Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Supplement to: Tutt ANJ, Garber JE, Kaufman B, et al. Adjuvant olaparib for patients with *BRCA1-* or *BRCA2-* mutated breast cancer. N Engl J Med 2021;384:2394-405. DOI: 10.1056/NEJMoa2105215

TABLE OF CONTENTS

1.	OLYMPIA COLLABORATORS	3
THE OLY	MPIA STEERING COMMITTEE	3
THE OLY	MPIA GENETICS ADVISORY COMMITTEE	4
OLYMPI	A TRANSLATIONAL ADVISORY COMMITTEE	5
THE OLY	MPIA INDEPENDENT DATA MONITORING COMMITTEE	5
2.	OLYMPIA SITES AND INVESTIGATORS	6
ABCSG:	AUSTRIAN BREAST & COLORECTAL CANCER STUDY GROUP	6
AGO-B:	ARBEITSGEMEINSCHAFT GYNÄKOLOGISCHE ONKOLOGIE BREAST STUDY GROUP	6
BCT-AN	Z: BREAST CANCER TRIALS - AUSTRALIA & NEW ZEALAND	7
BOOG: I	BORSTKANKER ONDERZOEK GROEP	7
CCTG: C	ANADIAN CANCER TRIALS GROUP	7
CEEOG:	CENTRAL AND EAST EUROPEAN ONCOLOGY GROUP	7
EORTC:	EUROPEAN ORGANISATION FOR RESEARCH AND TREATMENT OF CANCER	8
GAICO:	GRUPO ARGENTINO DE INVESTIGACIÓN CLINICA EN ONCOLOGIA	8
GBG: G	ERMAN BREAST GROUP	8
GEICAN	I: SPANISH BREAST CANCER GROUP	9
	ITALIAN ONCOLOGY GROUP FOR CLINICAL RESEARCH	
IBCG: IC	ELANDIC BREAST CANCER GROUP	10
IBCSG: I	NTERNATIONAL BREAST CANCER STUDY GROUP	10
ICR CTS	U: INSTITUTE OF CANCER RESEARCH – CLINICAL TRIALS & STATISTICS UNIT	10
JBCRG:	JAPAN BREAST CANCER RESEARCH GROUP	11
NCI NAT	IONAL CLINICAL TRIALS NETWORK: COMPRISED OF NRG ONCOLOGY, ALLIANCE FOR	
	CLINICAL TRIALS IN ONCOLOGY, ECOG-ACRIN CANCER RESEARCH GROUP AND	4.2
64D0 6	SOUTHWEST ONCOLOGY GROUP	
	WEDISH ASSOCIATION OF BREAST ONCOLOGISTS	
	S AIWAN COOPERATIVE ONCOLOGY GROUP	
	JNICANCER BREAST GROUP NDENT SITES	
	SUPPLEMENTARY METHODS	
3.		
	L PLATFORM MODEL USED TO CONDUCT THE OLYMPIA TRIAL	
	CULATION FOR THE CPS&EG STAGING SYSTEM	
	ULATION FOR THE CPS&EG STAGING SYSTEM	
	SITIVITY ANALYSES SUPPLEMENTARY FIGURES	
4.	SUPPLEIVIENTART FIGURES	52

FIGURE	S1: OLYMPIA TRIAL SCHEMA	32
FIGURE	S2: AVAILABILITY OF BRCA TESTING RESULTS: LOCALLY (INCLUDING BGI GENOMICS FOR	
	ALL PATIENTS IN CHINA) AND CENTRALLY BY MYRIAD GENETICS [1]	33
FIGURE	S3: MULTIPLE TESTING PROCEDURE AT THE INTERIM ANALYSIS	35
FIGURE	S4: CONSORT DIAGRAM FOR THE OLYMPIA TRIAL - PATIENT POPULATION AND	
	DISPOSITION	
	S5: EORTC QLQ-C30 GHQ SCORE	
FIGURE	S6: KM PLOTS FOR IDFS IN THE MATURE COHORT	
5.	SUPPLEMENTARY TABLES	
TABLES	S1: PATIENTS RANDOMIZED IN OLYMPIA, BY COUNTRY	41
TABLES	S2A: BRCA1/2 VARIANT STATUS ANALYSED LOCALLY AND/OR CENTRALLY AT MYRIAD	
	GENETICS [1]	
	S2B: P/LP BRCA1/2 VARIANTS FOR >1 PATIENT [1]	44
TABLES	S3: DISCORDANT LOCAL BRCA1/2 STATUS VS CENTRAL MYRIAD BRCA1/2 STATUS FOR 22	
	(2.0%) PATIENTS AMONG THE 1090 PATIENTS WITH BOTH LOCAL AND CENTRAL MYRIA RESULTS AVAILABLE [1]) /7
	S4: CENTRAL RECEPTOR STATUS EXCLUDING CHINESE PATIENTS	
	S5: LOCAL VS CENTRAL LABORATORY RESULTS: HORMONE RECEPTOR STATUS	
	S6: DEMOGRAPHIC AND BASELINE DISEASE CHARACTERISTICS OF THE PATIENTS	
	S7: TYPE OF FIRST IDFS EVENT [1]	
	S8: ALL DEATHS S9: RESULTS OF SENSITIVITY ANALYSES	
	S10: INVASIVE DISEASE FREE SURVIVAL SUBGROUP ANALYSIS	
	S11: EXPOSURE TO STUDY TREATMENT (SAFETY ANALYSIS SET)	
	S12: DOSE INTENSITY (SAFETY ANALYSIS SET)	
	S13 OF CUMULATIVE EXPOSURE OVER TIME IN MONTHS (SAFETY ANALYSIS SET)	
	S14A: BLOOD TRANSFUSIONS (SAFETY ANALYSIS SET)	
	S14B: BLOOD TRANSFUSIONS OVER TIME (SAFETY ANALYSIS SET)	
	S15: TREATMENT DOSE REDUCTIONS (SAFETY ANALYSIS SET)[1]	67
TABLES	S16: MOST COMMON AES LEADING TO PERMANENT DISCONTINUATION OF TREATMENT	<u> </u>
	(SAFETY ANALYSIS SET)	68
TABLES	S17: ANY CONCURRENT HORMONE THERAPY FOR PRIMARY BREAST CANCER IN THE HR+/HER2- SUBGROUP	60
TADIC	S18: IMPORTANT PROTOCOL DEVIATIONS	
	S19: SUMMARY OF ADVERSE EVENTS IN THE SAFETY ANALYSIS SET [1]	
6.	REFERENCE	/4

1. OLYMPIA COLLABORATORS

We would like to thank the following individuals for their most valuable contribution to the conduct of the OlympiA study.

THE OLYMPIA STEERING COMMITTEE

Voting members

Andrew Tutt, BIG, Chair Charles Geyer, NRG Oncology PI, Co-Chair Judy Garber, Alliance, Co-Chair Bella Kaufman, BIG, Co-Chair Christine Campbell, FS, Study Statistician Gregory Yothers, NRG Oncology, Study Statistician Nigel Baker, AstraZeneca, Study Statistician Robin McConnell, FS Martine Piccart, BIG Richard D Gelber, BIG Priya Rastogi, NRG Oncology Simon Hollingsworth, AstraZeneca Anitra Fielding, AstraZeneca Larissa Korde, NCI Giuseppe Viale, IEO, Lead Pathologist Sunil Lakhani, BCT ANZ, Study Pathologist Peter Lucas, NRG Oncology, Study Pathologist Giovanna Rossi, BIG HQ Christian Singer, ABCSG Elmar Stickeler, AGO-B Kelly-Anne Phillips, BCT ANZ Agnes Jager, BOOG Elzbieta Senkus, CEEOG Monica Arnedos, EORTC Luis Fein, GAICO Eduardo-M De Dueñas, GEICAM Frederik Marmé, GBG Gabriele Zoppoli, GOIRC Óskar Jóhannsson, IBCG Lorenzo Gianni, IBCSG Judith Bliss, ICR-CTSU Masakazu Toi, JBCRG Andrea Eisen, CCTG Anne Armstrong, NCRI-BCSG Niklas Loman, SABO Judith Balmaña, SOLTI Wolfgang Janni, SUCCESS St G

