho(∇∇∇WWW 5
prev)+Rotate−4nho(∇∇∇CCC4

prev) // Pack all

necessary values in a single ciphertext

15 DDD9
boot← Bootstrappη ,µ (DDD

2
repack) // Refresh the ciphertext and formatting for the backward

pass
16 Backward Pass
17 UUU1117← σ(DDD9

boot) // Activation

18 UUU2227← σ ′(DDD9
boot) // Activation derivative

19 EEE1116←UUU2227⊙ (UUU1117−Ybatch) // Dense layer error

20 PPP9← Rotatenho+o·csize(DDD9
boot) // Access pooling result and dense layer weights

21 ∇∇∇WWW 5← PPP9⊙EEE1116 // Dense layer updated weights and convolution layer error

22 EEE0005← Rotatenho(∇∇∇WWW 5) // Access convolution layer error

23 ∇∇∇WWW 5← InnerSumoh,n(∇∇∇WWW 5) // Finish updated weights with summation across the samples

24 EEE0005← InnerSumcsize,o(EEE0005) // Finish E1 with summation across the labels

25 ∇∇∇CCC4← ∑
⌈n/2⌉−1
i=0 (0.5 ·LT,diag[i]

pool )⊙Rotate2mi(EEE0005) // Multiply with the transposed samples

26 ∇∇∇CCC4← ∇∇∇CCC4 +Conjugate(∇∇∇CCC4) // Clean imaginary part

27 ∇∇∇CCC4← Replicatemh,⌈csize/mh⌉(∇∇∇CCC4) // Format updated weights for convolution layer

28 ∇∇∇WWW 5← Replicateh,n(∑
o−1
i=0 Rotate−inh(maskWi⊙∇∇∇WWW 5)) // Format updated weights for dense layer

29 ∇∇∇WWW 8
prev← maskW ⊙Rotate2nho+2o·csize(DDD9

boot) // Access and extract the previous updated weights

30 ∇∇∇CCC8
prev← maskC⊙Rotate3nho+2o·csize(DDD9

boot) // Access and extract the previous updated weights

31 Weights Update
32 ∇∇∇WWW 5← ∇∇∇WWW 5 +∇∇∇WWW 8

prev // Add previous updated weights with momentum

33 ∇∇∇CCC4← ∇∇∇CCC4 +∇∇∇CCC8
prev // Add previous updated weights with momentum

34 CCC4←CCC4−∇∇∇CCC4 // Update the weights

35 WWW 3←WWW 3−∇∇∇WWW 5 // Update the weights

36 ∇∇∇CCC4
prev← ∇∇∇CCC4 // Store the new updated weights

37 ∇∇∇WWW 5
prev← ∇∇∇WWW 5 // Store the new updated weights

38 end
39 return



Supplementary Note 5: Summary of Experiments
In Table S.2, we show the median accuracy, precision, recall, and F-score values of 10 runs for RRMS and NIND experiments
with patient-based sub-sampling shown in Figures 3C, 3D and Figures 4C, 4D, and CMV experiments for phenotype-based
sub-sampling shown in Figure 2. We also report these metrics for the AML classification for the centralized and two-party
PriCell settings.

We note that for 3-class classification, i.e., AML, we rely on macro-averaging on metrics, and we calculate the F-score in
Table S.2 over the averaged precision and recall for the Local-training experimental setting.

Our results show that PriCell achieves an accuracy comparable to the centralized and non-private solutions. The accuracy
achieved by PriCell remains almost the same as the centralized one, and the slight decrease in phenotype classification in NIND
classification is due to the limited number of samples in the test set for this task, i.e., there are only 12 patients in the NIND
phenotype test set, which results in accuracy decrease of 4% in the median value when the trained model misses only one
patient classification.

We further show the F-score distributions over the experiments in Figure S.1, S.2, and S.3. We perform a Wilcoxon signed-
rank test to assess that the CellCnn and PriCell paired F-score results come from the same distribution. As all p-values are
greater than 0.05, these figures support our interpretation that PriCell achieves a classification performance that is comparable
to the centralized and non-private solution.

Lastly, we note that the differences in the precision and recall values are due to the nature of the preprocessing and training
mechanism: the random selection of multi-cell inputs generates higher or lower precision and recall values depending on the
eventual selection, even in the centralized and no privacy-protection solution.

