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S1 Methods  

S1.1 Expression for reproduction number  

We provide the expression for the basic reproduction number, 𝑅0, in the setting with four sub-

groups, based on the largest eigenvalue of the next-generation matrix [1]. In this setting the next-

generation matrix, 𝑅𝑖𝑗, is defined by:  

𝑅𝑖𝑗 = 𝑠𝑢𝑐𝑠𝑖  ×  𝑐𝑖𝑗  ×  
𝑁𝑖

𝑁
. 

We then choose a value of the overall susceptibility such that we can run with the desired basic 

reproduction number. The value is found numerically.  

S1.2 Estimating from the data-generation-model using ABC 
We investigate whether a simple rejection Markov Chain Monte Carlo approximate Bayesian 

computation algorithm (ABC-MCMC) [2] can estimate the true effect of ethnicity in the case 3 

setting with four sub-groups and 𝑎 = 1.2.  We define the ethnicity effect by the parameter 𝛽𝑒 such 

that 𝛽𝑒 ⋅ 𝑠𝑢𝑠𝑐𝐴ℎ
= 𝑠𝑢𝑠𝑐𝐵ℎ

= 𝑎 ∙ 𝛽𝑒 ⋅ 𝑠𝑢𝑠𝑐𝐴𝑙
= 𝑎 ⋅ 𝑠𝑢𝑠𝑐𝐵𝑙

, that is, the high-risk group has an 

increased susceptibility by a factor 𝑎 = 1.2 and ethnicity group 𝐵 has an increased susceptibility by a 

factor 𝛽𝑒 . The aim is to understand whether it is possible to obtain the correct parameters when the 

data-generating model is taken into account. The idea behind ABC is to obtain parameters which 

provide simulations that are close to the observed data. The observed data are taken from a 

simulation with the model. We will assume that all parameters except 𝛽𝑒 and the ethnicity 

assortativity are known. We assume that the basic reproduction number is known, and hence 

calculate 𝑠𝑢𝑠𝑐𝐴𝑙
 from the reproduction number. Hence, this is an ideal situation for the parameter 

estimation, and the results are likely to be less accurate in a real data situation. We assume two 

parameter values for 𝛽𝑒 , 𝛽𝑒 = 1.0 and 𝛽𝑒 = 1.05 and that the ethnicity assortativity is 10. We use a 
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basic reproduction number of 1.3 and the contact structure between risk groups (
𝑝ℎℎ 𝑝ℎ𝑙

𝑝𝑙ℎ 𝑝𝑙𝑙
) =

 (
1/2 1/2
1/2 1/2

). We also assume the same total number of contacts in all four groups, so 𝐶𝐴ℎ
= 𝐶𝐴𝑙

=

𝐶𝐵ℎ
= 𝐶𝐵𝑙

= 1. We first estimate both 𝛽𝑒 and the ethnicity assortativity, then we consider the case 

with a known assortativity and only estimate 𝛽𝑒. We assume independent priors. For 𝛽𝑒 we assume 

a rather wide normal prior distribution with mean 1.0 and variance 9, truncated at 0. For the 

assortativity we assume a uniform prior from 0.05 to 20. We use the ABC-MCMC algorithm proposed 

in [2] and refer to that paper for the algorithm. We are also inspired by the review in [3]. The 

algorithm requires a starting value 𝜃0, a proposal distribution, a distance measure between 

simulations and observations, and an acceptance threshold 𝜖. We use starting values 1.2 for 𝛽𝑒 and 