United Kingdom **United States United States** Israel United Kingdom **United States** United Kingdom United Kingdom Belgium **United States** United States United Kingdom **United States United States** Italy Australia **United States** Belgium Austria Germany Australia Netherlands Poland Portugal Argentina Spain Germany Italy Iceland Italy United Kingdom Japan Canada United Kingdom Sweden Spain Germany

Jonas Bergh, SweBCG Tsang-Wu Liu, TCOG Suzette Delaloge, UCBG James Ford, ECOG/ACRIN Priyanka Sharma, SWOG Tiffany Traina, Alliance Seock-Ah Im Sue Friedman, Patient Advocate Tanja Spanic, Patient Advocate Susan Domchek **Rita Schmutzler** Karen Gelmon Guenther G. Steger **Barbro Linderholm** Sibylle Loibl Shao Zhmin Kevin Murray, AstraZeneca Gursel Aktan, Merck

Non-voting members

Eleanor Mcfadden, FS Olga Andriienko, AstraZeneca Karen Cui, AstraZeneca Vassiliki Karantza, Merck Konstantinos Tryfonidis, Merck Amal Arahmani, BIG HQ Evandro de Azambuja, BrEAST Liesbet De Vos, BIG HQ

Sweden Taiwan France United States **United States United States** South Korea **United States** Slovenia United States Germany Canada Austria Sweden Germany China United Kingdom **United States**

United Kingdom Poland United States United States United States Belgium Belgium Belgium

THE OLYMPIA GENETICS ADVISORY COMMITTEE

Judy Garber, Chair Judith Balmaña, Deputy Chair Rebecca Dent Susan Domchek James Ford William Foulkes Bella Kaufman Edith Olah Maria Orr Kelly-Anne Phillips Rita Schmutzler Andrew Tutt

United States Spain Singapore United States United States Canada Israel Hungary AstraZeneca Australia Germany United Kingdom

OLYMPIA TRANSLATIONAL ADVISORY COMMITTEE

United States Susan Domchek, Chair Andrew Tutt, Co-Chair United Kingdom Judy Garber, BRCA1/2 Genetics Advisory Committee Chair **United States United States** Larissa Korde, NCI Dan Hayes, Chair of USA co-op grps biobank **United States** Giuseppe Viale, Lead Study Pathologist, Italy Sunil Lakhani, Molecular/BRCA Pathologist Australia Andrea Richardson, Molecular/BRCA Pathologist United States Chris Lord, Translational Science United Kingdom Jos Jonkers, Translational Science Netherlands Suzette Delaloge, Translational Science France Jan Hoejimakers, Translational Science Netherlands Carl Barrett, Translational Science, AstraZeneca United Kingdom Elizabeth Harrington, AstraZeneca United Kingdom Anitra Fielding, AstraZeneca **United States** Natasha Lukashchuk, Translational scientist, AstraZeneca United Kingdom Peter Lucas, Vice Chair NRG Oncology Pathology Committee **United States**

THE OLYMPIA INDEPENDENT DATA MONITORING COMMITTEE

William E. Barlow, Chair Nancy Berliner Elizabeth Eisenhauer Hakan Olsson Sandra Swain

2. OLYMPIA SITES AND INVESTIGATORS

ABCSG: AUSTRIAN BREAST & COLORECTAL CANCER STUDY GROUP

Krankenhaus Hietzing, Abt. für Atmungs- und Lungenkrankheiten	Austria	Paul Sevelda
KH Voecklabruck, Abt. f. Innere Medizin	Austria	Ferdinand Haslbauer
Krankenhaus der Barmherzigen Schwestern Ried	Austria	Monika Penzinger
St. Josef KH, Interne Abt.	Austria	Leopold Öhler
LKH Leoben	Austria	Christoph Tinchon
Universitätsklinikum Salzburg	Austria	Richard Greil
Klinikum Wels-Grieskirchen	Austria	Sonja Heibl
Allgemeines Krankenhaus der Stadt Wien	Austria	Rupert Bartsch
Aerztezentrum - Ordination Dr. Viktor Wette	Austria	Viktor Wette
Allgemeines Krankenhaus der Stadt Wien	Austria	Christian Singer
LKH Villach, Gynaekologisch-Geburtshilfliche Abt.	Austria	Claudia Pasterk
Krankenhaus der Barmherzigen Schwestern Linz	Austria	Ruth Helfgott
LKH-Universitätsklinikum Klinikum Graz	Austria	Gunda Pristauz-Telsnigg
LKH-Universitätsklinikum Klinikum Graz	Austria	Herbert Stöger
Elisabethinen Hospital	Austria	Angsar Weltermann
Universitätsklinik Innsbruck	Austria	Daniel Egle
Ordination Dr. Irene Thiel	Austria	Irene Thiel
TumorZentrum Kepler Universitatsklinikum Linz	Austria	David Fuchs
LKH Rankweil	Austria	Holger Rumpold
Wilhelminenspital der Stadt Wien, 3. Med. Abteilung	Austria	Kathrin Strasser-Weippl

AGO-B: ARBEITSGEMEINSCHAFT GYNÄKOLOGISCHE ONKOLOGIE BREAST STUDY GROUP

Universitätsklinikum Freiburg	Germany	Beate Rautenberg
Universitäts Hamburg-Eppendorf	Germany	Volkmar Müller
Universitätsmedizin Mainz	Germany	Marcus Schmidt
Klinikum rechts der Isar der TU Muenchen	Germany	Stefan Paepke
Klinikum Bremen-Mitte	Germany	Mustafa Aydogdu
Martin-Luther-Universität Halle-Wittenberg	Germany	Christoph Thomssen
Klinikum Frankfurt Höchst GmbH	Germany	Joachim Rom
Helios-Kliniken Berlin - Buch	Germany	Christine Mau
Friedrich-Alexander-Universität Erlangen-Nürnberg	Germany	Peter Fasching
Johanniter-Krankenhaus Bonn	Germany	Uwe-Jochen Göhring
Klinikum Esslingen GmbH	Germany	Thorsten Kühn
Gynäkologisch-onkologische Praxis	Germany	Stefanie Noeding
Universitätsklinikum Essen (AöR)	Germany	Sherko Kümmel
Marien Hospital Witten gGmbH	Germany	John Hackmann
Universitätsklinikum Aachen	Germany	Elmar Stickeler

BCT-ANZ: BREAST CANCER TRIALS - AUSTRALIA & NEW ZEALAND

The Townsville Hospital Australia Abhishek Joshi Sir Charles Gairdner Hospital Australia Joanna Dewar Prince of Wales Hospital **Michael Friedlander** Australia Peter MacCallum Cancer Centre Australia **Kelly-Anne Phillips Yoland Antill** Cabrini Hospital Australia Mater Cancer Care Centre Australia Natasha Woodward The Tweed Hospital Australia Ehtesham Abdi **Gosford Hospital** Australia Susan Tiley Tamworth Rural Referral Hospital Australia Mathew George David Boadle **Royal Hobart Hospital** Australia **Concord Repatriation General Hospital** Australia Annabel Goodwin Calvary Mater Newcastle Andre van der Westhuizen Australia Ballarat Oncology & Haematology Services Australia George Kannourakis Royal Adelaide Hospital Australia Nicholas Murray **ICON Cancer Care Wesley** Nicole McCarthy Australia

BOOG: BORSTKANKER ONDERZOEK GROEP

Leids Universitair Medisch Centrum	Netherlands	Judith Kroep
Maastricht Universitair Medisch Centrum	Netherlands	Maaike de Boer
Amphia Ziekenhuis	Netherlands	Joan Heijns
Erasmus Medisch Centrum	Netherlands	Agnes Jager
Zuyderland Medisch Centrum Sittard-Geleen	Netherlands	Franciscus Erdkamp
Zaans Medisch Centrum	Netherlands	Sandra Bakker
Nederlands Kanker Instituut Antoni van	Netherlands	Gabe Sonke
Leeuwenhoek Ziekenhuis		

