
Article
Privacy-preserving federa
ted neural network
learning for disease-associated cell classification
Graphical abstract
Highlights
d We enable collaborative and privacy-preserving model

training between institutions

d Training under encryption does not degrade the utility of

the data

d We apply our solution to the single-cell analysis in a federated

setting

d Our method is generalizable to other machine learning tasks

in the healthcare domain
Sav et al., 2022, Patterns 3, 100487
May 13, 2022 ª 2022 The Authors.
https://doi.org/10.1016/j.patter.2022.100487
Authors

Sinem Sav, Jean-Philippe Bossuat,

Juan R. Troncoso-Pastoriza,

Manfred Claassen,

Jean-Pierre Hubaux

Correspondence
sinem.sav@epfl.ch (S.S.),
manfred.claassen@
med.uni-tuebingen.de (M.C.),
jean-pierre.hubaux@epfl.ch (J.-P.H.)

In brief

To enable federated learning with several

healthcare institutions in a privacy-

preserving way, this work relies on

multiparty homomorphic encryption. The

paper describes several optimizations for

enabling efficient and collaborative

machine learning training under

encryption. The authors demonstrate the

utility and performance of the proposed

solution with an application to disease-

associated cell classification in a

federated setting. The solution preserves

the utility while protecting the privacy of

the institutions’ data, the model, and the

exchanged values between the

institutions.
ll

mailto:sinem.sav@epfl.�ch
mailto:manfred.claassen@med.uni-tuebingen.�de
mailto:manfred.claassen@med.uni-tuebingen.�de
mailto:jean-pierre.hubaux@epfl.�ch
https://doi.org/10.1016/j.patter.2022.100487
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100487&domain=pdf

OPEN ACCESS

ll
Article

Privacy-preserving federated neural network
learning for disease-associated cell classification
SinemSav,1,5,* Jean-Philippe Bossuat,2 Juan R. Troncoso-Pastoriza,2 ManfredClaassen,3,4,* and Jean-Pierre Hubaux1,2,*
1Laboratory for Data Security (LDS), EPFL, Lausanne 1015, Switzerland
2Tune Insight SA, Lausanne 1015, Switzerland
3Internal Medicine I, University Hospital T€ubingen, Faculty of Medicine, University of T€ubingen, T€ubingen 72016, Germany
4Department of Computer Science, University of T€ubingen, T€ubingen 72076, Germany
5Lead contact

*Correspondence: sinem.sav@epfl.ch (S.S.), manfred.claassen@med.uni-tuebingen.de (M.C.), jean-pierre.hubaux@epfl.ch (J.-P.H.)

https://doi.org/10.1016/j.patter.2022.100487
THE BIGGER PICTURE High-quality medical machine learning models will benefit greatly from collabora-
tion between health care institutions. Yet, it is usually difficult to transfer data between these institutions
due to strict privacy regulations. In this study, we propose a solution, PriCell, that relies on multiparty ho-
momorphic encryption to enable privacy-preserving collaborative machine learning while protecting via
encryption the institutions’ input data, the model, and any value exchanged between the institutions. We
show the maturity of our solution by training a published state-of-the-art convolutional neural network in
a decentralized and privacy-preserving manner. We compare the accuracy achieved by PriCell with the
centralized and non-secure solutions and show that PriCell guarantees privacy without reducing the utility
of the data. The benefits of PriCell constitute an important landmark for real-world applications of collab-
orative training while preserving privacy.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Training accurate and robust machine learning models requires a large amount of data that is usually scat-
tered across data silos. Sharing or centralizing the data of different healthcare institutions is, however, unfea-
sible or prohibitively difficult due to privacy regulations. In this work, we address this problem by using a
privacy-preserving federated learning-based approach, PriCell, for complex models such as convolutional
neural networks. PriCell relies on multiparty homomorphic encryption and enables the collaborative training
of encrypted neural networks with multiple healthcare institutions. We preserve the confidentiality of each
institutions’ input data, of any intermediate values, and of the trained model parameters. We efficiently repli-
cate the training of a published state-of-the-art convolutional neural network architecture in a decentralized
and privacy-preserving manner. Our solution achieves an accuracy comparable with the one obtained with
the centralized non-secure solution. PriCell guarantees patient privacy and ensures data utility for efficient
multi-center studies involving complex healthcare data.
INTRODUCTION

Machine learning models, in particular neural networks, extract

valuable insights from data and have achieved unprecedented

predictive performance in the healthcare domain, e.g., in sin-

gle-cell analysis,5 aiding medical diagnosis and treatment,6,7 or

in personalized medicine.8 Training accurate and unbiased

models without overfitting requires access to a large amount of

diverse data that is usually isolated and scattered across
This is an open access article under the CC BY-N
different healthcare institutions.9 Sharing or transferring personal

healthcare data is, however, often unfeasible or limited due

to privacy regulations, such as General Data Protection Regula-

tion (GDPR)or Health Insurance Portability and Accountability

Act (HIPAA). Consequently, privacy-preserving collaborative

learning solutions play a vital role for researchers, as they

enable medical advances without the information about each in-

stitution’s data being shared or leaked. Collaborative learning

solutions play a particularly important role for studies that involve
Patterns 3, 100487, May 13, 2022 ª 2022 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:sinem.sav@epfl.ch
mailto:manfred.claassen@med.uni-tuebingen.de
mailto:jean-pierre.hubaux@epfl.ch
https://doi.org/10.1016/j.patter.2022.100487
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2022.100487&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

ll
OPEN ACCESS Article
novel informative, yet not universally established, data modal-

ities, such as high-dimensional single-cell measurements, where

the number of examples is typically low at individual study cen-

ters and only amounts to critical mass for the successful training

of machine learning models across multiple study centers.10 The

ability to satisfy privacy regulations in an efficient and effective

manner constitutes a pivotal requirement to carry out transla-

tional multi-center studies.

Federated learning (FL) has emerged as a promising distributed

learning approach, where the parties keep their raw data on their

premises and exchange intermediate model parameters.11 This

approach has enabled collaborative learning for several medical

applications, and it has been shown that FL performs comparably

with centralized training on medical datasets.12–14 Recently, the

concept of swarm learning (SL) has been proposed; it enables de-

centralized machine learning for precision medicine. The seminal

work of SL15 is based on edge computing and permissioned

blockchains and removes the need for a central server in the FL

approach. Despite the advantages of FL and SL for keeping the

sensitive data local and for reducing the amount of data trans-

ferred/outsourced, the model and the intermediate values

exchanged between the parties remain prone to several privacy

attacks executed by the other parties or the aggregator (in FL),

such as membership inference attacks16,17 or reconstructing the

parties’ inputs.18–20 In this work, we provide a solution that further

conceals the global machine learningmodel from the participants

by relying on mathematically secure cryptographic techniques to

mitigate these inference attacks.

To mitigate or prevent the leakage in the FL setting, several

privacy-preserving mechanisms have been proposed. These

mechanisms can be classified under three main categories, de-

pending on the strategy they are based on: differential privacy

(DP), secure multiparty computation (SMC), and homomorphic

encryption (HE).

DP-based solutions aim to perturb the parties’ input data or

the intermediate model values exchanged throughout the

learning. Several studies in the medical domain keep the data

on the local premises and use FL with a differential privacy

mechanism on the exchanged model parameters.21–23 Despite

being a pioneering mitigation against privacy attacks, DP-based

solutions perturb themodel parameters, thus decreasing the util-

ity and making the deployment harder for medical applications,

where the accuracy is already constrained by limited data. Quan-

tification of the privacy achieved via DP-based approaches is

also very difficult24 and the implementation of DP, especially in

medical imaging applications, is not a trivial task.9

Another line of research relies on SMC techniques to ensure

privacy and to enable collaborative training of machine learning

models.25–29 SMC techniques rely on secret-sharing the data of

the parties and on performing the training on the secret-shared

data among multiple computing nodes (usually 2, 3, or 4 nodes).

Nevertheless, it is usually hard to deploy these solutions, as they

often rely on a trusted third party for the sake of efficiency. More-

over, their scalability with the number of parties is poor due to the

large communication overhead.

Finally, several works employ HE to enable secure aggrega-

tion or to secure outsourcing of the training to a cloud server.30,31

These solutions, however, cannot solve the distributed scenario

where parties keep their local data in their premises.
2 Patterns 3, 100487, May 13, 2022
The adoption of each of the aforementioned solutions intro-

duces several privacy, utility, and performance trade-offs that

need to be carefully balanced for healthcare applications. To bal-

ance these trade-offs, several works employ multiparty homo-

morphic encryption (MHE).32,33 Although the underlying model

in these solutions enables privacy-preserving distributed com-

putations andmaintains the local data of the parties on their local

premises, the functionality of these works is limited to the execu-

tion of simple operations, i.e., basic statistics, counting, or linear

regression, and the underlying protocols do not support an effi-

cient execution of neural networks in the FL setting.

Recently, Sav et al. proposed a more versatile solution,

POSEIDON, for enabling privacy-preserving federated learning for

neural networks by relying on MHE34 to mitigate FL inference at-

tacks by keeping the model and intermediate values encrypted.

Their solution, however, does not address the implementation

and efficient execution of convolutional neural networks, a

widely adopted machine learning model to analyze complex

data types, such as single-cell data.

We propose PriCell, a solution based on MHE to enable the

training of a federated convolutional neural network in a pri-

vacy-preserving manner, thus preserving the utility of the data

for single-cell analysis. To the best of our knowledge, PriCell

is the first of its kind in the regime of privacy-preserving multi-

center single-cell studies under encryption. By bringing pri-

vacy-by-design and by preventing the transfer of patients’

data to other institutions, our work contributes to single-cell

studies and streamlines the slow and demanding process of

the reviewing of independent ethics committees for consent

forms and study protocols. To mitigate FL attacks, we keep

the model and any value that is exchanged between the parties

in an encrypted form, and we rely on the threat model and

setting proposed in the work of Sav et al.34 (detailed in the

experimental procedures).

By designing newpacking strategies and homomorphicmatrix

operations, we improve the performance of the protocols for en-

crypted convolutional neural networks that are predominantly

used in the healthcare domain.35 To evaluate our system within

the framework of single-cell analysis, we train a convolutional

neural network (CellCnn), designed by Arvaniti and Claassen,4

within our privacy-preserving system for the disease classifi-

cation task. We also show the feasibility of our solution with

several single-cell datasets utilized for cytomegalovirus infection

(CMV)1 and acute myeloid leukemia (AML)2 classification, and

one dataset for non-inflammatory neurological disease (NIND)

and relapsing-remitting multiple sclerosis (RRMS)3 classifica-

tion. We compare our classification accuracy in a privacy-pre-

serving FL setting with the centralized and non-encrypted

baseline. Our solution converges comparably with the training

with centralized data, andwe improve on the state-of-the-art de-

centralized secure solution34 in terms of training time. For

example, in a setting with 10 parties, we improve POSEIDON’s

execution time by at least one order of magnitude.

RESULTS

In this section, we introduce the system overview of our solution,

present the neural network architecture that is used for our eval-

uation, and lay out our experimental findings.

A

B

Figure 1. PriCell’s system model

(A) PriCell’s training and evaluation workflow. Training encapsulates the generation of cryptographic keys and the federated learning iterations on an encrypted

model with multiple healthcare institutions. After training, the model is either kept encrypted or decrypted for further analysis.

(B) CellCnn4 neural network architecture that is used in the local computation phase of (A). The network takes multi-cell samples as an input and applies a 1D

convolution with h filters followed by a pooling layer. A dense (fully connected) layer then outputs the phenotype prediction.

ll
OPEN ACCESSArticle
System overview
We summarize PriCell’s system and its workflow for collabora-

tive training and query evaluation (prediction) in Figure 1A.

Assuming that there are four healthcare institutions with each

holding its respective secret key, the workflow starts with the

generation of a collective public key and a set of evaluation

keys that are necessary for the encrypted operations, using

each participant’s secret key. We refer to this phase as the

setup phase. In the second phase, the participants agree on

the initial random global model weights (Wg) and encrypt

them with the collective public key. We denote the encryption

of any value with boldface letters, i.e., Wg. After encrypting

the initial global weights, the local computation phase begins;

we base this phase on a variant of the FedAvg algorithm11 to

enable collective training. Based on this algorithm, to find the

model gradients (VWk) each party performs several encrypted

training iterations on their local data (local iteration). The local

model gradients are then sent and aggregated at one of the

parties that will perform the global model update. The updated

model is then broadcast back and the process returns to

phase 2. After a fixed number of training iterations, the partici-

pants can choose to keep the model confidential (option 5.1 in
Figure 1A) or to decrypt it for further analysis (option 5.2 in

Figure 1A).

If prediction-as-a-service is offered to a querier (a researcher)

and the model is kept encrypted, the querier must encrypt the

evaluation data (Xq) with the collective public key of the parties.

Once the prediction is done, the result (by) is collectively switched

to the public key of the querier by using the underlying crypto-

scheme’s collective key-switching functionality. If the model is

instead decrypted, the querier encrypts the data with their own

key; hence, no key switch is needed after the prediction. As a

result, regardless of themodel being confidential or not, the eval-

uation data of the querier and the prediction result always remain

protected, as only the querier can decrypt the end result.