Setting/Metrics Accuracy Precision Recall F-score
RRMS (multi-cell / phenotype classification)

CellCnn 0.65 / 0.67 0.62 / 0.71 0.61 / 0.71 0.66 / 0.71
Local (N=2) 0.59 / 0.62 0.59 / 0.68 0.62 / 0.64 0.59 / 0.66
PriCell (N=2) 0.65 / 0.67 0.66 / 0.75 0.62 / 0.64 0.64 / 0.67
Local (N=4) 0.55 / 0.55 0.57 / 0.61 0.60 / 0.61 0.58 / 0.62
PriCell (N=4) 0.64 / 0.67 0.63 / 0.73 0.61 / 0.64 0.61 / 0.69
Local (N=6) 0.53 / 0.52 0.53 / 0.58 0.55 / 0.54 0.53 / 0.57
PriCell (N=6) 0.64 / 0.67 0.68 / 0.80 0.61 / 0.64 0.63 / 0.69

NIND (multi-cell / phenotype classification)
CellCnn 0.72 / 0.75 0.82 / 0.83 0.75 / 0.71 0.76 / 0.77
Local (N=2) 0.57 / 0.58 0.65 / 0.65 0.59 / 0.52 0.62 / 0.63
PriCell (N=2) 0.72 / 0.75 0.73 / 0.75 0.80 / 0.86 0.78 / 0.80
Local (N=4) 0.55 / 0.55 0.66 / 0.68 0.51 / 0.50 0.59 / 0.58
PriCell (N=4) 0.72 / 0.71 0.75 / 0.73 0.84 / 0.71 0.78 / 0.75
Local (N=6) 0.53 / 0.52 0.63 / 0.64 0.57 / 0.56 0.59 / 0.57
PriCell (N=6) 0.71 / 0.71 0.73 / 0.75 0.76 / 0.71 0.75 / 0.75

CMV (multi-cell / phenotype classification)
CellCnn 0.80 / 0.75 0.72 / 0.58 0.98 / 1.00 0.83 / 0.73
Local (N=2) 0.54 / 0.58 0.52 / 0.42 0.50 / 0.50 0.52 / 0.47
PriCell (N=2) 0.79 / 0.75 0.71 / 0.58 0.98 / 1.00 0.83 / 0.73
Local (N=3) 0.59 / 0.55 0.56 / 0.40 0.64 / 0.67 0.60 / 0.49
PriCell (N=3) 0.79 / 0.75 0.76 / 0.58 0.84 / 1.00 0.80 / 0.73
Local (N=5) 0.50 / 0.52 0.44 / 0.31 0.57 / 0.55 0.50 / 0.39
PriCell (N=5) 0.78 / 0.75 0.69 / 0.58 0.97 / 1.00 0.82 / 0.73

AML (multi-cell / phenotype classification)
CellCnn 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
Local (N=2) 0.98 / 1.00 0.98 / 1.00 0.98 / 1.00 0.98 / 1.00
PriCell (N=2) 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00

Table S. 2. Classification performance (accuracy, precision, recall, and F-score) of the models obtained with original CellCnn,
local training without collaboration, and PriCell for RRMS, NIND, CMV, and AML classification tasks. All models are tested
on two datasets for multi-cell and phenotype classification respectively, separated with ’/’.
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Figure S. 1. F-score boxplots when classifying healthy donor (HD) vs. cytomegalovirus infection (CMV) for training
multi-cells drawn from the bag of all cells per class. Experiments are repeated 10 times with different train and test set splits;
the vertical dashed line illustrates the median for the baseline (CellCnn) and the dots represent the outliers. The p-values shown
at the top of the figure are calculated with a Wilcoxon signed-rank test for the comparison between the corresponding boxplots
(p > 0.05 indicates that the distributions are not significantly different). F-score is reported for two datasets: (a) phenotype
classification of 6 patients and (b) multi-cell input classification on 4000 samples.

Supplementary Note 6: Downstream Analysis
The original CellCnn1 study aims at detecting the rare disease-associated cell subsets via learned filter weights. The final filter
weights are used to select phenotype-associated cell subsets via a filter response, i.e., the weighted sum of the abundance profile
for each cell. As the cell subset selected by a filter can contain more than one cell type, the authors perform a density-based
clustering of the group of cells with high cell-filter responses.