CCTG: CANADIAN CANCER TRIALS GROUP

Saskatchewan Cancer Agency	Canada	Amer Sami
Cross Cancer Institute	Canada	John Mackey
CISSSMC - Hospital Charles Le Moyne	Canada	Catherine Prady
Sunnybrook Health Sciences Centre	Canada	Andrea Eisen
CHAUQ Hopital du St-Sacrement	Canada	Christine Desbiens
Centre Hospitalier de l'Universite de Montreal	Canada	Erica Patocskai
Hopital General Juif	Canada	Cristiano Ferrario
BCCA - Vancouver Centre	Canada	Karen Gelmon
Juravinski Cancer Centre	Canada	Louise Bordeleau
Allan Blair Cancer Centre	Canada	Haji Chalchal
CancerCare Manitoba	Canada	Saroj Niraula

CEEOG: CENTRAL AND EAST EUROPEAN ONCOLOGY GROUP

Tel Aviv Sourasky Medical Center Ichilov	Israel	ido wolf
Uniwersyteckie Centrum Kliniczne w Gdańsku	Poland	Elżbieta Senkus

EORTC: EUROPEAN ORGANISATION FOR RESEARCH AND TREATMENT OF CANCER

Cliniques Universitaires Saint-Luc A.Z. Damiaan Cliniques universitaires de Bruxelles - Hôpital Érasme Institut Jules Bordet Universitair Ziekenhuis Antwerpen (UZA) AZ Groeninge CHU UCL Namur Institut du Cancer de Montpellier Val d'Aurelle Institut Curie - Hôpital René Huguenin CHU de Limoges - Hôpital Dupuytren Hôpital Privé du Confluent Narodowy Instytut Onkologii im. Marii Skłodowskiej- Curie	Belgium Belgium Belgium Belgium Belgium Belgium France France France France Poland	François Duhoux Randal d'Hondt Sylvie Luce Daphné t'Kint de Roodenbeke Konstantinos Papadimitriou Marleen Borms Claire Quaghebeur William Jacot Etienne Brain Laurence Venat-Bouvet Alain Lortholary Zbigniew Nowecki
Centro Clínico Champalimaud Western General Hospital	Portugal United Kingdom	Fátima Cardoso Richard Hayward

GAICO: GRUPO ARGENTINO DE INVESTIGACIÓN CLINICA EN ONCOLOGIA

Clinica Universitaria Privada Reina Fabiola	Argentina	Santiago Bella
Centro Oncologico de Integracion Regional	Argentina	Mauricio Fernández Lazzaro
Clínica Privada Colombo	Argentina	Norma Pilnik
Instituto de Oncología de Rosario	Argentina	Luis Fein
Clinica ISIS	Argentina	Cesar Blajman
CENIT Centro Medico de Neuro, Investigacion y	Argentina	Guillermo Lerzo
Tratamiento		
Centro de Oncologia e Investigacion en Buenos Aires	Argentina	Mirta Varela
Centro Medico San Roque	Argentina	Juan Jose Zarba
Centro Oncologico Riojano Integral (Cori)	Argentina	Diego Kaen
Instituto Medico Especializado Alexander Fleming	Argentina	Maria Victoria Constanzo

GBG: GERMAN BREAST GROUP

Universitätsklinikum Münster Henriettenstiftung, Hannover Klinikum Offenbach Klinikum der Eberhard-Karls-Universität Tübingen Wald-Klinikum Gera DONAUISAR Klinikum Deggendorf Elisabeth-Krankenhaus Kassel Praxisklinik Berlin Johanniter-Krankenhaus der Altmark Stendal Universitätsklinikum Köln Universitätsklinikum Essen (AöR) Kliniken Essen-Mitte Caritasklinik St. Theresia, Saarbrücken	Germany Germany Germany Germany Germany Germany Germany Germany Germany Germany	Joke Tio Wulf Siggelkow Christian Jackisch Eva Maria Grischke Dirk Zahm Sara Tato-Varela Sabine Schmatloch Peter Klare Andrea Stefek Kerstin Rhiem Oliver Hoffmann Sherko Kümmel Mustafa Deryal
Caritasklinik St. Theresia, Saarbrücken Praxis und Tagesklinik, Ebersberg Städtisches Klinikum Brandenburg	Germany Germany Germany	Mustafa Deryal Isolde Gröll Peter Ledwon

Gemeinschaftspraxis, Hildesheim Klinikum Chemnitz Ev. Waldkrankenhaus Spandau, Berlin Luisenkrankenhaus GmbH&Co.KG Düsseldorf Medizinische Hochschule Hannover MVZ Osthessen GmbH, Fulda Oncologianova GmbH, Recklinghausen Studienzentrum Zehlendorf, Berlin StVincentius Kliniken gAG Karlsruhe Universitätsklinikum Leipzig AöR	Germany Germany Germany Germany Germany Germany Germany Germany	Christoph Uleer Petra Krabisch Jochem Potenberg Maren Darsow Tjoung-Won Park-Simon Heinz-Gert Höffkes Till-Oliver Emde Gerd Graffunder Oliver Tomé Dirk Forstmeyer
Praxis Dr. med. Jürgen Terhaag, Eggenfelden Rotkreuzklinikum Munich	Germany Germany	Jürgen Terhaag Christoph Salat
Universitätsklinikum Carl Gustav Carus der TU Dresden	Germany	Karin Kast
Gemeinschaftspraxis für Hämatologie und Onkologie, Erfurt	Germany	Steffi Weniger
Onkologisch Hämatologische Schwerpunktpraxis, Bremen	Germany	Carsten Schreiber
Gemeinschaftspraxis, Augsburg Klinikum Südstadt, Rostock St. Vincenz Krankenhaus, Karlsruhe	Germany Germany Germany	Bernhard Heinrich Max Dieterich Michaela Penelope Wüllner

GEICAM: SPANISH BREAST CANCER GROUP

Hernital Clinica Universitaria Lezana Placa	Cooin	Dogual András Canaiara
Hospital Clinico Universitario Lozano Blesa	Spain	Raquel Andrés Conejero
Hospital Clinico Universitario San Carlos	Spain	José Ángel García Sáenz
Complejo Hospitalario Universitario A Coruña	Spain	Lourdes Calvo Martinez
Consorci Sanitari de Terrassa	Spain	Angels Arcusa Lanza
Hospital Arnau de Vilanova (Lleida)	Spain	Serafín Morales Murillo
Hospital Universitario Virgen Macarena	Spain	Fernando Henao Carrasco
Fundación Instituto Valenciano de Oncología (IVO)	Spain	Salvador Blanch Tormo
Hospital Universitario de Donostia	Spain	lsabel Álvarez López
Hospital Infanta Cristina	Spain	Juan Ignacio Delgado Mingorance
Hospital Lucus Augusti de Lugo	Spain	Elena Álvarez Gomez
Clínica Universitaria de Navarra	Spain	Marta Santisteban
Hospital Universitario de Canarias (Tenerife)	Spain	Josefina Cruz Jurado
Hospital Germans Trias i Pujol	Spain	Vanesa Quiroga
Hospital Universitario Virgen del Rocio	Spain	Manuel Ruiz Borrego
Hospital Provincial Centre de Castello	Spain	Eduardo Martínez de Dueñas
Complejo Asistencial de Avila	Spain	Jose Enrique Alés Martínez
Hospital Universitario Reina Sofía	Spain	Juan De la Haba
Hospital Universitario Ramón y Cajal	Spain	Noelia Martínez Jañez
Hospital General Universitario de Elche	Spain	Álvaro Rodríguez Lescure
Hospital Miguel Servet	Spain	Antonio Antón Torres
Corporació Sanitària Parc Taulí	Spain	Gema Llort Crusades
Hospital San Pedro de Alcántara	Spain	Santiago González-Santiago
Hospital Clínico Univ. Virgen de la Victoria	Spain	Antonia Marquez Aragones
Complejo Hospitalario de Jaen	Spain	Ana Laura Ortega
Hospital de la Santa Creu i Sant Pau	Spain	Agusti Barnadas Molins
Toledo, H. V. de la Salud, Oncología	Spain	José Ignacio Chacón López-Muñiz
	opun	