CellCnn model overview
CellCnn is a convolutional neural network that enables multi-

instance learning and associates a set of observations on cellular

population, namely multi-cell inputs, with a phenotype.4 This ar-

chitecture is designed for detecting rare cell subsets associated

with a disease by using multi-cell inputs generated from high-

dimensional single-cell marker measurements. By their nature,

these inputs can be used to predict the phenotype of a donor
Patterns 3, 100487, May 13, 2022 3

A B Figure 2. Accuracy boxplots when classi-

fying healthy donor versus cytomegalovirus

infection for training multi-cells drawn from

the bag of all cells per class

(A and B) Experiments are repeated 10 times with

different train and test set splits, the vertical dashed

line illustrates the median for the baseline (CellCnn)

and the dots represent the outliers. The p values

shown at the top of the figure are calculated with a

Wilcoxon signed-rank test for the comparison be-

tween thecorrespondingboxplots (p>0.05 indicates

that the distributions are not significantly different).

Classification accuracy is reported for two datasets:

(A) phenotype classification of 6 patients and

(B) multi-cell input classification on 4,000 samples.

HD, healthy donor; CMV, cytomegalovirus infection.

ll
OPEN ACCESS Article
or the associated phenotype for a given subset of cells. In this

scenario, we enable privacy-preserving and distributed multi-

instance learning, and we compare our classification perfor-

mance with the baseline (CellCnn4 trained on centralized data

with no privacy protection). We note here that replicating the

full-pipeline of CellCnn4 for downstream analysis requires either

heavy approximations under encryption or the decryption of the

trained model. Our solution enables the collective and privacy-

preserving training for the classification task, whereas subse-

quent analyses that require access to the model are beyond

the scope of this work. Yet, we show the negligible effect that

our encryption would practically have on these analyses in

Note S6.

We show the architecture of CellCnn4 in Figure 1B. The

network comprises a 1D convolutional layer followed by a pool-

ing layer and a dense (fully connected) layer. Each multi-cell

input sample in Figure 1B is generated using c cells per pheno-

type with m features (markers), and these samples are batched

to construct multi-cell inputs. The training set is then generated

by choosing z multi-cell inputs per output label or per patient.

We refer to the reader to the work of Arvaniti and Claassen4 for

the details of the neural network architecture. We detail the

changes we introduce to this architecture to enable operations

under HE in the local neural network operations in the experi-

mental procedures.

Experimental evaluation
We evaluate our proposed solution in terms of model accuracy,

runtime performance, scalability with the number of parties,

number of data samples, number of features, and communica-

tion overhead. In this section, we also provide a comparison

with previous work. We give details on the machine learning hy-

perparameters and security parameters used for our evaluation

in Note S3.

Model accuracy

To assess our solution in terms of accuracy, we use the same da-

tasets used in two peer-reviewed biomedical studies.4,3 We rely

on three datasets to perform NIND, RRMS, CMV, and AML clas-

sification. We give the details of each dataset in the datasets

subsection of the experimental procedures. Our aim is to show

that PriCell achieves a classification performance on par with

the centralized non-private baseline.

As the original studies rely on centralized datasets, we evenly

distribute the individual donors in the respective dataset over N
4 Patterns 3, 100487, May 13, 2022
parties. We give the classification performance on these data-

sets in Figures 2, 3, and 4, and provide a tabular version of all

the results corresponding to these plots with accuracy, preci-

sion, recall, and F score metrics in Tables S3–S7. The x axis

shows different training approaches: (1) the data are centralized

and the original CellCnn approach4 is used for training and clas-

sification to construct a baseline, (2) each party trains a model

with only its local data (Local) without collaborating with other

parties, and (3) our solution for privacy-preserving collaboration

between parties is used (PriCell). For the Local training (2), we

average the test accuracy achieved by individual parties. We

perform Wilcoxon signed-rank test to prove that the accuracy

of the centralized CellCnn and PriCell are not significantly

different. p > 0.05 indicates that there is not enough evidence

to reject the null hypothesis and all our findings suggest that

there is no significant difference between PriCell and the central-

ized non-private baseline (CellCnn). Note that this is the desired

outcome as our aim is to show that the results of PriCell and

CellCnn are similar.

In our experiments, random multi-cell inputs that are used for

training are drawn with replacement from the original training

samples. Drawing multi-cell inputs can be done in two ways: us-

ing the bag of all cells per class or individually drawing them from

each patient. We report the classification performance by using

two test datasets: one set is generated using multi-cell inputs

with c= 100� 200 cells drawn from all patients in the test set

to increase the size of the test set for multi-cell classification,

and the second set is generated by drawing 1,000–10,000 cells

from each donor separately for phenotype prediction. We give

more details about the setting and hyperparameters for each

experiment in Note S3.

For CMV classification, we generate the training data by draw-

ing random cell subsets from the cell bags per phenotype. For

NIND and RRMS classification, we observe that drawing multi-

cells per phenotype varies the accuracy between runs and that

the median accuracy over 10 runs increases when distributing

the initial dataset among N= 6 parties (see Figures 3A, 3B, 4A,

and 4B). This suggests that separately drawing multi-cell inputs

from each individual performs better for this task, as corrobo-

rated by the results obtained with drawing 2,000 cells from

each patient with replacement (see Figures 3C, 3D, 4C, and

4D). Finally, in Table S2, we report the median accuracy, preci-

sion, recall, and F score of 10 runs (with different train and test

set splits) on patient-based sub-sampling for NIND and RRMS,

A B

C D

Figure 3. Accuracy boxplots when classi-

fying healthy donor versus relapsing-remit-

ting multiple sclerosis

(A–D) Accuracy boxplots when classifying healthy

donor versus relapsing-remitting multiple sclerosis,

for training multi-cells drawn from the bag of all cells

per class (A and B) and drawn from each patient

separately (C and D).

Experiments were repeated 10 times with different

train and test set splits, the vertical dashed line il-

lustrates the median for the baseline (CellCnn) and

the dots represent the outliers. The p values shown

at the top of the figure are calculated with a Wil-

coxon signed-rank test for the comparison between

the corresponding boxplots (p > 0.05 indicates that

the distributions are not significantly different). Clas-

sification accuracy is reported for 2 datasets: multi-

cell input classification on 96 samples and pheno-

type classification of 12 patients. HD, healthy donor;

RRMS, relapsing-remitting multiple sclerosis.

ll
OPEN ACCESSArticle
and phenotype-based sub-sampling for CMV and we provide

the F score plots for all experiments in Figures S1–S3 to support

our findings.

To construct a realistic overall distribution, we limit the number

of parties to be lower than the number of donors in the dataset.

We observe that, given a sufficient number of samples per party,

our distributed secure solution achieves classification perfor-

mance comparable with the original work, where the data are

centralized and the training is done without privacy protection.

In the experiments on CMV, for example, the median accuracy

achieved by PriCell is exactly the same as the centralized base-

line for phenotype classification and very close (at most 2% gap)

for multi-cell classification. Analogous results are obtained for

the other experiments: our privacy-preserving distributed solu-

tion achieves almost the same median accuracy with the base-

line in RRMS and NIND with patient-based sub-sampling, where

the datasets are sufficiently large to be distributed among up to

six parties.

Finally, we provide the classification performance on AML in

Table S2. As the dataset is relatively small, emulating a distrib-

uted setting with more than two parties was not feasible for

this task and, as the accuracy does not vary in between different

train-test splits, we do not provide the boxplots on the accuracy.

However, we observe that, with two parties in PriCell training, the

accuracy remains exactly the same as the centralized baseline

for AML classification.

Most importantly, our evaluation shows that there is always a

significant gain in classification performance when switching

from local training to privacy-preserving collaboration. The

number of donors that each institution has is insufficient for

individually training a robust model. In all experimental settings,

for a fixed number of N, PriCell achieves better performance

than the local training while ensuring the confidentiality of the

local data.

Runtime

In Table 1, we report the execution times for the training and pre-

diction with N= 10 parties and a ring degreeN = 215. To be able

to compare the runtimes at a larger scale, we use synthetically
generated data for this set of experiments and vary the number

of features (m). We generate a dataset of 1,000 samples per

party with c= 200 cells per sample. We use h= 8 filters, a local

batch size of n = 100, and 20 global epochs for training. We

report the execution time of the setup phase, of the local compu-

tations, and of its communication. We include the execution time

of distributed bootstrapping (see the experimental procedures

for details) as part of the communication time, which takes

1.2 s per iteration and 122 s over 20 epochs. Hence, the commu-

nication column for training comprises the time to perform all

communication between parties throughout the training, distrib-

uted bootstrapping, and the model update.

We observe that PriCell trains, in less than 20 min, a CellCnn

model on a training set of 200 cells per sample, 1,000 samples

per party, and 32 features across 10 parties, including the setup

phase and communication. The training time, when the number

of features varies, remains 20–25 min, which is the result of our

efficient use of the SIMD (single instruction, multiple data) oper-

ations provided by the cryptosystem; this is further discussed in

the scalability analysis.

In Table 1, we also report the execution times of an oblivious

prediction when both the model and the data are encrypted

(phase 5.1 of Figure 1A). We recall that the collective key-switch-

ing operation enables us to change the encryption key of a

ciphertext from the parties’ collective key to the querier’s key.

The maximum number n of samples that can be batched

together for a given ring degreeN , number of labels o, and num-

ber of features m, is ðN =2Þ=ðm ,oÞ (we also need m=2 cipher-

texts to batch those samples; see Note S4 for more details).

Hence, in our case, the maximum prediction batch size for

N = 215 and o= 2 is n = 213=m.

We observe that the local computation for the prediction in-

creases linearly withm, and is linked to the cost of the dominant

operation, the convolution, which is, unlike training, carried out

between two encrypted matrices (see Note S4). The communi-

cation required for prediction includes m=2 ciphertexts sent

by the querier and one ciphertext (prediction result) sent back

by the server. Hence, the communication time also increases
Patterns 3, 100487, May 13, 2022 5

A B

C D

Figure 4. Accuracy boxplots when classi-

fying healthy donor versus non-inflammatory

neurological disease

(A–D) Accuracy boxplots when classifying healthy

donor versus non-inflammatory neurological dis-

ease for trainingmulti-cells drawn from the bag of all

cells per class (A and B) and drawn from each pa-

tient separately (C and D).

Experiments were repeated 10 times with different

train and test set splits, the vertical dashed line il-

lustrates the median for the baseline (CellCnn) and

the dots represent the outliers. The p values shown

at the top of the figure are calculated with a Wil-

coxon signed-rank test for the comparison between

the corresponding boxplots (p > 0.05 indicates that

the distributions are not significantly different). Clas-

sification accuracy is reported for 2 datasets: multi-

cell input classification on 96 samples and pheno-

type classification of 12 patients. HD, healthy donor;

NIND, non-inflammatory neurological disease.

ll
OPEN ACCESS Article
linearly with m. Finally, the time for the collective key switch re-

mains constant, as it is performed once at the end of the predic-

tion protocol on only one ciphertext.

Scalability analysis

Figure 5 shows the scalability of PriCell with the number of

parties, the global number of rows (samples), the number of fea-

tures (markers), and the number of filters for one global training

epoch that is to process once all the data of all parties. Unless

otherwise stated, we use c= 200 cells per sample, a local batch

size of n = 100, m= 38 features, and h= 8 filters, for all settings.

We first report the runtime with an increasing number of

parties (N) in Figures 5A and 5B when the global number of

data samples is fixed to s = 18,000 andwhen the number of sam-

ples per party is fixed to 500, respectively. As the parties perform

local computations in parallel, PriCell’s runtime decreases with

increasing N when s is fixed (Figure 5A). When the number of

data samples is constant per party, PriCell’s computation time

remains almost constant and only the communication overhead

increases when increasing N (Figure 5B).

We further analyze PriCell’s scalability for N= 10 when varying

the number of global samples (s), the number of features (m),

and the number of filters (h). In Figure 5C, we show that PriCell

scales linearly when increasing the number of global samples

with N = 10. Increasing the number of features and filters has

almost no effect on PriCell’s runtime due to our efficient packing

strategy that enables SIMD operations through features and fil-

ters. However, we note that the increase in h= 64 in Figure 5E

is due to increasing the cryptosystemparameterN to have a suf-

ficient number of slots to still rely on our one-cipher packing

strategy. The increase in runtime is still linear with respect to N
and, as expected, the use of larger ciphertexts also produces

a slight increase in the communication

Comparison with previous work

The most recent solutions for privacy-preserving FL in the

N-party setting use DP, SMC, or HE.

DP-based solutions21–23 in the medical domain introduce

noise in the intermediate values to mitigate adversarial FL at-

tacks. However, it has been shown that training an accurate
6 Patterns 3, 100487, May 13, 2022
model with DP requires a high-privacy budget.36 Thus, DP-

based solutions introduce a privacy-accuracy trade-off by

perturbing the model parameters, whereas PriCell decouples

the accuracy from the privacy and achieves privacy-by-design

with a reasonable overhead.

SMC-based solutions25–29 often require the data providers to

communicate their data outside their premises to a limited num-

ber of computing nodes, and these solutions assume an honest

majority among the computing nodes to protect the data and/or

model confidentiality. Comparatively, PriCell scales efficiently

with N parties and permits them to keep their data on their pre-

mises, withstanding collusions of up to N� 1 parties.