5 for the assortativity. We assume an independent normal proposal distribution centred at the 

current value of the parameters, with variance 0.2 for 𝛽𝑒 and 4 for the assortativity. We denote the 

proposal distribution by 𝑃(𝑥) where 𝑥 is the current parameter value. As our distance measure, we 

compute the sum of the absolute deviance between the simulated and observed proportion of 

infected in ethnicity groups 𝐴 and 𝐵. We use a threshold of 𝜖 = 0.001. The idea is that we start with 

proposing 𝜃𝑝~𝑃(𝜃𝑖−1). If 𝜃𝑝 has 0 prior probability, we sample again. We then simulate with 𝜃𝑝 and 

compute the distance between the simulations and observations. If the distance is below 𝜖, the 

parameters are accepted with a probability which depends on the proposal distribution and the 

prior, and we set 𝜃𝑖 =  𝜃𝑝. Otherwise 𝜃𝑖 =  𝜃𝑖−1.  We use chains of length 1 000 000 and a burn-in of 

100 000. As the true observations, we simulate from the model 100 times and hence perform 100 

parameter calibrations in each setting.  

S2. Supplementary results  

S2.1 Infection dynamics in cases 1 and 2  

S2.1.1 Case 1 
The time series of infected for case 1 is provided in Figure S1, for some selected values of the 

reproduction number.  



 

Figure S1. Time series of infected in groups 𝐴 and 𝐵 for  𝑅0 = 1.1, 1.5, 2.0 and 3.0. The confidence 

intervals are based on 2000 simulations.  

S2.1.2 Case 2 
The time series of infected for case 2 is provided in Figure S2, for some selected values of the 

relative susceptibility in the high-risk group (𝐴) to the low-risk group (𝐵), 𝑎. We note that the disease 

dynamics and total number infected for the low-risk group depends on 𝑎, even though 𝑎 only affects 

the individual-level risks in the high-risk group.  



 

Figure S2. Time series of infected in groups A and B for 𝑎 = 1.0, 2.0, 3.0 and 4.0. The confidence 

intervals are based on 2000 simulations.  

 

S2.2 Results from ABC parameter estimation  
We provide the results from the parameter estimation using ABC-MCMC. We study the setting 

where we estimate both the assortativity and 𝛽𝑒, and when we assume that the assortativity is 

known and estimate only 𝛽𝑒.  

 Figure S3 shows the histogram of estimated parameters in the different settings. The 

histogram is based on the 900 000 samples for each of the 100 simulations. We note that the 

estimated 𝛽𝑒 is more accurate when we assume a known assortativity, but the mean value seems to 

be well captured in all four settings. We also note that the assortativity is not well estimated.  

 The estimated means together with 95% credible intervals for 𝛽𝑒 in the four settings are 

1.07 (1, 1.15), 1.05 (1, 1.1), 1 (0.95, 1.1), and 1 (0.96, 1.05) for the settings with true  𝛽𝑒 = 1.05 and 



assortativity unknown, 𝛽𝑒 = 1.05 and known assortativity, 𝛽𝑒 = 1.0 and assortativity unknown, and  

𝛽𝑒 = 1.0 and known assortativity, respectively. The mean and 95% credible interval for the 

assortativity when 𝛽𝑒 = 1.05 is 8.9 (0.83, 19.2) and 8.8 (0.6, 19.3) when  𝛽𝑒 = 1.0. We note that 

there is a strong, negative correlation between the estimated 𝛽𝑒 and assortativity, in particular for  

𝛽𝑒 = 1.05. This is because both higher assortativity and higher 𝛽𝑒 will result in more cases in 

ethnicity group 2 (when  𝛽𝑒 > 1). The correlations are -0.71 for 𝛽𝑒 = 1.05 and -0.55 for 𝛽𝑒 = 1.0.  

                 



 

Figure S3. Estimated 𝛽𝑒 for true values 𝛽𝑒 = 1.05 and 𝛽𝑒 = 1 and assortativity of 10, assuming both 

known and unknown assortativity. The lower panel shows the estimated assortativity.  

 



The estimated 𝛽𝑒 together with the 95%-credible interval from each simulation is provided in Figure 

S4. We note that most of the credible intervals are centred at the correct value, but also that the 

intervals vary between the simulations, most likely due to the stochasticity of the disease spread 

model.  

 

 

Figure S4. Estimated 𝛽𝑒 and 95% credible interval for each of the 100 simulations.  
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