Hospital General Universitario Gregorio Marañón	Spain	Miguel Martín Jiménez
Hospital Universitari i Politècnic La Fe	Spain	Ana Santaballa Bertrán
Hospital Clínico Universitario de Salamanca	Spain	César Rodríguez
Hospital Quiron de Madrid	Spain	Lucía González Cortijo

GOIRC: ITALIAN ONCOLOGY GROUP FOR CLINICAL RESEARCH

Ospedale Generale Regionale Bolzano Boheler	Italy	Elisabetta Cretella
Lorenz		
Azienda Ospedaliera Policlinico di Modena	Italy	Laura Cortesi
Ospedale di Belcolle	Italy	Enzo Maria Ruggeri
AO Busto Arsizio - Presidio di Saronno - SC Oncologia	Italy	Claudio Verusio
Medica		
Ospedale Sacro Cuore	Italy	Stefania Gori
Azienda Ospedaliera "Mater Salutis"/Aulss 9	Italy	Andrea Bonetti
Ospedale S.Maria della Misericordia	Italy	Anna Maria Mosconi

IBCG: ICELANDIC BREAST CANCER GROUP

Landspitali, University Hospital	Iceland	Oskar Johannsson

IBCSG: INTERNATIONAL BREAST CANCER STUDY GROUP

CHU de Liège	Belgium	Guy Jerusalem
UZ Leuven	Belgium	Patrick Neven
Országos Onkológiai Intézet	Hungary	Tünde Nagy
A. O. Ospedale di Circolo e Fondazione MACCHI	Italy	Graziella Pinotti
European Institute of Oncology	Italy	Marco Colleoni
Fondazione S. Maugeri	Italy	Antonio Bernardo
Ospedale Infermi - Rimini	Italy	Lorenzo Gianni
Multimedica Castellanza	Italy	Eraldo Bucci
Ospedale Misericordia e Dolce	Italy	Laura Biganzoli
University Hospital of Zurich	Switzerland	Konstantin Dedes
Inselspital Bern	Switzerland	Urban Novak
Centre Hospitalier Universitaire Vaudois	Switzerland	Khalil Zaman

ICR CTSU: INSTITUTE OF CANCER RESEARCH - CLINICAL TRIALS & STATISTICS UNIT

Bristol Royal Infirmary, Dept of Oncology	United Kingdom	Jeremy Braybrooke
Weston Park Hospital, Oncology	United Kingdom	Matthew Winter
Queen Elizabeth Hospital	United Kingdom	Daniel Rea
St Georges Hospital, Dept of Oncology	United Kingdom	Muireann Kelleher
The Beatson West of Scotland Cancer Centre	United Kingdom	Sophie Barrett
Nottingham City Hospital	United Kingdom	Stephen Chan
Royal Bournemouth Hospital	United Kingdom	Tamas Hickish
Belfast City Hospital	United Kingdom	Jane Hurwitz
St Bartholomew's Hospital	United Kingdom	John Conibear

CNS/Manager for Cancer and Haematology Clinical Trials	United Kingdom	Apurna Jegannathen
Royal Marsden Hospital	United Kingdom	Marina Parton
Guys And St Thomas Hospital	United Kingdom	Andrew Tutt
Russells Hall Hospital	United Kingdom	Rozenn Allerton
Velindre Cancer Centre	United Kingdom	Annabel Borley
The Christie Hospital NHS Foundation Trust	United Kingdom	Anne Armstrong
Southampton General Hospital	United Kingdom	Ellen Copson
Churchill Hospital	United Kingdom	Nicola Levitt
Addenbrooke's Hospital	United Kingdom	Jean Abraham
St James' University Hospital	United Kingdom	Timothy Perren
University College Hospitals London	United Kingdom	Rebecca Roylance

JBCRG: JAPAN BREAST CANCER RESEARCH GROUP

Iwate Medical University Hospital	Japan	Kazushige Ishida
Nagoya City University Hospital	Japan	Tatsuya Toyama
National Hospital Organization Osaka National	Japan	Norikazu Masuda
Hospital		
Shizuoka Cancer Center	Japan	Junichiro Watanabe
National Hospital Organization Kyushu Cancer	Japan	Eriko Tokunaga
Center		
National Cancer Center Hospital	Japan	Takayuki Kinoshita
Hakuaikai Sagara Hospital	Japan	Yoshiaki Rai
Kyoto University Hospital	Japan	Masahiro Takada
Gunma Prefectural Cancer Center	Japan	Yasuhiro Yanagita
Chiba Cancer Center	Japan	Rikiya Nakamura
Osaka International Cancer Institute	Japan	Takahiro Nakayama
Osaka University Hospital	Japan	Yasuto Naoi
Aichi Cancer Center Hospital	Japan	Hiroji Iwata
Showa University Hospital	Japan	Seigo Nakamura
National Hospital Organization Hokkaido Cancer	Japan	Masato Takahashi
Center		
National Hospital Organization Shikoku Cancer	Japan	Kenjiro Aogi
Center		
St Marianna University School of Medicine	Japan	Koichiro Tsugawa
National Cancer Center Hospital East	Japan	Hirofumi Mukai
The Cancer Institute Hospital of JFCR	Japan	Toshimi Takano
Saitama Medical University International Medical	Japan	Akihiko Osaki
Center		
Niigata Cancer Center Hospital	Japan	Nobuaki Sato
St. Luke's International Hospital	Japan	Hideko Yamauchi
Tokai University Hospital	Japan	Yutaka Tokuda
Hiroshima City Hospital	Japan	Mitsuya Ito
Kochi Medical School Hospital	Japan	Takeki Sugimoto

NCI NATIONAL CLINICAL TRIALS NETWORK: COMPRISED OF NRG ONCOLOGY, ALLIANCE FOR CLINICAL TRIALS IN ONCOLOGY, ECOG-ACRIN CANCER RESEARCH GROUP AND SOUTHWEST ONCOLOGY GROUP

Mercy Hospital Fort Smith	USA	Carlson, Jay W.
Banner MD Anderson Cancer Center	USA	Bahadur, Shakeela Wazeen
UCLA / Jonsson Comprehensive Cancer Center	USA	Ganz, Patricia A.
USC / Norris Comprehensive Cancer Center	USA	Lu, Min Janice
Los Angeles County-USC Medical Center	USA	Lu, Min Janice
Cedars-Sinai Medical Center	USA	Mita, Monica Mirela
City of Hope Comprehensive Cancer Center	USA	Mortimer, Joanne E.
Kaiser Permanente-Fontana	USA	Polikoff, Jonathan A.
Palo Alto Medical Foundation Health Care	USA	D'Andre, Stacy D.
Stanford Cancer Institute Palo Alto	USA	Telli, Melinda L.
Kaiser Permanente San Leandro	USA	Seaward, Samantha Andrews
Kaiser Permanente-Vallejo	USA	Fehrenbacher, Louis
Kaiser Permanente-Oakland	USA	Seaward, Samantha Andrews
Kaiser Permanente-Santa Teresa-San Jose	USA	Fehrenbacher, Louis
Saint Joseph's Medical Center	USA	Puthillath, Ajithkumar
Kaiser Permanente Los Angeles Medical Center	USA	Polikoff, Jonathan A.
Kaiser Permanente-Fresno	USA	Fehrenbacher, Louis
Sutter Medical Center Sacramento	USA	D'Andre, Stacy D.
Kaiser Permanente-Santa Rosa	USA	Fehrenbacher, Louis
Kaiser Permanente-Woodland Hills	USA	Polikoff, Jonathan A.
Kaiser Permanente-Baldwin Park	USA	Polikoff, Jonathan A.
Contra Costa Regional Medical Center	USA	Feusner, James Henry
Sutter Roseville Medical Center	USA	Bobolis, Kristie Ann
Kaiser Permanente West Los Angeles	USA	Polikoff, Jonathan A.
Marin Cancer Care Inc	USA	Eisenberg, Peter David
Kaiser Permanente Medical Center-Vacaville	USA	Fehrenbacher, Louis
Kaiser Permanente-San Marcos	USA	Polikoff, Jonathan A.
Palo Alto Medical Foundation-Santa Cruz	USA	D'Andre, Stacy D.
Palo Alto Medical Foundation-Sunnyvale	USA	Bobolis, Kristie Ann
University of Colorado Hospital	USA	Borges, Virginia F.
Shaw Cancer Center	USA	Urquhart, Alexander Terry
Yale University	USA	Hofstatter, Erin Wysong
Smilow Cancer Hospital Care Center-Trumbull	USA	Hofstatter, Erin Wysong
Smilow Cancer Hospital-Waterbury Care Center	USA	Hofstatter, Erin Wysong
MedStar Georgetown University Hospital	USA	McCarron, Edward C.
MedStar Washington Hospital Center	USA	McCarron, Edward C.
Helen F Graham Cancer Center	USA	Grubbs, Stephen Scott
Halifax Health Medical Center-Centers for Oncology	USA	Deveras, Ruby Anne E.
University of Miami Miller School of Medicine-Sylvester Cancer		,,
Center	USA	Mahtani, Reshma Lillaney
UM Sylvester Comprehensive Cancer Center at Deerfield Beach	USA	Mahtani, Reshma Lillaney
UM Sylvester Comprehensive Cancer Center at Plantation	USA	Mahtani, Reshma Lillaney
· ·		