Finally, HE-based solutions for privacy-preserving analytics in

distributed medical settings32,33 allow for functionalities (e.g.,

basic statistics, counting, or linear regression) different than

those that PriCell enables, and they do not enable the efficient

execution of neural networks in an FL setting. Due to the fact

that the underlying system, the threat model, and the enabled

functionalities of all the aforementioned solutions are different

from PriCell, a quantitative comparison with these works is a

challenging task.

We build on the system and threat model proposed by Sav

et al.34 for enabling privacy-preserving FL for neural networks by

relyingonMHEandmakeaquantitativecomparisonwithPOSEIDON.

PriCell improves upon the state-of-the-art solution, POSEIDON, by at

least one order of magnitude for training times when the same

numberof epochsandfilters is used.This isdue toPriCell’s design

for optimizing the use of SIMDoperations, with a packing strategy

that enables encrypting all samples of a batch in a single cipher-

text; whereas POSEIDON packs the samples within a batch in

different ciphertexts. For a local batch size of n = 1, 8 filters, 38

features, and 200 cells per sample, PriCell’s local computation

time is 1.7 s, whereas, POSEIDON’s is 15.4 s. Increasing the batch

size to 100 results in a 1003 slower local execution for POSEIDON,

whereas it remains constant for PriCell, as all samples are packed

in one ciphertext. In summary, increasing the batch size or the

number of filters yieldsa linear increase in the advantageof our so-

lution, in terms of local computation time.

Table 1. PriCell’s execution times for training and prediction with a varying number of features (m), 10 parties, and ring degreeN = 215

(214 ciphertext slots)

m

Training execution time (s) Prediction execution time (s)

Setup Local computation Communication

Local computation

querier + server Communication

Collective

key-switch

8 17.8 753.4 370.1 0.2 + 0.1 0.3 0.3

16 18.1 778.7 387.0 0.3 + 0.2 0.6 0.3

32 19.3 836.1 393.7 0.3 + 0.4 1.0 0.3

64 21.9 951.1 373.1 0.6 + 0.6 2.2 0.3

128 24.5 1,135.9 374.8 1.6 + 1.5 4.2 0.3

The computation is single-threaded in a virtual network with an average network delay of 0.17 ms and 1 Gbps bandwidth on 10 Linux servers with an

Intel Xeon E5-2680 v.3 CPUs running at 2.5 GHz with 24 threads and 12 cores and 256 GB RAM.

ll
OPEN ACCESSArticle
Downstream analysis

The training in the original CellCnn study aims at detecting rare

disease-associated cell subsets via further analysis.4 Assuming

the end model is decrypted upon pre-agreement to conduct

these analyses, we further investigate how the changes that

we introduce in the CellCnn architecture (see local neural

network operations in the experimental procedures) affect the

detection capability. To be able to make a comparison with the

original study in terms of detection capability, we introduce these

changes in the original implementation of CellCnn, simulate our

encryption, and evaluate the impact in the subsequent analyses.

We report our results and how our changes to the circuit and

training affect the detection capability on rare CMV infection in

Note S6 (see Figures S4–S6).

DISCUSSION

In this work, we present PriCell, a system that enables privacy-

preserving federated neural network learning for healthcare insti-

tutions, in the framework of an increasingly relevant single-cell

analysis, by relying on MHE. To the best of our knowledge,

PriCell is the first solution to enable the training of convolutional

neural networks with N parties under encryption on single-cell

data. Using MHE, our solution enables the parties to keep their

data on their local premises and to keep the model and any FL

intermediate values encrypted end-to-end throughout the

training. As such, PriCell provides security against inference at-

tacks to FL.16–20 PriCell also protects the querier’s (researcher’s)

evaluation data by using oblivious prediction. The underlying

encryption scheme of PriCell provides post-quantum security

and does not degrade the utility of the data, contrarily to differen-

tial privacy-based solutions.21,37

In this work, we demonstrate the flexibility of PriCell with the

different learning parameters (e.g., batch size, number of fea-

tures, number of filters), different real-world datasets, and a vary-

ing number of parties. Our empirical evaluation shows that PriCell

is able to efficiently train a collective neural network with a large

number of parties while protecting the model and the data

through HE. We also show that PriCell’s computation and

communication overhead remains either constant or scales line-

arly with the number of parties and with the model parameters.

Furthermore, we show that PriCell achieves classification ac-

curacy comparable with the centralized and non-encrypted

training. Our evaluation demonstrates a substantial accuracy
gain by collaboration between the parties when compared with

locally training with their data only.

In terms of limitations, PriCell relies on the assumption that the

parties provide non-tampered data. Although poisoning attacks

are beyond the scope of this work, PriCell can partially mitigate

this kind of threat by integrating several mechanisms, such as

statistical checks on parties’ input data38 or by integrating

zero-knowledge proofs during training.39,40 Using such tech-

niques for training under encryption in time-constrained applica-

tions remains an open research problem.

While enabling privacy-preserving training over N parties, by

default PriCell does not monitor the training when the whole pro-

cess is carried out under encryption. As PriCell performs all

training operations under encryption, the partial models cannot

be assessed. However, relaxing the end-to-end security require-

ment over training, the parties can collectively decrypt the vali-

dation accuracy that is computed on an independent validation

set. As for the conditions for PriCell to lead to accurate and un-

biased models, they remain the same as for standard FL ap-

proaches, such as tuning the hyperparameters for client and

server. This is a possible future research direction and not a trivial

task.41 While the IID setting is not a prerequisite for PriCell, we

observe that an increased skewness between the parties’ data

distribution can decrease the model performance. Similar to

poisoning attacks, this limitation can be partially addressed by

integrating statistical checks to ensure the skewness is below

a certain threshold; this requires a comprehensive study on

skew types (i.e., quantity, label, or feature) and the thresholds

for each of them for single-cell analysis.

In general, as data sharing in the healthcare domain is usually

prevented due to the sensitive nature of data, and due to privacy

regulations such as HIPAA or GDPR, PriCell brings unprece-

dented value for the healthcare domain, exemplified in this

work for single-cell analysis, where the data are scarce and

sparse. These benefits are extensible to federated healthcare

scenarios that rely onmachine learning, and constitute an impor-

tant landmark for real-world applications of collaborative training

between healthcare institutions while preserving privacy.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to the lead

contact, Sinem Sav (sinem.sav@epfl.ch).
Patterns 3, 100487, May 13, 2022 7

mailto:sinem.sav@epfl.ch

A B C

D E

Figure 5. PriCell’s training execution time and communication overhead for one training epoch with increasing number of parties, data sam-

ples, features, and filters

The computation is single-threaded in a virtual network with an average network delay of 0.17 ms and 1 Gbps bandwidth on 10 Linux servers with an Intel Xeon

E5-2680 v.3 CPUs running at 2.5 GHz with 24 threads on 12 cores and 256 GB RAM.

(A) Increasing number of parties (N) when the number of global data samples (s) is fixed to 18,000.

(B) Increasing number of parties (N), each having 500 samples.

(C) Increasing number of data samples (s) when N = 10.

(D) Increasing number of features (m) when N = 10.

(E) Increasing number of filters (h) when N = 10.

ll
OPEN ACCESS Article
Materials availability

No new biological materials were generated by this study.

Data and code availability

This study uses previously published datasets.1–3 We refer to the

reader to Arvaniti and Claassen4 (https://zenodo.org/record/5597098#.

YXbaz9ZBzt0) to obtain the CMV and AML datasets, and to Galli et al.3

for the repository including the samples from healthy, NIND, and RRMS

donors (http://flowrepository.org/experiments/2166/). Our implementa-

tion for this study have been deposited at Zenodo (https://doi.org/10.

5281/zenodo.6330988).

System and threat model

In this section, we detail PriCell’s system and threat model, which is based

on the state-of-the-art privacy-preserving framework.34 In PriCell’s sce-

nario, there are N healthcare institutions (parties), each holding its own pa-

tient dataset and collectively training a neural network model, without

sharing/transferring their local data. Our aim is to preserve the confidenti-

ality of the local data, the intermediate model updates in the FL setting,

the querier’s evaluation data, and optionally the final model (see Figure 1

for the system overview). We rely on a synchronous learning protocol,

assuming that all parties are available throughout the training and evalua-

tion executions. We note here that this assumption can be relaxed by using

different HE schemes, such as threshold or multi-key HE,42,43 but with a

relaxed security assumption for the former and an increased computation

cost for the latter.

We consider an N� 1 passive-adversary threat model. Hence, we assume

that all parties follow the protocol, and up to N� 1 colluding parties must

not be able to extract any information about the model or other party’s input

data. We rely on MHE to meet these confidentiality requirements under the

posed threat model. In the following section, we briefly introduce the back-

ground on the used MHE scheme.
8 Patterns 3, 100487, May 13, 2022
Multiparty Homomorphic Encryption (MHE)

Here,wegive the fundamentals ofMHEand describe themost important crypto-

graphicdetails.Note thatweuse italic fonts for thecryptographic termswhenfirst

introduced and these terms are explained in Note S1, cryptography glossary.

We rely on a variant of the Cheon-Kim-Kim-Song (CKKS)44 cryptographic

scheme that is based on the ring learning with errors (RLWE) problem (also

post-quantum secure45) and that provides approximate arithmetic over vec-

tors of complex numbers, i.e.,CN =2 (a complex vector ofN =2 slots). Encrypted

operations over CN =2 can be carried out in a SIMD fashion, which allows for

excellent amortization. Therefore, adopting an efficient packing strategy that

maximizes the usage of all the slots has a significant impact on the overall

computation time.

Mouchet et al.46 show how to construct a threshold variant of RLWE

schemes, where the parties have their own secret key and collaborate to estab-

lish the collective public keys. In this setting, amodel can be collectively trained

without having to share the individual secret keys of the parties; this prevents

the parties’ decryption functionality, without the collaboration of all the parties.

Note that a fresh CKKS ciphertext permits only a limited number of homo-

morphic operations to be carried out. To enable further homomorphic opera-

tions, a ciphertext must be refreshed with a bootstrapping operation once it is

exhausted. This operation is a costly function and requires communication in

our system; hence we optimize the circuit to minimize the number of boot-

strapping operations and the number of ciphertexts to be bootstrapped (see

detailed neural network circuit in this section).

Datasets

We detail the features of the three used datasets:

Non-inflammatory neurological disease (NIND), relapsing–remitting

multiple sclerosis (RRMS)

We rely on a large cohort of peripheral blood mononuclear cells, including

29 healthy donors (HD), 31 NIND, and 31 RRMS donors.3 The dataset

https://zenodo.org/record/5597098#.YXbaz9ZBzt0
https://zenodo.org/record/5597098#.YXbaz9ZBzt0
http://flowrepository.org/experiments/2166/
https://doi.org/10.5281/zenodo.6330988
https://doi.org/10.5281/zenodo.6330988

ll
OPEN ACCESSArticle
comprises samples with a varying number of cells for each donor and 35

markers for each cell. We use this dataset for two classification tasks: (1)

HD versus NIND and (2) HD versus RRMS, as shown in Figures 3 and 4.

For both NIND and RRMS experiments, and in all experimental settings,

we use 48 donors (24 HD, 24 NIND/RRMS) for training and 12 donors (5

HD, 7 NIND/RRMS) for testing.

Cytomegalovirus Infection (CMV)

We use a mass cytometry dataset1 for the classification of CMV. This dataset

comprises samples from 20 donors with a varying number of cells for each

donor and mass cytometry measurements of 37 markers for each cell, and

has 11 CMV� and 9 CMV+ labels. We use 14 donors for training and 6 donors

as a test set in all experimental settings.

Acute Myeloid Leukaemia (AML)

We rely on the mass cytometry dataset from Levine et al.2 for the three-class

classification problem for healthy, cytogenetically normal (CN), and core-bind-

ing factor translocation (CBF). For each cell, the dataset includes mass cytom-

etry measurements of 16 markers. As in the original work,4 we use the AML

samples with at least 10% CD34+ blast cells with the availability of additional

cytogenetic information. The final training dataset comprises three healthy

bone marrows (BM1, BM2, and BM3), two CN samples (SJ10 and SJ12),

and two CBF samples (SJ1 and SJ2). The test set in all experimental settings

comprises two healthy bone marrows (BM4, BM5), one CN (SJ13), and three

CBF (SJ3, SJ4, and SJ5) samples.

The individual donors in all aforementioned training sets are then evenly

distributed among N parties for PriCell collective training. To construct our

baselines and to make a fair comparison with the baseline, we use the same

data preprocessing for all experiments per setting (centralized CellCnn, Local,

or PriCell). We give the details of the data preprocessing and parameter selec-

tion, in Note S3.

Local neural network operations

In this section, we give a high-level description of the neural network circuit

that is evaluated in the encrypted domain (a detailed and step-by-step

description can be found in Note S4). We list the frequently used symbols

and notations in Note S2 and Table S1.

We first present the changes introduced to the original CellCnn circuit to

enable an efficient evaluation under encryption: (1) we approximate the non-

polynomial activation functions by polynomials by using least-squares approx-

imation, (2) we replace the max pooling with an average pooling, and (3) we

replace the ADAM optimizer with the stochastic gradient descent (SGD) opti-

mizer with mean-squared error and momentum acceleration. Finally, we intro-

duce the packing strategy used inPriCell and give a high-level circuit overview.

