
Supplementary Information

S1 GC-MERGE model details

S1.1 Model architecture and training
The GC-MERGE architecture is represented in Figure 2. Here, the first layer of the model per-
forms a graph convolution on the initial feature embeddings with an output embedding size of
256, followed by application of ReLU, a non-linear activation function. The second layer of the
model performs another graph convolution with the same embedding size of 256 on the trans-
formed representations, again followed by application of ReLU. Next, the output is fed into three
successive linear layers of sizes 256, 256, and 2, respectively. A regularization step is performed
by using a dropout layer with probability 0.5. The model was trained using ADAM, a stochas-
tic gradient descent algorithm (Kingma and Ba, 2017). We used the PyTorch Geometric package
(Fey and Lenssen, 2019) to implement our code. Additional details regarding hyperparameter tun-
ing can be found in the Supplemental Section S1.3.

S1.2 Data set pre-processing
To pre-process the data sets, we used pre-existing pipelines of well known tools. To pre-process the
Hi-C data, we used Straw, a software program made available by the Aiden Laboratory (Durand et al.,
2016). Interested readers can refer to the tutorial given at the tool’s web page: https://
github.com/aidenlab/straw/wiki. To pre-process the ChIP-seq data sets, we used
the BEDTools and BamTools suites (Barnett et al., 2011; Quinlan and Hall, 2010). Readers may
find the following tutorial provided by the ENCODE Project to be useful: https://www.
encodeproject.org/chip-seq/histone/.

S1.3 Hyperparameter tuning
Table S1 details the hyperparameters and the range of values we used to conduct a grid search to
determine the optimized model. Specifically, we varied the number of graph convolutional lay-
ers, number of linear layers, embedding size for graph convolutional layers, linear layer sizes, and
inclusion (or exclusion) of an activation function after the graph convolutional layers. Through
earlier iterations of hyperparameter tuning, we also tested the type of activation functions used for
the linear layers of the model (ReLU, LeakyReLU, sigmoid, or tanh), methods for accounting for
background Hi-C counts, as well as dropout probabilities. Some combinations of hyperparameters
were omitted from our grid search because the corresponding model’s memory requirements did
not fit on the NVIDIA Titan RTX and Quadro RTX GPUs available to us on Brown University’s
Center for Computation and Visualization (CCV) computing cluster. We recorded the loss curves
for the training and validation sets over 800 epochs for the classification task and 1000 epochs for
the regression task, by which time the model began to overfit. In addition, the data was split into
sets of 70% for training, 15% for validation, and 15% for testing. The optimal hyperparameters
for our final model that also proved to be computationally feasible are as follows: 2 graph convo-
lutional layers, 3 linear layers, graph convolutional layer embedding size of 256, linear layer sizes

25

Page 26 of 39

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Journal of Computational Biology