Emory University Hospital/Winship Cancer Institute
Medical Center of Central Georgia
Northside Hospital
South Georgia Medical Center/Pearlman Cancer Center
-
Straub Clinic and Hospital
Pali Momi Medical Center
University of Iowa/Holden Comprehensive Cancer Center
Oncology Associates at Mercy Medical Center
Mercy Medical Center - North Iowa
Genesis Medical Center - East Campus
Saint Alphonsus Cancer Care Center-Boise
Kootenai Cancer Center
NorthShore University HealthSystem-Highland Park Hospital
Loyola University Medical Center
Mount Sinai Hospital Medical Center
Northwestern University
University of Illinois
Rush University Medical Center
Swedish Covenant Hospital
University of Chicago Comprehensive Cancer Center
,
Presence Saint Joseph Hospital-Chicago
Decatur Memorial Hospital
Illinois CancerCare-Peoria
Joliet Oncology-Hematology Associates Limited
Cancer Care Specialists of Illinois - Decatur
Elmhurst Memorial Hospital
SwedishAmerican Regional Cancer Center
Indiana University/Melvin and Bren Simon Cancer Center
Parkview Hospital Randallia
IU Health Ball Memorial Hospital
The Community Hospital
Michiana Hematology Oncology PC-Mishawaka
University of Kansas Cancer Center
Olathe Health Cancer Center
Cancer Center of Kansas - Wichita
University of Kansas Health System Saint Francis Campus
Cancer Center of Kansas-Wichita Medical Arts Tower
University of Kansas Cancer Center-West
Saint Joseph Hospital East
Ochsner Medical Center Jefferson
CHRISTUS Highland Medical Center
Ochsner Health Center-Summa
Our Lady of the Lake Physician Group
Louisiana Hematology Oncology Associates LLC
Ochsner Medical Center Kenner
Mary Bird Perkins Cancer Center - Covington
Dana-Farber/Harvard Cancer Center
···, · · · · · · · ·····

Paplomata, Elisavet Sumrall, Bradley Thomas Jones, Cheryl F. Ofori, Samuel N. Sumida, Kenneth N.M. Sumida, Kenneth N.M. Thomas, Alexandra Wilbur, Deborah Weil Singh, Joginder (Joe) Spector, David Martens Stella, Philip J. Marchello, Benjamin T. Merkel, Douglas Edward Lo, Shelly S. Khosla, Pam G. Cristofanilli, Massimo Hoskins, Kent F. Cobleigh, Melody Ann Lambiase, Elyse Anne Hahn, Olwen Mary Oliff, Ira Anton Faller, Bryan A. Wade, James Lloyd Burhani, Nafisa D. Wade, James Lloyd Gil, Amaryllis Einhorn, Harvey E. Storniolo, Anna Maria Vita Chang, Brian K. Kalra, Maitri Robin, Erwin L. Ansari, Bilal Sharma, Priyanka Sharma, Priyanka Dakhil, Shaker R. Sharma, Priyanka Dakhil, Shaker R. Sharma, Priyanka Deming, Richard L. Cole, John Thomas Cole, John Thomas Cole, John Thomas Hanson, David S. Ochoa, Augusto C. Cole, John Thomas Ochoa, Augusto C. Garber, Judy Ellen

USA

Beth Israel Deaconess Medical Center
Berkshire Medical Center - Cancer Center
Suburban Hospital
University of Maryland/Greenebaum Cancer Center
Mercy Medical Center
Johns Hopkins University/Sidney Kimmel Cancer Center
Frederick Memorial Hospital
Eastern Maine Medical Center
Penobscot Bay Medical Center
Harold Alfond Center for Cancer Care
William Beaumont Hospital-Royal Oak
Ascension Providence Hospitals - Southfield
Saint Joseph Mercy Hospital
University of Michigan Comprehensive Cancer Center
Wayne State University/Karmanos Cancer Institute
Henry Ford Hospital
Ascension Saint John Hospital
Allegiance Health
Spectrum Health at Butterworth Campus
Genesys Hurley Cancer Institute
Regions Hospital
Mercy Hospital
Essentia Health Cancer Center
Mayo Clinic
Saint Francis Regional Medical Center
Mayo Clinic Health Systems-Mankato
Sanford Joe Lueken Cancer Center
Fairview Clinics and Surgery Center Maple Grove
Washington University School of Medicine
Mercy Hospital Saint Louis
CoxHealth South Hospital
Mercy Hospital Springfield
Saint Louis Cancer and Breast Institute-South City
University of Kansas Cancer Center - Lee's Summit
Kalispell Regional Medical Center
Wake Forest University Health Sciences
Duke University Medical Center
Mission Hospital
Carolinas Medical Center/Levine Cancer Institute
CaroMont Regional Medical Center
FirstHealth of the Carolinas-Moore Regional Hospital
Margaret R Pardee Memorial Hospital
Southeastern Medical Oncology Center-Jacksonville
Sanford Roger Maris Cancer Center
Trinity Cancer Care Center
Altru Cancer Center
Nebraska Methodist Hospital

Garber, Judy Ellen Zimbler, Harvey Armstrong, Deborah Kay Tkaczuk, Katherine H. Rak Riseberg, David Andrew Armstrong, Deborah Kay O'Connor, Brian Marcial Openshaw, Thomas H. Openshaw, Thomas H. Openshaw, Thomas H. Zakalik, Dana Vakhariya, Cynthia Mahesh Stella, Philip J. Schott, Anne F. Simon, Michael Steven Doyle, Thomas J. Stella, Philip J. Stella, Philip J. Yost, Kathleen J. Stella, Philip J. Flynn, Patrick James Zera, Richard T. Friday, Bret E.B. Ruddy, Kathryn J. Zera, Richard T. Ruddy, Kathryn J. Steen, Preston D. Flynn, Patrick James Ademuyiwa, Foluso Olabisi Carlson, Jay W. Carlson, Jay W. Carlson, Jay W. Carlson, Jay W. Sharma, Priyanka Marchello, Benjamin T. Levine, Edward A. Marcom, Paul Kelly Harkness, Cameron Blair Tan, Antoinette R. Charles, William J. Kuzma, Charles S. Radford, James Earl Atkins, James N. Steen, Preston D. Unnikrishnan, Madhu Seeger, Grant Richard Leu, Kirsten M. Hotton