We give more details on these steps and optimizations in Note S4, and we

empirically evaluate the effect of these optimizations on the model accuracy

in a distributed setting in the results section.

Polynomial approximations

With additions and multiplications, the CKKS scheme can efficiently evaluate

polynomials in the encrypted domain. However, these two basic operations

are not sufficient for easily evaluating non-linear functions, such as sign or sig-

moid. A common strategy to circumvent this problem is to find a polynomial

approximation of the desired function. We rely on polynomial least-squares

approximations for the non-polynomial activation functions, such as sigmoid,

and we use identity function after convolution (instead of ReLU). We show in

our results section that these changes only have a negligible effect on the

model accuracy.

Pooling

The original CellCnn circuit makes use of both max pooling and average pool-

ing. Max pooling requires the computation of the non-linear sign function which

cannot be efficiently done under encryption. We replace the max pooling with

the average pooling, which is a linear transformation and brings the following

advantages: (1) it is efficient for computing under encryption with only addi-

tions and constant multiplication, (2) it simplifies the backward pass under

encryption, and (3) it commutes with other linear transformations or functions,

such as the convolution and the identity activation, which allows for an efficient

preprocessing of the data and reduces the online execution cost. Indeed, we

are able to pre-compute the average pooling on the data, which reduces the

input size of a batch of samples from n3c3m to n3m, i.e., we remove the de-

pendency on c.
Optimizer

The original CellCnn training relies on the ADAM optimizer, which requires the

computation of square roots and inverses. Although approximating these op-

erations is possible, a high-precision approximation requires an excessive use

of ciphertext levels and significantly reduces the efficiency of the training. To

avoid these costly operations, we rely instead on the SGD optimizer with mo-

mentum acceleration that, for an equivalent amount of epochs, shows a com-

parable rate of convergence to the ADAM optimizer.

Packing strategy

The CKKS scheme provides complex arithmetic on CN =2 in a SIMD fashion.

The native operations are addition, multiplication by a constant, multiplication

by a plaintext, multiplication by a ciphertext, slots rotation (shifting the values in

the vector), and complex conjugation. As the rotations are expensive, when

considering encryptedmatrix operations one of the main challenges is to mini-

mize the number of rotations, which can be done by adopting efficient packing

strategies and algorithms. We give more details about the packing and algo-

rithms in Note S4.

With the aforementioned pre-computed pooling, only a 13m vector is

needed to represent a sample, instead of a c3m matrix. Hence, we pack an

entire batch of n samples in a single ciphertext and compute the forward

and backward pass on the whole batch in parallel, which reduces the

complexity of the training proportionally to the size of the batch.

Encrypted circuit overview

Given a batch size of n samples, each sample being a matrix Lc3m, for c the

number of cells per sample and m number of features (markers) per cell, we

first evaluate the mean pooling across the cells in plaintext. The result is a

set of n vectors of size 13 m, which is packed in an Ln3m matrix. The 1D

convolution is evaluated with an Ln3m3Cm3k matrix multiplication. We feed

the result to the dense layer Wk3o, where o is the number of output labels.

Finally, we perform an approximated activation function to the output of the

dense layer. Our encrypted circuit with reduced complexity is

Yn3o = PolyactððMeanPoolðLn3 c3mÞ 3 Cm3 kÞ 3 Wk3oÞ:

Experimental settings

We implemented our solution in Go (Go Programming Language, https://go.

dev/) by using the open-source lattice-based cryptography Lattigo (a library

for lattice-based HE in Go, https://github.com/tuneinsight/lattigo). We use

the implementation of CellCnn4 to preprocess the data and to construct base-

lines. We use Onet (Cothority Network Library, https://github.com/dedis/onet)

to build a decentralized system andMininet (http://mininet.org) to evaluate our

system in a virtual network with an average network delay of 0.17 ms and

1 Gbps bandwidth on 10 Linux servers with Intel Xeon E5-2680 v.3 CPUs

running at 2.5 GHz with 24 threads on 12 cores and 256 GB RAM. The parties

communicate over TCP with secure channels (TLS). We choose security pa-

rameters that achieve security of at least 128 bits.47

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100487.

ACKNOWLEDGMENTS

We would like to thank Apostolos Pyrgelis, David Froelicher, and Sylvain Cha-

tel who gave valuable feedback on the manuscript. We also thank Shufan

Wang and Joao Sa Sousa for their contribution on the experiments and bench-

marking. This work was partially supported by grant no. 2017-201 of the Stra-

tegic Focal Area ‘‘Personalized Health and Related Technologies (PHRT)’’ of

the ETH Domain. M.C. is a member of the Machine Learning Cluster of Excel-

lence, EXC no. 2064/1 – project no. 390727645.

AUTHOR CONTRIBUTIONS

S.S., J.R.T.-P., M.C., and J.-P.H. conceived the study. S.S. and J.-P.B. devel-

oped themethods, implemented them, and performed the experiments. All au-

thors contributed to the methodology and wrote the manuscript.
Patterns 3, 100487, May 13, 2022 9

https://go.dev/
https://go.dev/
https://github.com/tuneinsight/lattigo
https://github.com/dedis/onet
http://mininet.org
https://doi.org/10.1016/j.patter.2022.100487
https://doi.org/10.1016/j.patter.2022.100487

ll
OPEN ACCESS Article
DECLARATION OF INTERESTS

J.R.T.-P. and J.-P.H. are co-founders of the start-up Tune Insight SA (https://

tuneinsight.com). The other authors declare no competing interests.

The methods presented in this work are partially covered by the PCT

patent applications under publication nos. WO/2022/04284848 and WO/

2021/223873.49

Received: December 18, 2021

Revised: February 14, 2022

Accepted: March 14, 2022

Published: April 18, 2022

REFERENCES

1. Horowitz, A., Strauss-Albee, D., Leipold, M., Kubo, J., Nemat-Gorgani, N.,

Dogan, O., Dekker, C.L., Mackey, S., Maecker, H., Swan, G.E., and Davis,

M.M. (2013). Genetic and environmental determinants of human nk cell di-

versity revealed bymass cytometry. Sci. Transl. Med. 5, 208ra145. https://

doi.org/10.1126/scitranslmed.3006702.

2. Levine, J., Simonds, E., Bendall, S., Davis, K., Amir, E.A., Tadmor,M., et al.

(2015). Data-driven phenotypic dissection of aml reveals progenitor-like

cells that correlate with prognosis. Cell 162, 184–197. https://doi.org/10.

1016/j.cell.2015.05.047.

3. Galli, E., Hartmann, F.J., Schreiner, B., Ingelfinger, F., Arvaniti, E., Diebold,

M., Mrdjen, D., van der Meer, F., Krieg, C., Nimer, F.A., and Sanderson, N.

(2019). GM-CSF and CXCR4 define a t helper cell signature in multiple

sclerosis. Nat. Med. 25, 1290–1300. https://doi.org/10.1038/s41591-

019-0521-4.

4. Arvaniti, E., and Claassen, M. (2017). Sensitive detection of rare disease-

associated cell subsets via representation learning. Nat. Commun. 8,

14825. https://doi.org/10.1038/ncomms14825.

5. Wang, T., Bai, J., and Nabavi, S. (2021). Single-cell classification using

graph convolutional networks. BMC Bioinf. 22, 364. https://doi.org/10.

1186/s12859-021-04278-2.

6. Kirby, S., Eng, P., Danter, W., George, C., Francovic, T., Ruby, R.R., and

Ferguson, K.A. (1999). Neural network prediction of obstructive sleep ap-

nea from clinical criteria. Chest 116, 409–415. https://doi.org/10.1378/

chest.116.2.409.

7. Vieira, S., Pinaya, W.H., and Mechelli, A. (2017). Using deep learning to

investigate the neuroimaging correlates of psychiatric and neurological

disorders: methods and applications. Neurosci. Biobehav. Rev. 74,

58–75. https://doi.org/10.1016/j.neubiorev.2017.01.002.

8. Uddin, M., Wang, Y., and Woodbury-Smith, M. (2019). Artificial intelli-

gence for precision medicine in neurodevelopmental disorders. NPJ

Digital Med. 2. https://doi.org/10.1038/s41746-019-0191-0.

9. Kaissis, G., Makowski, M., R€uckert, D., and Braren, R. (2020). Secure, pri-

vacy-preserving and federated machine learning in medical imaging. Nat.

Machine Intelligence 2, 305–311. https://doi.org/10.1038/s42256-020-

0186-1.

10. Regev, A., Teichmann, S., Lander, E., Amit, I., Benoist, C., Birney, E.,

Bodenmiller, B., Campbell, P., Carninci, P., Clatworthy, M., et al. (2017).

Science forum: the human cell atlas. Elife 6, e27041. https://doi.org/10.

7554/eLife.27041.

11. McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas, B.A.

(2017). Communication-efficient learning of deep networks from decen-

tralized data. In Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics, 54, A. Singh and J. Zhu, eds.

(Proceedings of Machine Learning Research (PMLR)), pp. 1273–1282.

https://proceedings.mlr.press/v54/mcmahan17a.html.

12. Sadilek, A., Liu, L., Nguyen, D., Kamruzzaman,M., Serghiou, S., Rader, B.,

Ingerman, A., Mellem, S., Kairouz, P., Nsoesis, E.O., et al. (2021). Privacy-

first health research with federated learning. NPJ Digital Med. 4, 132.

https://doi.org/10.1038/s41746-021-00489-2.

13. Sheller, M., Edwards, B., Reina, G., Martin, J., Pati, S., Kotrotsou, A.,

Milchenko, M., Xu, W., Marcus, D., Colen, R.R., and Bakas, S. (2020).
10 Patterns 3, 100487, May 13, 2022
Federated learning in medicine: facilitating multi-institutional collabora-

tions without sharing patient data. Sci. Rep. 10, 12598. https://doi.org/

10.1038/s41598-020-69250-1.

14. Gaye, A., Marcon, Y., Kutschke, J., Laflamme, P., Turner, A., Jones, E.,

Minion, J., Boyd, A.W., Newby, C.J., Nuotio, M.-L., et al. (2014).

Datashield: taking the analysis to the data, not the data to the analysis.

Int. J. Epidemiol. 43, 1929–1944. https://doi.org/10.1093/ije/dyu188.

15. Warnat-Herresthal, S., Schultze, H., Shastry, K., Manamohan, S.,

Mukherjee, S., Garg, V., Sarveswara, R., H€andler, K., Pickkers, P., Aziz,

N.A., et al. (2021). Swarm learning for decentralized and confidential clin-

ical machine learning. Nature 594, 265–270. https://doi.org/10.1038/

s41586-021-03583-3.

16. Melis, L., Song, C., De Cristofaro, E., and Shmatikov, V. (2019). Exploiting

unintended feature leakage in collaborative learning. In 2019 IEEE

Symposium on Security and Privacy (SP), pp. 691–706. https://doi.org/

10.1109/SP.2019.00029.

17. Nasr, M., Shokri, R., and Houmansadr, A. (2019). Comprehensive privacy

analysis of deep learning: passive and active white-box inference attacks

against centralized and federated learning. In 2019 IEEE Symposium on

Security and Privacy (SP) (IEEE), pp. 739–753. https://doi.org/10.1109/

SP.2019.00065.

18. Hitaj, B., Ateniese, G., and Perez-Cruz, F. (2017). Deep models under the

gan: information leakage from collaborative deep learning. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’17 (Association for Computing Machinery), pp. 603–618.

ISBN 9781450349468. https://doi.org/10.1145/3133956.3134012.

19. Wang, Z., Mengkai, S., Zhang, Z., Song, Y., Wang, Q., and Qi, H. (2019).

Beyond Inferring Class Representatives: User-Level Privacy Leakage

from Federated Learning (IEEE), pp. 2512–2520. https://doi.org/10.1109/

INFOCOM.2019.8737416.

20. Zhu, L., Liu, Z., and Han, S. (2019). Deep Leakage from Gradients (Curran

Associates Inc.). http://papers.nips.cc/paper/9617-deep-leakage-from-

gradients.

21. Choudhury, O., Gkoulalas-Divanis, A., Salonidis, T., Sylla, I., Park, Y., Hsu,

G., and Das, A. (2019). Differential privacy-enabled federated learning for

sensitive health data. https://arxiv.org/abs/1910.02578.

22. Kim, M., Lee, J., Ohno-Machado, L., and Jiang, X. (2020). Secure and

differentially private logistic regression for horizontally distributed data.

IEEE Trans. Inf. Forensics Secur. 15, 695–710. https://doi.org/10.1109/

TIFS.2019.2925496.

23. Li, W., Milletarı̀, F., Xu, D., Rieke, N., Hancox, J., Zhu, W., Baust, M.,

Cheng, Y., Ourselin, S., Cardoso, M.J., and Feng, A. (2019). Privacy-pre-

serving federated brain tumour segmentation. In International Workshop

in Machine Learning in Medical Imaging (MLMI) (Springer). https://doi.

org/10.1007/978-3-030-32692-0_16.