We perform an analogous analysis to evaluate the effect of our introduced changes in the original neural network architecture,
namely the average pooling, the approximated activation functions, and the optimizer. We introduce these changes in CellCnn’s
original implementation, simulate our encryption on centralized data, and conduct further analysis by using their downstream
analysis1. We use the CMV infection dataset with c = 200 cells per multi-cell input and z = 1000 samples per phenotype to
generate the training dataset. The test set is generated as explained in the Data Preprocessing and Parameter Selection section.
We train 20 models for CellCnn and 20 models for PriCell simulation and take the best 3 models for each approach based
on the validation accuracy, as in the original work1. In all model training, we use 20 epochs with early-stopping and varying
numbers of filters in each model training.

In Figure S.4, we show the consensus filters, i.e., one representative filter per class (phenotype) that has minimum distance
to all other members of the hierarchically clustered filters, based on a threshold of 0.2, found by CellCnn and PriCell simulation,
respectively. In both Figure S.4a and S.4b, we observe that the filter which is positively associated (second filter) with previous
CMV infection gives more weights to the CD16, CD57, NKG2C, and CD94 markers. We note that while the trend of consensus
filters is similar, the distribution of the consensus filters, i.e., the final filter weights and the scale of the values, differs between
CellCnn and PriCell. This is due to our approximated activation function that affects the final values of the filter weights but
does not affect the interpretation from the consensus filters. Similar results were found for the repetition of these experiments,
which suggests that, as in the original work1, our encrypted model is able to find natural killer (NK) cell populations associated
with prior CMV infection.

In Figure S.5, we show the boxplot of the selected cell population frequencies from the test samples of the CMV- and CMV+
classes by using the positively associated filter. Although CellCnn has higher discriminative frequencies, PriCell simulation is
able to select CMV+ cell populations with the positively associated filter.

Finally, we show in Figure S.6 the marker expression profiles for all cells vs. cell population selected by the positively
associated filter learned by CellCnn training (Figure S.6a) and by PriCell simulation(Figure S.6b). In both CellCnn and PriCell
training, we again observe that the positively associated filter weighs CD16, CD57, NKG2C, and CD94 markers more than the
others.

In summary, we show that the PriCell training does not affect the further findings of an existing work that performs training
on a centralized data without integrating a privacy-preserving mechanism.
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Figure S. 2. F-score boxplots when classifying healthy donor (HD) vs. relapsing–remitting multiple sclerosis (RRMS), for
training multi-cells drawn from the bag of all cells per class (a-b) and drawn from each patient separately (c-d). Experiments
are repeated 10 times with different train and test set splits; the vertical dashed line illustrates the median for the baseline
(CellCnn) and the dots represent the outliers. The p-values shown at the top of the figure are calculated with a Wilcoxon
signed-rank test for the comparison between the corresponding boxplots (p > 0.05 indicates that the distributions are not
significantly different). F-score is reported for two datasets: multi-cell input classification on 96 samples, and phenotype
classification of 12 patients.
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Figure S. 3. F-score boxplots when classifying healthy donor (HD) vs. non-inflammatory neurological disease (NIND), for
training multi-cells drawn from the bag of all cells per class (a-b) and drawn from each patient separately (c-d). Experiments
are repeated 10 times with different train and test set splits; the vertical dashed line illustrates the median for the baseline
(CellCnn) and the dots represent the outliers. The p-values shown at the top of the figure are calculated with a Wilcoxon
signed-rank test for the comparison between the corresponding boxplots (p > 0.05 indicates that the distributions are not
significantly different). F-score is reported for two datasets: multi-cell input classification on 96 samples and phenotype
classification of 12 patients.
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(a) Consensus filters found by CellCnn
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(b) Consensus filters found by PriCell simulation

Figure S. 4. Comparison of the consensus filters (one representative filter per class label) learned by (a) CellCnn original
architecture, and by (b) PriCell’s adapted architecture for encrypted training on CMV dataset.
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(b) PriCell simulation

Figure S. 5. Comparison of the selected cell population frequencies from the test samples of the CMV- and CMV+ classes by
using the positively associated filter learned by (a) CellCnn original architecture, and by (b) PriCell’s adapted architecture for
encrypted training.
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(b) PriCell simulation

Figure S. 6. Comparison of the histograms of univariate z-transformed marker expression profiles for all cells and for the cell
population selected by the positively associated filter learned by (a) CellCnn original architecture, and by (b) PriCell’s adapted
architecture for encrypted training on CMV dataset. The distributions show that PriCell training does not affect the findings of
the non-privacy preserving training.
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