USA

CHI Health Saint Francis	USA
Southeast Nebraska Cancer Center - 68th Street Place	USA
Nebraska Hematology and Oncology	USA
Faith Regional Health Services Carson Cancer Center	USA
Dartmouth-Hitchcock Medical Center/Norris Cotton Cancer	
Center	USA
Morristown Medical Center	USA
Rutgers Cancer Institute of New Jersey	USA
Lovelace Medical Center-Downtown	USA
University of New Mexico Cancer Center	USA
Laura and Isaac Perlmutter Cancer Center at NYU Langone	USA
NYP/Weill Cornell Medical Center	USA
University of Rochester	USA
Montefiore Medical Center-Einstein Campus	USA
Northwell Health/Center for Advanced Medicine	USA
Ohio State University Comprehensive Cancer Center	USA
Cleveland Clinic Foundation	USA
UH Seidman Cancer Center at Southwest General Hospital	USA
Kettering Medical Center	USA
Aultman Health Foundation	USA
Miami Valley Hospital North	USA
Blanchard Valley Hospital	USA
Dayton Physician LLC-Miami Valley Hospital North	USA
UHHS-Chagrin Highlands Medical Center	USA
	USA
Springfield Regional Cancer Center	USA
Mercy Cancer Center-Elyria	
University of Oklahoma Health Sciences Center	USA
Oklahoma Cancer Specialists and Research Institute-Tulsa	USA
Kaiser Permanente Northwest	USA
Allegheny General Hospital	USA
University of Pittsburgh Cancer Institute (UPCI)	USA
WellSpan Health-York Hospital	USA
Delaware County Memorial Hospital	USA
Riddle Memorial Hospital	USA
University of Pennsylvania/Abramson Cancer Center	USA
Fox Chase Cancer Center	USA
Reading Hospital	USA
Penn State Health Saint Joseph Medical Center	USA
Paoli Memorial Hospital	USA
Lankenau Medical Center	USA
Geisinger Wyoming Valley/Henry Cancer Center	USA
Jefferson Hospital	USA
Adams Cancer Center	USA
San Juan City Hospital	USA
Medical University of South Carolina	USA
AnMed Health Cancer Center	USA

Copur, Mehmet Sitki Hauke, Ralph J. Soori, Gamini S. Hauke, Ralph J. Arrick, Bradley A. Reeder, Jennifer G. Toppmeyer, Deborah Lynn Dayao, Zoneddy Ruiz Dayao, Zoneddy Ruiz Adams, Sylvia Cigler, Tessa Barr, Paul Michael Anampa Mesias, Jesus Del Santo Weiselberg, Lora R. Ramaswamy, Bhuvaneswari Gerds, Aaron Thomas Shenk, Robert R. Gross, Howard M. Trehan, Shruti Gross, Howard M. Gross, Howard M. Gross, Howard M. Shenk, Robert R. Gross, Howard M. Shenk, Robert R. Razaq, Wajeeha Razaq, Wajeeha Mansoor, Abdul Hai Julian, Thomas Benjamin Brufsky, Adam Matthew Boyle, L. Eamonn Chowdhury, Nabila DeNittis, Albert S. Domchek, Susan M. Obeid, Elias Cescon, Terrence Paul Rovito, Marc A. DeNittis, Albert S. DeNittis, Albert S. Vogel, Victor G. Julian, Thomas Benjamin Boyle, L. Eamonn Baez-Diaz, Luis Brescia, Frank J. Doster, John Eric

Saint Francis Cancer Center	USA	Siegel, Robert D.
Sanford USD Medical Center - Sioux Falls	USA	Steen, Preston D.
Scott and White Memorial Hospital	USA	Wong, Lucas
Houston Methodist Hospital	USA	Patel, Tejal
Baylor College of Medicine/Dan L Duncan Comprehensive		
Cancer Center	USA	Nangia, Julie Rani
Texas Tech University Health Sciences Center-Lubbock	USA	Jones, Catherine Anne
McKay-Dee Hospital Center	USA	Cannon, George M.
Utah Valley Regional Medical Center	USA	Cannon, George M.
Virginia Commonwealth University/Massey Cancer Center	USA	Bear, Harry Douglas
Centra Lynchburg Hematology-Oncology Clinic Inc	USA	Bear, Harry Douglas
VCU Community Memorial Health Center	USA	Bear, Harry Douglas
Hematology Oncology Associates of Fredericksburg Inc	USA	Bear, Harry Douglas
Inova Schar Cancer Institute	USA	Harnden, Kathleen Kiernan
University of Vermont and State Agricultural College	USA	Wood, Marie Elizabeth
Central Vermont Medical Center	USA	Wood, Marie Elizabeth
Swedish Medical Center-First Hill	USA	Alluri, Krishna Chaitanya
Providence Regional Cancer System-Centralia	USA	Bridges, Benjamin Buckner
Seattle Cancer Care Alliance at EvergreenHealth	USA	Specht, Jennifer Marie
Seattle Cancer Care Alliance	USA	Specht, Jennifer Marie
Kadlec Clinic Hematology and Oncology	USA	Alluri, Krishna Chaitanya
Aurora Saint Luke's Medical Center	USA	Qamar, Rubina
Saint Vincent Hospital Cancer Center at Saint Mary's	USA	Ryan, Matthew L.
Mayo Clinic Health System-Franciscan Healthcare	USA	Ruddy, Kathryn J.
Aurora Cancer Care-Southern Lakes VLCC	USA	Qamar, Rubina
Aurora BayCare Medical Center	USA	Qamar, Rubina
Marshfield Medical Center - Weston	USA	Gayle, Arlene A.
Aurora Cancer Care-Grafton	USA	Qamar, Rubina
Aurora Health Center-Fond du Lac	USA	Qamar, Rubina
West Virginia University Charleston Division	USA	Jubelirer, Steven James
Camden Clark Medical Center	USA	Kurian, Sobha
West Virginia University Healthcare	USA	Salkeni, Mohamad Adham

SABO: SWEDISH ASSOCIATION OF BREAST ONCOLOGISTS

Skånes Universitetssjukhus Lund	Sweden	Niklas Loman
Sahlgrenska Universitetssjukhuset, Gothenburg	Sweden	Barbro Linderholm
Norrlands Universitetssjukhus, Umeå	Sweden	Gustav Silander
Linköpings Universitetssjukhus, Linköping	Sweden	Anna-Lotta Hallbeck
Södersjukhuset, Stockholm	Sweden	Anna von Wachenfeldt Väppling

SOLTI

Hôpital Jean Minjoz	France	Elsa Curtit
IPO Lisboa, Serviço de Oncologia Médica 2	Portugal	Catarina Cardoso
Hospital CUF Descobertas	Portugal	Sofia Braga
IPO Porto, Serviço de Oncologia Médica	Portugal	Miguel Abreu

Hospital Beatriz Ângelo, Hospital de Dia Oncologia	Portugal	Mafalda Casa-Nova
Hospital da Luz	Portugal	Mónica Nave
Hospital Universitario 12 de Octubre	Spain	Eva María Ciruelos Gil
Hospital Vall d'Hebron	Spain	Judith Balmaña Gelpi
Institut Catala d'Oncologia Hospitalet	Spain	Adela Fernández Ortega
Hospital San Joan de Reus	Spain	Josep Gumà Padró
Hospital Clínico Universitario de Valencia	Spain	Begoña Bermejo de las Heras
Usp Institut Universitari Dexeus	Spain	María González Cao
Complejo Hospitalario Universitario de Santiago	Spain	Juan Cueva Bañuelos
(CHUS)		
Hospital Universitario Son Espases	Spain	Jesús Alarcon Company
Hospital Josep Trueta	Spain	Gemma Viñas Villaró
MD Anderson Cancer Center	Spain	Laura García Estevez