24. Jayaraman, B., and Evans, D. (2019). Evaluating differentially private

machine learning in practice. In 28th USENIX Security Symposium

(USENIX Security 19) (USENIX Association), pp. 1895–1912, ISBN 978-

1-939133-06-9. https://www.usenix.org/conference/usenixsecurity19/

presentation/jayaraman.

25. Jagadeesh, K.A., Wu, D.J., Birgmeier, J.A., Boneh, D., and Bejerano, G.

(2017). Deriving genomic diagnoses without revealing patient genomes.

Science 357, 692–695. https://doi.org/10.1126/science.aam9710.

26. Cho, H., Wu, D., and Berger, B. (2018). Secure genome-wide association

analysis using multiparty computation. Nat. Biotechnol. 36, 547–551.

https://doi.org/10.1038/nbt.4108.

27. Constable, S., Tang, Y., Wang, S., Jiang, X., and Chapin, S. (2015).

Privacy-preserving gwas analysis on federated genomic datasets. BMC

Med. Inf. Decis. Making 15, S2. https://doi.org/10.1186/1472-6947-15-

S5-S2.

28. Kamm, L., Bogdanov, D., Laur, S., and Vilo, J. (2013). A newway to protect

privacy in large-scale genome-wide association studies. Bioinformatics

29, 886–893. https://doi.org/10.1093/bioinformatics/btt066.

https://tuneinsight.com
https://tuneinsight.com
https://doi.org/10.1126/scitranslmed.3006702
https://doi.org/10.1126/scitranslmed.3006702
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1016/j.cell.2015.05.047
https://doi.org/10.1038/s41591-019-0521-4
https://doi.org/10.1038/s41591-019-0521-4
https://doi.org/10.1038/ncomms14825
https://doi.org/10.1186/s12859-021-04278-2
https://doi.org/10.1186/s12859-021-04278-2
https://doi.org/10.1378/chest.116.2.409
https://doi.org/10.1378/chest.116.2.409
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1038/s41746-019-0191-0
https://doi.org/10.1038/s42256-020-0186-1
https://doi.org/10.1038/s42256-020-0186-1
https://doi.org/10.7554/eLife.27041
https://doi.org/10.7554/eLife.27041
https://proceedings.mlr.press/v54/mcmahan17a.html
https://doi.org/10.1038/s41746-021-00489-2
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1093/ije/dyu188
https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/SP.2019.00065
https://doi.org/10.1109/SP.2019.00065
https://doi.org/10.1145/3133956.3134012
https://doi.org/10.1109/INFOCOM.2019.8737416
https://doi.org/10.1109/INFOCOM.2019.8737416
http://papers.nips.cc/paper/9617-deep-leakage-from-gradients
http://papers.nips.cc/paper/9617-deep-leakage-from-gradients
https://arxiv.org/abs/1910.02578
https://doi.org/10.1109/TIFS.2019.2925496
https://doi.org/10.1109/TIFS.2019.2925496
https://doi.org/10.1007/978-3-030-32692-0_16
https://doi.org/10.1007/978-3-030-32692-0_16
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://doi.org/10.1126/science.aam9710
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1186/1472-6947-15-S5-S2
https://doi.org/10.1186/1472-6947-15-S5-S2
https://doi.org/10.1093/bioinformatics/btt066

ll
OPEN ACCESSArticle
29. Hie, B., Cho, H., and Berger, B. (2018). Realizing private and practical

pharmacological collaboration. Science 362, 347–350. https://doi.org/

10.1126/science.aat4807.

30. Kim, M., Song, Y., Wang, S., Yuhou, X., and Jiang, X. (2018a). Secure lo-

gistic regression based on homomorphic encryption: design and evalua-

tion. JMIR Med. Inform. 6, e19. https://doi.org/10.2196/medinform.8805.

31. Bonte, C., and Vercauteren, F. (2018). Privacy-preserving logistic regres-

sion training. BMC Med. Genomics 11, 86. https://doi.org/10.1186/

s12920-018-0398-y.

32. Froelicher, D., Troncoso-Pastoriza, J.R., Raisaro, J.L., Cuendet, M.A.,

Sousa, J.S., Cho, H., Berger, B., Fellay, J., and Hubaux, J.-P. (2021a).

Truly privacy-preserving federated analytics for precision medicine with

multiparty homomorphic encryption. Nat. Commun. 12, 5910. https://

doi.org/10.1038/s41467-021-25972-y.

33. Raisaro, J.L., Troncoso-Pastoriza, J.R., Misbach, M., Sousa, J.S.,

Pradervand, S., Missiaglia, E., Michielin, O., Ford, B., and Hubaux, J.P.

(2019). Medco: enabling secure and privacy-preserving exploration

of distributed clinical and genomic data. IEEE/ACM Trans. Comput.

Biol. Bioinformatics 16, 1328–1341. https://doi.org/10.1109/TCBB.2018.

2854776.

34. Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J.R., Froelicher, D., Bossuat,

J.P., Sousa, J.S., and Hubaux, J.P. (2021). Poseidon: privacy-preserving

federated neural network learning. In Network and Distributed System

Security Symposium (NDSS). https://doi.org/10.14722/ndss.2021.24119.

35. Rawat, W., and Wang, Z. (2017). Deep convolutional neural networks for

image classification: a comprehensive review. Neural Comput. 29, 1–98.

https://doi.org/10.1162/NECO_a_00990.

36. Rahman, M.A., Rahman, T., Laganière, R., and Mohammed, N. (2018).

Membership inference attack against differentially private deep learning

model. Trans. Data Privacy 11, 61–79. https://www.tdp.cat/issues16/

tdp.a289a17.pdf.

37. Kim, J.W., Jang, B., and Yoo, H. (2018b). Privacy-preserving aggregation

of personal health data streams. PLoS One 13, 1–15. https://doi.org/10.

1371/journal.pone.0207639.

38. Chen, W., Sotiraki, K., Chang, I., Kantarcioglu, M., and Popa, R.A. (2021).

HOLMES: a platform for detecting malicious inputs in secure collaborative

computation. https://eprint.iacr.org/2021/1517.

39. Yang, R., Au, M.H., Zhang, Z., Xu, Q., Yu, Z., and Whyte, W. (2019).

Efficient Lattice-Based Zero-Knowledge Arguments with Standard

Soundness: Construction and Applications, pp. 147–175. ISBN 978-3-

030-26947-0. https://doi.org/10.1007/978-3-030-26948-7_6.
40. Baum, C., and Nof, A. (2020). Concretely-efficient Zero-Knowledge

Arguments for Arithmetic Circuits and Their Application to Lattice-Based

Cryptography. In Public-Key Cryptography – PKC 2020: 23rd IACR

International Conference on Practice and Theory of Public-Key

Cryptography, Edinburgh, UK, May 4–7, 2020, Proceedings, Part I

(Springer-Verlag), pp. 495–526, ISBN 978-3-030-45373-2.

41. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji,

A.N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., and

D’Oliveira, R.G. (2021). Advances and open problems in federated

learning. Found. Trends Machine Learn. 14, 1–210. https://doi.org/10.

1561/2200000083.

42. López-Alt, A., Tromer, E., and Vaikuntanathan, V. (2012). On-the-fly

multiparty computation on the cloud via multikey fully homomorphic

encryption. In Proceedings of the Forty-Fourth Annual ACM Symposium

on Theory of Computing (STOC ’12; Association for Computing

Machinery), pp. 1219–1234. ISBN 9781450312455. https://doi.org/10.

1145/2213977.2214086.

43. Shamir, A. (1979). How to share a secret. Commun. ACM 22, 612–613.

https://doi.org/10.1145/359168.359176.

44. Cheon, J.H., Kim, A., Kim, M., and Song, Y. (2017). Homomorphic encryp-

tion for arithmetic of approximate numbers. In Springer International

Conference on the Theory and Application of Cryptology and

Information Security (ASIACRYPT). https://doi.org/10.1007/978-3-319-

70694-8_15.

45. Acar, A., Aksu, H., Uluagac, A.S., and Conti, M. (2018). A survey on homo-

morphic encryption schemes: theory and implementation. ACM Comput.

Surv. 51, 1–35. https://doi.org/10.1145/3214303.

46. Mouchet, C., Troncoso-pastoriza, J.R., Bossuat, J.P., and Hubaux, J.P.

(2021). Multiparty Homomorphic Encryption from Ring-Learning-With-

Errors (PETS). https://doi.org/10.2478/popets-2021-0071.

47. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S.,

Halevi, S., Hoffstein, J., Laine, K., Lauter, K., and Lokam, S. (2018).

Homomorphic encryption security standard. Tech. Rep. (Homomorphic

Encryption.org).

48. Sav, S., Troncoso-Pastoriza, J.R., Pyrgelis, A., Froelicher, D., Gomes de

Sá e Sousa, J.A., Bossuat, J.P., and Hubaux, J.-P. (2022). System and

Method for Privacy-Preserving Distributed Training of Neural Network

Models on Distributed Datasets (EPFL).

49. Froelicher, D., Troncoso-Pastoriza, J.R., Pyrgelis, A., Sav, S., Gomes de

Sá e Sousa, J.A., Hubaux, J.P., and Bossuat, J.P. (2021). System and

Method for Privacy-Preserving Distributed Training of Machine Learning

Models on Distributed Datasets (EPFL).
Patterns 3, 100487, May 13, 2022 11

https://doi.org/10.1126/science.aat4807
https://doi.org/10.1126/science.aat4807
https://doi.org/10.2196/medinform.8805
https://doi.org/10.1186/s12920-018-0398-y
https://doi.org/10.1186/s12920-018-0398-y
https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1109/TCBB.2018.2854776
https://doi.org/10.1109/TCBB.2018.2854776
https://doi.org/10.14722/ndss.2021.24119
https://doi.org/10.1162/NECO_a_00990
https://www.tdp.cat/issues16/tdp.a289a17.pdf
https://www.tdp.cat/issues16/tdp.a289a17.pdf
https://doi.org/10.1371/journal.pone.0207639
https://doi.org/10.1371/journal.pone.0207639
https://eprint.iacr.org/2021/1517
https://doi.org/10.1007/978-3-030-26948-7_6
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref40
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref40
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref40
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref40
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref40
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref40
https://doi.org/10.1561/2200000083
https://doi.org/10.1561/2200000083
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1145/3214303
https://doi.org/10.2478/popets-2021-0071
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref47
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref47
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref47
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref47
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref48
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref48
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref48
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref48
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref49
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref49
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref49
http://refhub.elsevier.com/S2666-3899(22)00072-1/sref49

Patterns, Volume 3
Supplemental information
Privacy-preserving federated neural network

learning for disease-associated cell classification

Sinem Sav, Jean-Philippe Bossuat, Juan R. Troncoso-Pastoriza, Manfred
Claassen, and Jean-Pierre Hubaux

Supplementary Information
Supplementary Note 1: Cryptography Glossary
Here, we provide a summary of the cryptography terms that are frequently used throughout this paper.
Multiparty Homomorphic Encryption: a set of protocols that enable a group of parties to securely compute joint functions over
their private inputs by using homomorphic encryption. Compared to LSSS-based (linear secret-sharing scheme) approaches,
these protocols scale linearly with the number of parties and do not require private channels.
Ring Learning With Errors (RLWE): a computational problem based on the difficulty of solving linear equations that are
perturbed by an error. The security of the cryptographic schemes used in this work is based on this problem.
Ring Degree (N): the degree of the RLWE cyclotomic polynomial XN +1.
Packing: the act of encrypting multiple scalar values in a single ciphertext by using ciphertext slots.
Secret Key: a secret value used to decrypt a ciphertext and to generate the encryption key and evaluation keys.
Collective Public Key: a public key generated with the interaction of a set of parties and that can be used by any party to encrypt.
The decryption of a ciphertext that is encrypted with the collective key requires all parties to participate in the decryption
protocol.
Evaluation Keys: special public keys used during the homomorphic evaluation of a circuit (e.g., homomorphic slot rotations).
Ciphertext Slots: available space in a ciphertext to encrypt multiple values. In CKKS, the maximum number of slots that a
ciphertext can have is half of the dimension of the ring degree, i.e. N /2.
Slots Rotation: cyclic shift of the values encrypted in a ciphertext.
Single Instruction, Multiple Data (SIMD) Operations: the ability to carry out operations in parallel on a batch of data that is
encrypted in one ciphertext by using ciphertext slots, in the context of this work.
Bootstrapping: the act of homomorphically refreshing a ciphertext to allow for further computations.
Distributed Bootstrapping: bootstrapping that requires interaction between the parties but that is less computationally expensive
than its non-interactive variant.
Collective Key Switching: an interactive re-encryption of a ciphertext to a different secret key.

Supplementary Note 2: Symbols and Notations
Table S.1 summarizes the symbols and notation used throughout the paper.

Supplementary Note 3: Data Preprocessing and Parameter Selection
Our data preprocessing is similar to the one used in CellCnn1. To address the distributed setting, we split individual donors in
the training set to N institutions. Each party then generates the multi-cell inputs similar to CellCnn (Figure 1B) by selecting c
cells per sample, and z samples per class or per patient, depending on the experiment. As a result, each multi-cell input sample
has a size of c×m, where m is the number of markers; and the total training set per party has o× z multi-cell inputs, where o is
the number of labels when the data is generated in a per class-basis. The total training set has p× z multi-cell inputs, where p is
the number of patients in that institution when the data is generated in a per patient-basis.

For accuracy evaluation, we use two test datasets for each experimental setting: One is generated by multi-cell inputs of c
cells and z samples drawn from test set as in training set, and one is generated with the g of cells per individual to predict the
phenotype where g is the minimum of all available cells per individual in the test set. Lastly, for a fair comparison, we use the
same test set generated in all settings per dataset.

For all experimental settings, we scale and standardize the marker distributions, based on the training data.
Below, we give the parameters for each experimental setting.

RRMS/NIND experiments. For RRMS and NIND experiments in Figures 4 and 5, we generate two training datasets: (i)
multi-cell inputs with 100 cells were drawn for each class label to generate a dataset of 30000 samples (phenotype-based) and
(ii) multi-cell inputs with 2000 cells were drawn from each patient to generate 480 samples (patient-based). We report the
median accuracy in Figures 4 and 5, for patient-based multi-cell input generation in Table S.2.

The size of the test set for multi-cell inputs, is set to 10000 for the phenotype-based multi-cell generation, and to 96 for
patient-based multi-cell generation setting. The test set for phenotype classification is 12 donors for all RRMS and NIND
experiments.
CMV experiments. We transform the marker measurement with the inverse hyperbolic sine function with a cofactor of 5. The
training and test datasets respectively comprise 14 and 6 donors.

For the CellCnn results in Table S.2, 200 cells were drawn for each class label to generate one multi-cell sample and 2000
samples are generated per label. For all distributed settings, we also generate 200 cells per sample and gradually decrease the
number of samples bagged in each party for a fair comparison.

The size of the test set including multi-cell inputs is set to 4000 and the size of the test set for phenotype classification is 6
donors.

Notation Description
Pi ith Party

Xi Input matrix of Pi

yi True labels of Pi

N Total number of parties

s Total number of samples over parties

Ln×c×m Batch of samples

Cm×h Convolution filters (weights)

Wh×o Weight matrix of dense layer

n Number of data samples in a batch (batch size)

c Number of cells in multi-cell input

m Number of features (markers)

h Number of filters

o Number of labels (phenotype)

η Learning rate

µ Momentum

⊙ Element-wise multiplication

× Matrix or vector multiplication

|| Concatenation

Cryptographic Parameters and Operations

AAAℓ Encryption of A (bold-face) at level ℓ

N Ring degree

RQ The ring ZQ[X]/(XN +1), with N = 2d

MultImag(·) Multiply the slots by the imaginary unit i

Conjugate(·) Complex conjugate of the slots

Rotatei(·) Rotate the slots by i to the left

InnerSumi, j(·) Sum j batches of i slots

Replicatei, j(·) Replicate batches of i slots j times

Table S. 1. Frequently Used Symbols and Notations.

AML Experiments. For the AML experiments in Table S.2, we draw 200 cells per class label to generate multi-cell samples
and 1000 samples generated per label. Note that there are 3 class labels for this set of experiments. For all distributed settings,
we generate 200 cells per sample and gradually decrease the number of samples, as in other experimental settings. The size of
the test set including multi-cell inputs, is set to 3000 and the size of the test set for phenotype classification is 6 donors.
Machine Learning Parameters. For all accuracy experiments, we use 8 filters, average pooling, 1 local iteration per party
before aggregating local gradients, identity activation after convolution, and an approximated sigmoid activation for the
dense layer. For the baseline (CellCnn), we rely on their original optimizer, ADAM, and for PriCell, we use SGD with
momentum (µ) to enable efficient training of the neural network under encryption. We vary µ = 0.5−0.9 and the learning rate
η = 0.0001−0.01 for the distributed setting.

For the RRMS and NIND experiments, we use a batch size of 64 for the baseline (CellCnn) and gradually decrease the
batch size proportionally to the number of parties when data is distributed. For example, when the number of parties is 4, the
local batch size is 16. We use the approximated sigmoid activation in [−1,1] with a polynomial degree of 3 for the dense layer,

and 30 epochs.
For the CMV experiments, we use a batch size of 200 for the baseline (CellCnn) and gradually decrease the batch size

proportionally to the number of parties when the data is distributed. For example, when the number of parties is 2, the local
batch size is 100. We use an approximated sigmoid activation in [−3,3] with a polynomial degree of 3 for the dense layer, and
20 epochs.

For all AML experiments, we use a batch size of 200 for the baseline (CellCnn) and 100 for the local batch size in the
distributed setting with 2 parties. We use an approximated sigmoid activation in [−3,3] with a polynomial degree of 3 for the
dense layer, and 20 epochs.

Lastly, for the Local training in Figures 2, 3, and 4 or the Local row in Table S.2, we use the original CellCnn architecture,
with the same baseline parameters and average the accuracy, precision, and recall over N local parties’ models.
Security Parameters. Unless otherwise stated, all experiments use a cyclotomic polynomial ring of dimension N = 215 and
an initial level L = 10, which provides 214 slots per ciphertext and allows for a depth-10 circuit before bootstrapping is needed
(10 operations to be carried out before bootstrapping). For the inference times given in Table 1 (main text), we start with an
initial level of 4 as we do not need the backpropagation. This enables a more efficient forward pass as operations carried out on
a ciphertext with a lower level are less expensive. All our cryptographic parameters ensure at least 128-bit security level during
the training and up to 256-bit security during the inference.

Supplementary Note 4: Detailed Neural Network Circuit
Notations. We denote a batch of samples, the convolution layer and the dense layer matrices by Ln×c×m, CCCm×h and WWW h×o,
respectively, with n the number of samples, c the number of cells per sample per batch, m the number of features (markers), h
the number of filters and o the number of output classes (labels). When there is no ambiguity, we eliminate the sub-index of
the matrices, e.g., CCCm×h is often referred to as CCC. We recall that encrypted matrices are denoted in boldface. We denote the
plaintext of binary values as mask. When multiplied with a ciphertext, mask selects specific slots of the ciphertext by setting the
other slots to zero. The terms row, column and diagonal encoding of a matrix denote the mapping of a 2D matrix on a 1D
vector by concatenating each row, each column or each diagonal of the matrix respectively.
Convolution With Pre-Pooling. Given a hyper-cube batch of samples Ln×c×m, we first preprocess L by applying the average
pooling across the cells. As the convolution, average pooling and the activation of this step are all linear transformations, their
order is interchangeable. This preprocessing reduces the size of the hyper-cube from n× c×m to only n×m, thus removing its
dependency on c. The convolution is computed with a single matrix multiplication PPPn×h = Ln×m×CCCm×h, with a row-encoded
PPPn×h matrix where each row stores the result of the convolution layer for one sample. In the rest of this section, we describe
how we pack Ln×m and CCCm×h in order to enable an efficient convolution through SIMD operations.

We evaluate the convolution with a diagonally-encoded plaintext and row-encoded ciphertext matrix multiplication. As we
operate with non-square matrices, we pad the matrix CCC with the copies of itself until its number of rows reaches n. As such, the
result will yield n rows, each of h values. With this approach, the convolution can be evaluated with only m plaintext-ciphertext
multiplications and additions, and m−1 rotations. If m×n is not a power of two, cyclic rotations of the ciphertext slots will not
result in a cyclic rotation of the flattened matrix. Instead, it requires using the masking and rotations, which consumes a level.
To overcome this, we pad the flattened matrix with additional copies of itself until it reaches a total of n+(m−1) rows (hence
the final size of the flattened matrix is h(n+m−1)). This enables us, at the expense of more slots used, to simulate a cyclic
rotation. Note that those extra rows are removed by the plaintext multiplication by L that also acts as a masking.

We further reduce the number of operations by making use of complex arithmetic, which is natively provided by the CKKS
scheme. Using the following, we compute the dot product of ⟨(a0,a1),(b0,b1)⟩ in a single multiplication:

(a0− ia1) · (b0 + ib1) = (a0b0 +a1b1)+ i(a0b1−a1b0).

Hence, the convolution of two half-sized complex matrices L′n,m/2×B′m/2,h is sufficient to compute the convolution of the
real matrices Ln×m×CCCm×h:a1,1 . . . a1,m

...
. . .

...
an,1 . . . an,m

×
b1,1 . . . b1,h

...
. . .

...
bm,1 . . . bm,h

→
a1,1− ia1,2 . . . a1,m−1− ia1,m

...
. . .

...
an,1− ian,2 . . . an,m−1− ian,m

×
 b1,1 + ib2,1 . . . b1,m + ib2,m

...
. . .

...
bn−1,1 + ibn,1 . . . bn−1,m−1 + ibn,m

 .

The extraction of the real part can be done with complex conjugation and addition. The mapping from CCCm,h to CCC′m/2,h is
straightforward and can be homomorphically computed with CCC′ =CCC+Rotateh(MultImag(CCC)). Note that it requires CCC to be
padded with an additional row. The encoding of the plaintext matrix Ln,m is done by encoding each diagonal of L′n,m/2 in a
separate plaintext.

The matrix multiplication L′×CCC′ is then done with

PPP′n×h =
m/2−1

∑
i=0

L′n×m/2⊙Rotate2hi(CCC′m/2×h).

The result is a row-encoded n×h complex matrix. We remove its imaginary part PPP = 1
2 (PPP

′′′+Conjugate(PPP′′′)) with the
1
2 factor being pre-applied to L′. Because the number of rotations is reduced by a factor of two, the number of rows for the
padding must also be readjusted:

n︸︷︷︸
result

+(⌈m/2⌉−1) ·2︸ ︷︷ ︸
rotations

+ 1︸︷︷︸
i repacking

,

and the total number of slots used to encode CCCm×h is nh+(⌈m/2⌉−1)2h+h. We give an overview of how CCCn×h and PPPn×h are
each encoded on a vector:

CCCm×h = (CCC(1,1), . . . ,CCC(1,h),CCC(2,1), . . . ,CCC(2,h), . . . ,CCCm,1, . . . ,CCC(m,h),CCC(1,1), . . .︸ ︷︷ ︸
nh+(m/2−1)2h+h

,0, . . . ,0),

PPPn×h =
(
PPP(1,1), . . . ,PPP(1,h), . . . ,PPP(n,1), . . . ,PPP(n,h),0, . . . ,0

)
.

Dense Layer. The input to the dense layer is a row-encoded PPPn×h matrix that is multiplied with the WWW h×o matrix. As the
matrix PPPn×h is row-encoded and requires a homomorphic extraction of its diagonals, the technique used in the convolution step
becomes costly for the dense layer. Instead, we use the multiply-then-inner-sum approach, as in POSEIDON 2. The values of
WWW h×o are grouped by samples. We first preprocess PPP by duplicating it o times for each label. This duplication is done with
log2(o)+hw(o)−1 rotations. The matrix WWW h×o is column-encoded (row-encoding of its transpose), with each of its columns
replicated n times (for each sample):

WWW h×o =
(
(WWW (1,1), . . . ,WWW (h,1)), . . . ,(WWW (1,1), . . . ,WWW (h,1))︸ ︷︷ ︸

n×h

, . . . ,(WWW (1,o), . . . ,WWW (h,o)), . . . ,(WWW (1,o), . . . ,WWW (h,o)),0, . . . ,0
)
.

The multiplication UUUn×o = PPPn×h×WWW h×o is carried on with a single ciphertext-ciphertext multiplication, followed by an
inner-sum of batch n and h (log2(h)+hw(h)−1 rotations). The resulting vector has a size of onh:

UUUn×o =
(
(UUU (1,1),×, . . . ,×), . . . ,(UUU (n,1),×, . . . ,×)︸ ︷︷ ︸

n×h

, . . . ,(UUU (1,o),×, . . . ,×), . . . ,(UUU (n,o),×, . . . ,×),0, . . . ,0,(×, . . . ,×︸ ︷︷ ︸
h−1

)
)
,

with × denoting unusable by-product values in the ciphertext slots.
Repacking for Bootstrapping. We repack the following elements in a single ciphertext for the optimized bootstrapping:

• UUUn×o: the result of the dense layer, which uses onh+h−1 slots.

• PPPn×h: the result of the convolution layer, which uses nh slots.

• WWW h×o: the dense layer matrix, which uses onh slots.

• ∇∇∇WWW prev
h×o : the updated dense layer weights of the previous backward pass, which uses onh slots.

• ∇∇∇CCCprev
m×h: the updated convolution layer weights of the previous backward pass, which uses size nh+(⌈m/2⌉−1) ·2h+h

slots.

The repacking is done solely with additions and rotations, concatenating the empty slots of UUUn×o:

DDDrepack =UUUn×o +Rotate−onh(PPPn×h)+Rotate−2onh(WWW h×o)+Rotate−3onh(∇∇∇WWW prev
h×o)+Rotate−4onh(∇∇∇CCCprev

m×h).

Bootstrapping and Repacking for Backward Pass. The goal of this step is to refresh the ciphertext DDDrepack to a higher level,
to enable more computation and to re-arrange its slots optimally for the backward pass.