SUCCESS

Universitätsklinikum Ulm	Germany	Jens Huober
Brustzentrum Mittelthüringen	Germany	Steffi Busch
Universitätsklinikum Düsseldorf	Germany	Tanja Fehm
Stadtklinik Baden-Baden	Germany	Antje Hahn
Südharz-Krankenhaus Nordhausen gGmbH	Germany	Andrea Grafe
Kreiskrankenhaus Hameln	Germany	Thomas Noesselt
Klinikum Gifhorn GmbH	Germany	Thomas Dewitz
Gemeinschaftspraxis Drs. med. Wilke/Wagner	Germany	Harald Wagner
Klinikum Memmingen	Germany	Christina Bechtner
Leopoldina-Krankenhaus der Stadt Schweinfurt	Germany	Michael Weigel
Marienhospital Bottrop gGmbH	Germany	Hans-Christian Kolberg
Onkologie Ravensburg	Germany	Thomas Decker
Institut für Versorgungsforschung in der Onkologie	Germany	Jörg Thomalla
Diakoniekrankenhaus Rotenburg (Wümme) gGmbH	Germany	Tobias Hesse
Klinikum der Ludwig-Maximillians-Universität	Germany	Nadia Harbeck
München		
Onkologische Schwerpunktpraxis Mülheim	Germany	Jan Schröder
Charité - Universitätsmedizin Berlin	Germany	Jens-Uwe Blohmer
Universitätsklinikum Mannheim	Germany	Marc Wolf Sütterlin
SweBCG Swedish Breast Cancer Group		
Karolinska Universitetssjukhuset, Solna	Sweden	Renske Altena

TCOG: TAIWAN COOPERATIVE ONCOLOGY GROUP

China Medical University Hospital Chang-Gung Medical Foundation Linkou Kaohsiung Medical University Chung-Ho Memorial Hospital	Taiwan Taiwan Taiwan	Chang-Fang Chiu Shin-Cheh Chen Ming-Feng Hou
Mackay Memorial Hospital Chi Mei Hospital-Liou Yin	Taiwan Taiwan	Yuan-Ching Chang Shang-Hung Chen
Changhua Christian Hospital	Taiwan	Shou-Tung Chen
National Taiwan University Hospital	Taiwan	Chiun-Sheng Huang
Veterans General Hospital Taichung	Taiwan	Dah-Cherng Yeh
Triple Service General Hospital	Taiwan	Jyh-Cherng Yu

Veteran General Hospital Taipei	
National Cheng Kung University (NCKU) Hosptial	

TaiwanLing-Ming TsengTaiwanWei-Pang Chung

UCBG: UNICANCER BREAST GROUP

Centre Oscar Lambret	France	Audrey Mailliez
Centre Paul Strauss	France	Thierry Petit
Institut Gustave Roussy	France	Suzette DELALOGE
Centre François Baclesse	France	Christelle Lévy
Hôpital Européen de Marseille	France	Philippe Dalivoust
Institut Paoli Calmettes	France	Jean-Marc Extra
Centre Jean Perrin	France	Marie-Ange Mouret-Reynier
Centre CARIO-HPCA	France	Anne-Claire Hardy-Bessard
CHU Morvan-Institut de Cancerologie et	France	Hélène Simon
d'Hematologie		
Centre Hospitaliser Départemental Les Oudairies	France	Tiffenn L'Haridon
Institut Sainte Catherine	France	Alice Mege
Hôpital Saint Louis	France	Sylvie Giacchetti
Institut Bergonié	France	Camille Chakiba-Brugere
Clinique Pasteur	France	Alain Gratet
Centre Léonard de Vinci	France	Virginie Pottier
Centre Antoine Lacassagne	France	Jean-Marc FERRERO
Centre Henri Becquerel	France	Isabelle Tennevet
Centre Eugène Marquis	France	Christophe Perrin

INDEPENDENT SITES

Grand Hôpital de Charleroi (GHdC) Universitair Ziekenhuis Brussel Fudan University Shanghai Cancer Center Cancer Hospital, CAMS&PUMC PLA 307 hospital Peking Union Medical College Hospital Ruijin hospital Shanghai Jiaotong University of medicine	Belgium Belgium China China China China China	Jean-Luc Canon Sofie Joris Zhimin Shao Binghe Xu ZeFei Jiang Qiang Sun Kunwei Shen
Harbin Medical University Cancer Hospital	China	Da Pang
Tianjin Medical University Cancer Institute and	China	Jin Zhang
Hospital Jiangsu Province Hospital Zhejiang Cancer Hospital	China China	Shui Wang Hongjian Yang
Guangdong Provincial People's Hospital	China	Ning Liao
West China Hospital, Sichuan University	China	Hong Zheng
The 1st Affiliated Hospital of Medical School of	China	Peifen Fu
Zhejiang Un The Union Hospital affiliated to Fujian Medical University	China	Chuangui Song
ShanDong Cancer Hospital	China	Yongsheng Wang
The First Hospital of Jilin University	China	Zhimin Fan
Hebei Medical University Fourth Hospital	China	Cuizhi Geng

Centre Léon Bérard	France	Olivier Tredan
Uzsoki utcai Kórház	Hungary	László Landherr
Chaim Sheba Medical Centre at Tel Hashomer	Israel	Bella Kaufman
Rabin Medical Center	Israel	Rinat Yerushalmi
Hadassah Hebrew University Medical Center	Israel	Beatrice Uziely
Istituto Oncologico Veneto	Italy	Pierfranco Conte
A.O.U. di Bologna – Policlinico Sant'Orsola-Malpighi	Italy	Claudio Zamagni
Ospedale S. Raffaele - Milano	Italy	Giampaolo Bianchini
Istituto Nazionale Tumori Fondazione Pascale IRCCS	Italy	Michelino De Laurentiis
Ospedali Riuniti - Azienda Ospedaliera Papa Giovanni	Italy	Carlo Tondini
XXIII		
La Maddalena Clinic For Cancer University Of	Italy	Vittorio Gebbia
Palermo		
Azienda Ospedaliera Vito Fazzi	Italy	Mariangela Ciccarese
Magodent Szpital Elbląska	Poland	Tomasz Sarosiek
Med Polonia Sp.Z.o.o NSZOZ	Poland	Jacek Mackiewicz
SPZOZ MSWiA z Warmińsko-Mazurskim Centrum	Poland	Anna Słowińska
Onkologii		
Instytut Centrum Zdrowia Matki Polki	Poland	Ewa Kalinka
Niepubliczny Zakład Opieki Zdrowotnej Innowacyjna	Poland	Tomasz Huzarski
Medycyna		
Seoul National University Hospital	South Korea	Seock-Ah Im
Asan Medical Center	South Korea	Kyung Hae Jung
Yonsei University Severance Hospital	South Korea	Joo Hyuk Sohn
Seoul National University Bundang Hospital	South Korea	Jee Hyun Kim
National Cancer Center	South Korea	Keun Seok Lee
Samsung Medical Center	South Korea	Yeon Hee Park
Ewha Womans University Mokdong Hospital	South Korea	Kyoung Eun Lee
Chilgok Kyungpook National University Medical	South Korea	Yee Soo Chae
Center		
Gachon University Gil Hospital	South Korea	Eun Kyung Cho

3. SUPPLEMENTARY METHODS

3.1 DUAL PLATFORM MODEL USED TO CONDUCT THE OLYMPIA TRIAL

This trial was conducted as a partnership between academia, non-profit organisations, government agencies, participating hospitals and industry. The Breast International Group (BIG), Frontier Science and Technology Research Foundation (and its Affiliate, Frontier Science (Scotland) Ltd), the National Cancer Institute, NRG Oncology and AstraZeneca have all played key roles. The guiding principles for the conduct of the study are those of BIG and NRG/ NCI. Data is collected, reviewed and analysed following the Standard Operating Procedures of Frontier Science (non-profit organisation) and NRG/ NCI. All of these organisations have representation on the trial Steering Committee along with representatives of the geographic areas involved in the trial and consumer representatives. A detailed Publication Policy governs all publications using trial data and decisions to publish come from the Steering Committee, not from any individual or individual organization.

Two protocols, identical in terms of study objectives and scientific content differing only in logistical and regulatory content appropriate for the country(ies) they covered (eg. drug distribution, mechanisms for SAE reporting during the study, etc), are employed in the study. The protocol under AZ sponsorship covers all patients recruited from non-US sites and the protocol under NRG sponsorship covers patients within the US. The protocols were developed as a collaboration between the partners described above.