• UUUn×o : We re-order the slots to arrange them first by samples then by classes, and we duplicate each value h times
(replacing the non-zero by-product slots):

UUUbackW =
(
(UUU (0,0), . . . ,UUU (0,0),UUU (0,1), . . . ,UUU (0,1)︸ ︷︷ ︸

2h

), . . . ,(UUU (n−1,0), . . . ,UUU (n−1,0),UUU (n−1,1), . . . ,UUU (n−1,1))
)
.

We note that the size of this vector remains onh. UUUbackW will be used to compute the dense layer error for the updated
dense layer weights. We pack an additional copy of UUU , UUUbackC, which is pre-formatted for the convolution layer error
and clustered by sample. By computing twice the same values in parallel, but packed in two different ways (one for the
dense layer, one for the convolution layer), we avoid expensive and level-consuming repacking procedures, at the cost of
more slot usage. Hence for each label, we pad the nh values with (m/2−1)2h+h additional copies of the relevant rows.
The used size is therefore (nh+(m/2−1)2h+h)o.

UUUbackC =
((

UUU (1,1), . . . ,UUU (1,1)︸ ︷︷ ︸
h

, . . . ,UUU (n,1), . . . ,UUU (n−1,0),UUU (1,1),...

︸ ︷︷ ︸
nh+(m/2−1)2h+h

)
, . . . ,

(
UUU (1,o), . . . ,UUU (1,o), . . . ,(UUU (n,o), . . . ,UUU (n,o),UUU (1,o), . . .

))
.

• PPPn×h: The result of the convolution layer, which is an n×h row-encoded matrix, is re-arranged by duplicating each of its
rows for each class of the dense layer (2 in this example) and multiplied by the learning rate (η).

PPPback = η
(
(PPP(1,1), . . . ,PPP(1,h),PPP(1,1), . . . ,PPP(1,h)︸ ︷︷ ︸

2h

), . . . ,(PPP(n,1), . . . ,PPP(n,h),PPP(n,1), . . . ,PPP(n,h))
)
.

• WWW h×o: The dense layer matrix, which is an h×o column-encoded matrix, is re-arranged by padding each column with
itself such that each column has a size of nh+(m/2− 1)2h+ h, for a total size of o(n× h+(m/2− 1)2h+ h) and is
multiplied by the learning rate (η).

WWW back = η
(
(WWW (1,1), . . . ,WWW (h,1),WWW (1,1), . . .︸ ︷︷ ︸

nh+(m/2−1)2h+h

), . . . ,(WWW (1,o), . . . ,WWW (h,o),WWW (1,o), . . .)
)
.

• ∇∇∇WWW prev
h×o : The previous dense layer updated weights, of size nho. The format is preserved (column encoded matrix of size

ho with each column replicated n times), but the values are multiplied by the momentum (µ).

∇WWW back = µ
(
(∇WWW (1,1), . . . ,∇WWW (h,1)), . . . ,(∇WWW (1,1), . . . ,∇WWW (h,1))︸ ︷︷ ︸

n×h

, . . . ,(∇WWW (1,o), . . . ,∇WWW (h,o)), . . . ,(∇WWW (1,o), . . . ,∇WWW (h,o))
)
.

• ∇∇∇CCCprev
m×h: The previous convolution layer updated weights, of size n×h+(m/2−1)2h+h. The format is preserved (row

encoded matrix, padded), but the values are multiplied by the momentum (µ).

∇∇∇CCCback = µ(∇∇∇CCC(1,1),∇∇∇CCC(1,2), . . . ,∇∇∇CCC(1,h),∇∇∇CCC(2,1), . . . ,∇∇∇CCC(2,h), . . . ,∇∇∇CCC(m,h),∇∇∇CCC(1,1), . . .︸ ︷︷ ︸
nh+(m/2−1)2h+h

).

In summary, the bootstrapped ciphertext contains the following elements:

DDDboot =UbackW︸ ︷︷ ︸
onh

|| UbackC︸ ︷︷ ︸
o(nh+(m/2−1)2h+h)

|| Pback︸ ︷︷ ︸
onh

|| Wback︸ ︷︷ ︸
o(nh+(m/2−1)2h+h)

|| ∇Wback︸ ︷︷ ︸
onh

|| ∇Cback︸ ︷︷ ︸
nh+(m/2−1)2h+h

,

and the total number of slots used in the ciphertext must respect

3onh+(2o+1)(nh+(m/2−1)2h+h)≤N /2

for the ring degree N . Therefore, a bootstrapped ciphertext can hold up to n = ⌊(N/(2h)−(2o+1)(m−1))/(5o+1)⌋ samples.
For example, given N = 215, m = 38, h = 8 and o = 2, the ciphertext holds 169 samples. This number is smaller than the
number of samples that can be repacked in a single ciphertext before the bootstrapping, hence it sets an upper bound for the
number of samples that can be trained in a single batch.
Backward Pass. The backward pass is computed using the ciphertext DDDboot. The different values contained in DDDboot are
accessed via rotations and ciphertext duplication. Masking is used only at the very end to minimize the use of levels. We start
by computing the error of the dense layer formatted for the dense layer update (EEE1) and formatted for the convolution layer
(EEE ′1) at the same time:

(EEE1||EEE ′1) = σ
′(UUUbackW||UUUbackC)⊙

(
σ(UUUbackW||UUUbackC)− (YbackW||YbackC)

)
,

with YbackW||YbackC, the plaintext labels, accordingly encoded and formatted. We then compute in parallel the updated weights
of each sample of the dense layer and the partial error of the convolution layer by multiplying EEE1||EEE ′1 with PPPback||WWW back. Note
that PPPback||WWW back can be accessed and aligned with a rotation on DDDboot.

∇∇∇WWW ||EEE0 = (EEE1||EEE ′1)⊙ (PPPback||WWW back).

∇∇∇WWW is clustered by samples, hence we add a summation across the n samples to obtain the updated dense layer weights
of the batch. The output contains only a single copy, column-encoded, of ∇∇∇WWW , and of size oh. An additional step first adds,
then masks and extracts, each column of the result and replicates them n times to expand its size back to onh and to match the
original encoding format of W (this masking also removes all the unwanted by-product values). ∇∇∇WWW back is added to the result
to get the final updated weights of the dense layer.

We finalize the computation of E0 by a summation across the labels, reducing its size to nh+(m/2− 1)2h+ h). E0 is
already formatted to be multiplied with the plaintext transposed sample matrix η ·LT (pre-pooled and multiplied by η). This
step is same as the convolution layer matrix multiplication:

∇∇∇CCC = η ·LT ×EEE0.

The result is of size nh, with no by-product garbage slots due to the plaintext multiplication, but it needs to be extended to a
size of nh+(m/2−1)2h+h to comply with the formatting of CCC. This is done by replicating the nh slots until it reaches at
least this amount of slots and by masking the overflow of slots. Similarly, ∇∇∇CCCback is added to ∇∇∇CCC, and the result is stored as the
newly updated weights for the next batch of samples.

We summarize the given steps in Algorithm 1. Note that the algorithm describes the local computations. Then, the parties
collectively aggregate and update the global model, which includes the additional step of taking the mean of ∇∇∇WWW and ∇∇∇CCC
across all the parties.

Algorithm 1: The local computation algorithm for encrypted CellCnn training. The exponent of encrypted values
(e.g., y for CCCy) denotes the current ciphertext level. Encryption, encoding, and detailed steps of the repacking during
the bootstrapping are omitted for clarity and are described in the Experimental Procedures section. The value csize
represents nh+(⌈m/2⌉−1)2h+h. We give the function definitions in Table S.1.

Input: X and Y set of samples and labels, learning rate η , momentum µ , batch size n, number of iterations d, number of features m,
number of filters h, number of labels o, maskW a masking vector containing ones in the first onh slots, maskWi a set of o
masking vectors containing ones in the slots inh to (i+1)nh slots for 0 < i < o, and maskC a masking vector containing ones
in the first csize slots.

Output: The encrypted weights CCC and WWW .
1 CCC4← Init(m,h),WWW 3← Init(h,o) // Initialize convolution and dense weights

2 ∇∇∇W 5
prev,∇∇∇C4

prev← 0 // Initialize previous updated weights

3 for i = 0; i < d; i = i+1 do
4 Batch Selection
5 Xbatch← Selectn(X) // Select a batch of random samples
6 Ybatch← Selectn(Y) // Select the corresponding labels
7 Lpool← Pre-pooling(Xbatch) // Apply the pre-pooling to the batch

8 Forward Pass
9 CCC4

tmp←CCC4 +Rotateh(MultImag(CCC4)) // Preprocessing for complex matrix multiplication

10 PPP3← ∑
⌈m/2⌉−1
i=0 Ldiag[i]

pool ⊙Rotate2hi(CCC4
tmp) // Convolution

11 PPP3← Replicatenh,o(PPP
3) // Replicate the result for each label

12 UUU2← InnerSum1,h(PPP3⊙WWW 3) // Dense layer
13 Bootstrapping
14 DDD2

repack =UUU2 +Rotate−nho(PPP3)+Rotate−2nho(WWW 3)+Rotate−3nho(∇∇∇WWW 5
prev)+Rotate−4nho(∇∇∇CCC4

prev) // Pack all

necessary values in a single ciphertext

15 DDD9
boot← Bootstrappη ,µ (DDD

2
repack) // Refresh the ciphertext and formatting for the backward

pass
16 Backward Pass
17 UUU1117← σ(DDD9

boot) // Activation

18 UUU2227← σ ′(DDD9
boot) // Activation derivative

19 EEE1116←UUU2227⊙ (UUU1117−Ybatch) // Dense layer error

20 PPP9← Rotatenho+o·csize(DDD9
boot) // Access pooling result and dense layer weights

21 ∇∇∇WWW 5← PPP9⊙EEE1116 // Dense layer updated weights and convolution layer error

22 EEE0005← Rotatenho(∇∇∇WWW 5) // Access convolution layer error

23 ∇∇∇WWW 5← InnerSumoh,n(∇∇∇WWW 5) // Finish updated weights with summation across the samples

24 EEE0005← InnerSumcsize,o(EEE0005) // Finish E1 with summation across the labels

25 ∇∇∇CCC4← ∑
⌈n/2⌉−1
i=0 (0.5 ·LT,diag[i]

pool)⊙Rotate2mi(EEE0005) // Multiply with the transposed samples

26 ∇∇∇CCC4← ∇∇∇CCC4 +Conjugate(∇∇∇CCC4) // Clean imaginary part

27 ∇∇∇CCC4← Replicatemh,⌈csize/mh⌉(∇∇∇CCC4) // Format updated weights for convolution layer

28 ∇∇∇WWW 5← Replicateh,n(∑
o−1
i=0 Rotate−inh(maskWi⊙∇∇∇WWW 5)) // Format updated weights for dense layer

29 ∇∇∇WWW 8
prev← maskW ⊙Rotate2nho+2o·csize(DDD9

boot) // Access and extract the previous updated weights

30 ∇∇∇CCC8
prev← maskC⊙Rotate3nho+2o·csize(DDD9

boot) // Access and extract the previous updated weights

31 Weights Update
32 ∇∇∇WWW 5← ∇∇∇WWW 5 +∇∇∇WWW 8

prev // Add previous updated weights with momentum

33 ∇∇∇CCC4← ∇∇∇CCC4 +∇∇∇CCC8
prev // Add previous updated weights with momentum

34 CCC4←CCC4−∇∇∇CCC4 // Update the weights

35 WWW 3←WWW 3−∇∇∇WWW 5 // Update the weights

36 ∇∇∇CCC4
prev← ∇∇∇CCC4 // Store the new updated weights

37 ∇∇∇WWW 5
prev← ∇∇∇WWW 5 // Store the new updated weights

38 end
39 return

Supplementary Note 5: Summary of Experiments
In Table S.2, we show the median accuracy, precision, recall, and F-score values of 10 runs for RRMS and NIND experiments
with patient-based sub-sampling shown in Figures 3C, 3D and Figures 4C, 4D, and CMV experiments for phenotype-based
sub-sampling shown in Figure 2. We also report these metrics for the AML classification for the centralized and two-party
PriCell settings.

We note that for 3-class classification, i.e., AML, we rely on macro-averaging on metrics, and we calculate the F-score in
Table S.2 over the averaged precision and recall for the Local-training experimental setting.

Our results show that PriCell achieves an accuracy comparable to the centralized and non-private solutions. The accuracy
achieved by PriCell remains almost the same as the centralized one, and the slight decrease in phenotype classification in NIND
classification is due to the limited number of samples in the test set for this task, i.e., there are only 12 patients in the NIND
phenotype test set, which results in accuracy decrease of 4% in the median value when the trained model misses only one
patient classification.

We further show the F-score distributions over the experiments in Figure S.1, S.2, and S.3. We perform a Wilcoxon signed-
rank test to assess that the CellCnn and PriCell paired F-score results come from the same distribution. As all p-values are
greater than 0.05, these figures support our interpretation that PriCell achieves a classification performance that is comparable
to the centralized and non-private solution.

Lastly, we note that the differences in the precision and recall values are due to the nature of the preprocessing and training
mechanism: the random selection of multi-cell inputs generates higher or lower precision and recall values depending on the
eventual selection, even in the centralized and no privacy-protection solution.

Setting/Metrics Accuracy Precision Recall F-score
RRMS (multi-cell / phenotype classification)

CellCnn 0.65 / 0.67 0.62 / 0.71 0.61 / 0.71 0.66 / 0.71
Local (N=2) 0.59 / 0.62 0.59 / 0.68 0.62 / 0.64 0.59 / 0.66
PriCell (N=2) 0.65 / 0.67 0.66 / 0.75 0.62 / 0.64 0.64 / 0.67
Local (N=4) 0.55 / 0.55 0.57 / 0.61 0.60 / 0.61 0.58 / 0.62
PriCell (N=4) 0.64 / 0.67 0.63 / 0.73 0.61 / 0.64 0.61 / 0.69
Local (N=6) 0.53 / 0.52 0.53 / 0.58 0.55 / 0.54 0.53 / 0.57
PriCell (N=6) 0.64 / 0.67 0.68 / 0.80 0.61 / 0.64 0.63 / 0.69

NIND (multi-cell / phenotype classification)
CellCnn 0.72 / 0.75 0.82 / 0.83 0.75 / 0.71 0.76 / 0.77
Local (N=2) 0.57 / 0.58 0.65 / 0.65 0.59 / 0.52 0.62 / 0.63
PriCell (N=2) 0.72 / 0.75 0.73 / 0.75 0.80 / 0.86 0.78 / 0.80
Local (N=4) 0.55 / 0.55 0.66 / 0.68 0.51 / 0.50 0.59 / 0.58
PriCell (N=4) 0.72 / 0.71 0.75 / 0.73 0.84 / 0.71 0.78 / 0.75
Local (N=6) 0.53 / 0.52 0.63 / 0.64 0.57 / 0.56 0.59 / 0.57
PriCell (N=6) 0.71 / 0.71 0.73 / 0.75 0.76 / 0.71 0.75 / 0.75

CMV (multi-cell / phenotype classification)
CellCnn 0.80 / 0.75 0.72 / 0.58 0.98 / 1.00 0.83 / 0.73
Local (N=2) 0.54 / 0.58 0.52 / 0.42 0.50 / 0.50 0.52 / 0.47
PriCell (N=2) 0.79 / 0.75 0.71 / 0.58 0.98 / 1.00 0.83 / 0.73
Local (N=3) 0.59 / 0.55 0.56 / 0.40 0.64 / 0.67 0.60 / 0.49
PriCell (N=3) 0.79 / 0.75 0.76 / 0.58 0.84 / 1.00 0.80 / 0.73
Local (N=5) 0.50 / 0.52 0.44 / 0.31 0.57 / 0.55 0.50 / 0.39
PriCell (N=5) 0.78 / 0.75 0.69 / 0.58 0.97 / 1.00 0.82 / 0.73

AML (multi-cell / phenotype classification)
CellCnn 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
Local (N=2) 0.98 / 1.00 0.98 / 1.00 0.98 / 1.00 0.98 / 1.00
PriCell (N=2) 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00

Table S. 2. Classification performance (accuracy, precision, recall, and F-score) of the models obtained with original CellCnn,
local training without collaboration, and PriCell for RRMS, NIND, CMV, and AML classification tasks. All models are tested
on two datasets for multi-cell and phenotype classification respectively, separated with ’/’.

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=3)

PriCell
 (N=3)

Local
 (N=5)

PriCell
 (N=5)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. CMV - Phenotype Classification

F-
sc

or
e

p=1.00

p=0.91

p=1.00

(a)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=3)

PriCell
 (N=3)

Local
 (N=5)

PriCell
 (N=5)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. CMV - Multi-Cell Classification

F-
sc

or
e

p=0.62

p=0.56

p=1.00

(b)

Figure S. 1. F-score boxplots when classifying healthy donor (HD) vs. cytomegalovirus infection (CMV) for training
multi-cells drawn from the bag of all cells per class. Experiments are repeated 10 times with different train and test set splits;
the vertical dashed line illustrates the median for the baseline (CellCnn) and the dots represent the outliers. The p-values shown
at the top of the figure are calculated with a Wilcoxon signed-rank test for the comparison between the corresponding boxplots
(p > 0.05 indicates that the distributions are not significantly different). F-score is reported for two datasets: (a) phenotype
classification of 6 patients and (b) multi-cell input classification on 4000 samples.

Supplementary Note 6: Downstream Analysis
The original CellCnn1 study aims at detecting the rare disease-associated cell subsets via learned filter weights. The final filter
weights are used to select phenotype-associated cell subsets via a filter response, i.e., the weighted sum of the abundance profile
for each cell. As the cell subset selected by a filter can contain more than one cell type, the authors perform a density-based
clustering of the group of cells with high cell-filter responses.

We perform an analogous analysis to evaluate the effect of our introduced changes in the original neural network architecture,
namely the average pooling, the approximated activation functions, and the optimizer. We introduce these changes in CellCnn’s
original implementation, simulate our encryption on centralized data, and conduct further analysis by using their downstream
analysis1. We use the CMV infection dataset with c = 200 cells per multi-cell input and z = 1000 samples per phenotype to
generate the training dataset. The test set is generated as explained in the Data Preprocessing and Parameter Selection section.
We train 20 models for CellCnn and 20 models for PriCell simulation and take the best 3 models for each approach based
on the validation accuracy, as in the original work1. In all model training, we use 20 epochs with early-stopping and varying
numbers of filters in each model training.

In Figure S.4, we show the consensus filters, i.e., one representative filter per class (phenotype) that has minimum distance
to all other members of the hierarchically clustered filters, based on a threshold of 0.2, found by CellCnn and PriCell simulation,
respectively. In both Figure S.4a and S.4b, we observe that the filter which is positively associated (second filter) with previous
CMV infection gives more weights to the CD16, CD57, NKG2C, and CD94 markers. We note that while the trend of consensus
filters is similar, the distribution of the consensus filters, i.e., the final filter weights and the scale of the values, differs between
CellCnn and PriCell. This is due to our approximated activation function that affects the final values of the filter weights but
does not affect the interpretation from the consensus filters. Similar results were found for the repetition of these experiments,
which suggests that, as in the original work1, our encrypted model is able to find natural killer (NK) cell populations associated
with prior CMV infection.

In Figure S.5, we show the boxplot of the selected cell population frequencies from the test samples of the CMV- and CMV+
classes by using the positively associated filter. Although CellCnn has higher discriminative frequencies, PriCell simulation is
able to select CMV+ cell populations with the positively associated filter.

Finally, we show in Figure S.6 the marker expression profiles for all cells vs. cell population selected by the positively
associated filter learned by CellCnn training (Figure S.6a) and by PriCell simulation(Figure S.6b). In both CellCnn and PriCell
training, we again observe that the positively associated filter weighs CD16, CD57, NKG2C, and CD94 markers more than the
others.

In summary, we show that the PriCell training does not affect the further findings of an existing work that performs training
on a centralized data without integrating a privacy-preserving mechanism.

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. RRMS - Phenotype Classification

F-
sc

or
e

p=0.62

p=0.38

p=0.62

(a)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. RRMS - Multi-Cell Classification
F-

sc
or

e

p=0.49

p=0.38

p=0.32

(b)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. RRMS - Phenotype Classification

F-
sc

or
e

p=0.56

p=0.62

p=0.92

(c)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. RRMS - Multi-Cell Classification

F-
sc

or
e

p=0.38

p=1.00

p=0.77

(d)

Figure S. 2. F-score boxplots when classifying healthy donor (HD) vs. relapsing–remitting multiple sclerosis (RRMS), for
training multi-cells drawn from the bag of all cells per class (a-b) and drawn from each patient separately (c-d). Experiments
are repeated 10 times with different train and test set splits; the vertical dashed line illustrates the median for the baseline
(CellCnn) and the dots represent the outliers. The p-values shown at the top of the figure are calculated with a Wilcoxon
signed-rank test for the comparison between the corresponding boxplots (p > 0.05 indicates that the distributions are not
significantly different). F-score is reported for two datasets: multi-cell input classification on 96 samples, and phenotype
classification of 12 patients.

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. NIND - Phenotype Classification

F-
sc

or
e

p=1.00

p=0.77

p=0.62

(a)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. NIND - Multi-Cell Classification
F-

sc
or

e

p=0.62

p=0.43

p=0.23

(b)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. NIND - Phenotype Classification

F-
sc

or
e

p=0.56

p=0.92

p=1.00

(c)

CellCnn
 Centralized

Local
 (N=2)

PriCell
 (N=2)

Local
 (N=4)

PriCell
 (N=4)

Local
 (N=6)

PriCell
 (N=6)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HD vs. NIND - Multi-Cell Classification

F-
sc

or
e

p=0.92

p=1.00

p=0.56

(d)

Figure S. 3. F-score boxplots when classifying healthy donor (HD) vs. non-inflammatory neurological disease (NIND), for
training multi-cells drawn from the bag of all cells per class (a-b) and drawn from each patient separately (c-d). Experiments
are repeated 10 times with different train and test set splits; the vertical dashed line illustrates the median for the baseline
(CellCnn) and the dots represent the outliers. The p-values shown at the top of the figure are calculated with a Wilcoxon
signed-rank test for the comparison between the corresponding boxplots (p > 0.05 indicates that the distributions are not
significantly different). F-score is reported for two datasets: multi-cell input classification on 96 samples and phenotype
classification of 12 patients.

C
D

3
C

D
27

C
D

19
C

D
4

C
D

8
C

D
57

2D
L1

-S
1

TR
A

IL
2D

L2
-L

3-
S

2
C

D
16

C
D

10
3D

L1
-S

1
C

D
11

7
2D

S
4

IL
T2

-C
D

85
j

N
K

p4
6

N
K

G
2D

N
K

G
2C 2B

4
C

D
33

C
D

11
b

N
K

p3
0

C
D

12
2

3D
L1

N
K

p4
4

C
D

12
7

2D
L1

C
D

94
C

D
34

C
C

R
7

2D
L3

N
K

G
2A

H
LA

-D
R

2D
L4

C
D

56
2D

L5
C

D
25

ou
t 0

ou
t 1

0

1

0.4

0.2

0.0

0.2

0.4

(a) Consensus filters found by CellCnn

C
D

3
C

D
27

C
D

19
C

D
4

C
D

8
C

D
57

2D
L1

-S
1

TR
A

IL
2D

L2
-L

3-
S

2
C

D
16

C
D

10
3D

L1
-S

1
C

D
11

7
2D

S
4

IL
T2

-C
D

85
j

N
K

p4
6

N
K

G
2D

N
K

G
2C 2B

4
C

D
33

C
D

11
b

N
K

p3
0

C
D

12
2

3D
L1

N
K

p4
4

C
D

12
7

2D
L1

C
D

94
C

D
34

C
C

R
7

2D
L3

N
K

G
2A

H
LA

-D
R

2D
L4

C
D

56
2D

L5
C

D
25

ou
t 0

ou
t 1

0

1

0.5

0.0

0.5

(b) Consensus filters found by PriCell simulation

Figure S. 4. Comparison of the consensus filters (one representative filter per class label) learned by (a) CellCnn original
architecture, and by (b) PriCell’s adapted architecture for encrypted training on CMV dataset.

CMV- CMV+
group

0

10

20

30

se
le

ct
ed

 p
op

ul
at

io
n

fre
qu

en
cy

 (%
)

(a) CellCnn

CMV- CMV+
group

0

5

10

15

20

se
le

ct
ed

 p
op

ul
at

io
n

fre
qu

en
cy

 (%
)

(b) PriCell simulation

Figure S. 5. Comparison of the selected cell population frequencies from the test samples of the CMV- and CMV+ classes by
using the positively associated filter learned by (a) CellCnn original architecture, and by (b) PriCell’s adapted architecture for
encrypted training.

(a) CellCnn

(b) PriCell simulation

Figure S. 6. Comparison of the histograms of univariate z-transformed marker expression profiles for all cells and for the cell
population selected by the positively associated filter learned by (a) CellCnn original architecture, and by (b) PriCell’s adapted
architecture for encrypted training on CMV dataset. The distributions show that PriCell training does not affect the findings of
the non-privacy preserving training.

References
1. Arvaniti, E. & Claassen, M. (2017). Sensitive detection of rare disease-associated cell subsets via representation learning.

Nature Communications, 8(1), 14825. https://doi.org/10.1038/ncomms14825

2. Sav, S., Pyrgelis, A., Troncoso-Pastoriza, J. R., Froelicher, D., Bossuat, J.-P., Sousa, J. S., & Hubaux, J.-P. (2021).
Poseidon: Privacy-preserving federated neural network learning. Network and Distributed System Security Symposium
(NDSS). https://doi.org/10.14722/ndss.2021.24119

	PATTER100487_proof_v3i5.pdf
	Privacy-preserving federated neural network learning for disease-associated cell classification
	Introduction
	Results
	System overview
	CellCnn model overview
	Experimental evaluation
	Model accuracy
	Runtime
	Scalability analysis
	Comparison with previous work
	Downstream analysis

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	System and threat model
	Multiparty Homomorphic Encryption (MHE)
	Datasets
	Non-inflammatory neurological disease (NIND), relapsing–remitting multiple sclerosis (RRMS)
	Cytomegalovirus Infection (CMV)
	Acute Myeloid Leukaemia (AML)

	Local neural network operations
	Polynomial approximations
	Pooling
	Optimizer
	Packing strategy
	Encrypted circuit overview

	Experimental settings

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References