The trial used a single randomization system hosted by Frontier Science (FS) and is reported as one study. Randomization was done using a permuted block algorithm with block-size 4. The randomization system has a built-in random number generator to start the allocations, and blocks are generated randomly as they are required, so there are no random lists generated ahead of time. Non-US sites used the FS front end to get into the randomization system. US sites used the NCI OPEN system which collected pre-randomization information and then connected to the FS system to complete randomization. All patients, treating physicians, and study personnel were blinded to treatment allocation with exception of the Independent Statistical Center, which was provided with treatment codes by the randomization system administrator in order to prepare reports for the Independent Data Monitoring Committee (IDMC).

The collection of the patient data is done using two instances of Rave EDC system (one for the US patients, maintained by NRG, and one for all other patients outside of the US, maintained by FS)). FS and NRG collaborated on the design of the two databases and the respective eCRFs to ensure as much consistency as possible in the data collection. Some differences have been necessary due to differences in company and/or regional data collection standards and these differences are all documented in consistency documentation maintained by AZ. Quality control of the data is done by Frontier Science and NRG for the respective Rave instances. The data from both databases are routinely combined into a single consolidated database at regular intervals. All statistical analyses as well as reports for periodic review by the IDMC have been conducted and reported from the single consolidated database, built, maintained and held by Frontier Science. The Sponsors (NRG/ NCI and AstraZeneca) had no access to this database during the conduct of the trial. Subsets of blinded data were provided for specific purposes as required, e.g. DSUR reporting data to AZ and a subset of PRO data to NRG to allow them to test analysis programs.

3.2 ELIGIBILITY CRITERIA

Inclusion criteria

1. Provision of informed consent prior to any study specific procedures

- 2. Female or male patients must be ≥18 years of age
- 3A. For patients who underwent initial surgery and received adjuvant chemotherapy
 - TNBC patients must have been axillary node-positive (≥pN1, any tumour size) or axillary nodenegative (pN0) with invasive primary tumour pathological size > 2 cm (≥pT2)
 - ER and/or PgR positive/HER 2 negative patients must have had ≥4 pathologically confirmed positive lymph nodes

3B. For patients who underwent neoadjuvant chemotherapy followed by surgery

- TNBC patients must have residual invasive breast cancer in the breast and/or resected lymph nodes (non pCR)
- ER and/or PgR positive/HER 2 negative patients must have residual invasive cancer in the breast and/or the resected lymph nodes (non pCR) AND a CPS&EG score ≥3. Instructions how to calculate CPS&EG score (Mittendorf et al 2011; Jeruss et al 2008) are provided in Appendix 4 in the protocol.

4. Histologically confirmed non-metastatic primary invasive adenocarcinoma of the

breast that is one of the two following phenotypes:

a) TNBC defined as:

- ER and PgR negative defined as IHC nuclear staining <1%.

AND

- HER2 negative (not eligible for anti-HER2 therapy) defined as:

o IHC 0, 1+ without ISH OR

o IHC 2+ and ISH non-amplified with ratio less than 2.0 and if reported, average HER2 copy number < 4 signals/cells **OR**

- o ISH non-amplified with ratio less than 2.0 and if reported, average HER2 copy number < 4 signals/cells (without IHC)
- b) ER and/or PgR positive, HER2 negative breast cancer defined as:
 - ER and/or PgR positive defined as IHC nuclear staining $\geq 1\%$.

AND

- HER2 negative (not eligible for anti-HER2 therapy) defined as:

o IHC 0, 1+ without ISH OR

o IHC 2+ and ISH non-amplified with ratio less than 2.0 and if reported, average HER2 copy number < 4 signals/cells **OR**

o ISH non-amplified with ratio less than 2.0 and if reported, average HER2 copy number < 4 signals/cells (without IHC)

Patients with multifocal or multicentric invasive disease are eligible as long as all the lesions for which HER2 characterization is available are HER2 negative.

Patients with synchronous bilateral invasive disease are eligible as long as all the lesions assessed for HER2 on both sides are negative.

In both the above cases the lesion considered at highest risk for recurrence based on the investigator's discretion will be used for eligibility determination.

- 5. Documented germline mutation in BRCA1 or BRCA2 that is predicted to be deleterious or suspected deleterious (known or predicted to be detrimental/lead to loss of function). Local gBRCA testing results, if available, will be used for establishing eligibility. If local gBRCA testing results are not available, central testing will be provided for those patients who otherwise appear to be
- eligible (see Section 6.2.1 in the protocol).
- 6A. Completed adequate breast surgery defined as:
 - The inked margins of breast conservation surgery or mastectomy must be histologically free of invasive breast cancer and ductal carcinoma in situ with the exception of the posterior margin if this margin is the pectoralis major fascia or the anterior margin if this is the dermis. Patients with resection margins positive for lobular carcinoma *in situ* are eligible.
 - Patients with breast conservation must have adjuvant radiotherapy. Patients having mastectomy may have adjuvant radiotherapy according to local policy and/or international guidelines.

6B. Completed adequate axilla surgery defined as:

Adjuvant Chemotherapy Patients:

- Sentinel lymph node biopsy alone if negative or if lymph node(s) only contain micrometastases
 (≤2.0 mm) OR
- Positive sentinel lymph node biopsy followed by axillary nodal dissection or radiotherapy as per local guidelines **OR**
- Axillary dissection

Neoadjuvant Chemotherapy Patients:

- Sentinel lymph node biopsy performed *before* neoadjuvant chemotherapy:
 - If negative or if lymph node(s) only contain micrometastases (≤2.0 mm) additional axillary surgery is not required
 - If positive, axillary node dissection or axillary nodal radiotherapy should follow completion of neoadjuvant chemotherapy
- Sentinel lymph node biopsy performed *after* neoadjuvant chemotherapy:
 - If negative, additional axillary surgery not mandated
 - If positive (micrometastases are regarded as positive), additional axillary surgery is required unless the patient is enrolled in a Phase III multicenter clinical trial proposing radiotherapy as alternative treatment of the axilla. The trial must be pre-approved by the OlympiA Executive Committee
- Axillary dissection

7. Completed at least 6 cycles of neoadjuvant or adjuvant chemotherapy containing anthracyclines, taxanes or the combination of both. Prior platinum as potentially curative treatment for prior cancer (e.g. ovarian)

or as adjuvant or neoadjuvant treatment for breast cancer is allowed. (For neoadjuvant patients all chemotherapy should be delivered prior to surgery. No further cycles of chemotherapy post surgery are allowed.)

 8. Patients must have adequate organ and bone marrow function measured within 28 days prior to randomisation with no blood transfusions (packed red blood cells and/or platelet transfusions) in the past 28 days prior to testing for organ and bone marrow function as defined below:

- Haemoglobin ≥10.0 g/dL

- Absolute neutrophil count (ANC) \geq 1.5 x 109/L

- Platelet count ≥100 x 109/L

- Total Bilirubin \leq ULN (institutional upper limit of normal) except elevated total bilirubin <1.5 x ULN due to Gilbert's disease or similar syndrome involving slow conjugation of bilirubin

- AST (SGOT)/ALT (SGPT) ≤2.5 x ULN

- ALP ≤2.5 x ULN

To rule out metastatic breast cancer, patients with screening ALT/AST or ALP above institutional upper limit of normal should have liver ultrasound, CT or MRI at any time point between diagnosis of current breast cancer and randomisation.

Screening bone scan is required if ALP and/or corrected calcium level are above the institutional upper limit. (Note: PET CT scan may be used as an alternative imaging technique).

9. Serum or plasma creatinine ≤1.5 x ULN

10. ECOG performance status 0-1

11A. Women who are not postmenopausal or have not undergone hysterectomy must have documented negative pregnancy test within 28 days prior to randomisation:

Postmenopausal is defined as:

- Age ≥60 years
- Age <60 years and amenorrheic for 1 year or more in the absence of chemotherapy and/or hormonal treatment
- Follicle stimulating hormone (FSH) and plasma estradiol levels in the postmenopausal range for women under 60 years
- Radiation-induced oophorectomy with last menses >1 year ago
- Bilateral oophorectomy

11B. Women of child bearing potential and their partners, who are sexually active, must agree to the use of two highly effective forms of contraception in combination. This should be started from the signing of the informed consent and continue, throughout the period of taking study treatment and for at least 1 month after last dose of study drug, or they must totally/truly abstain from any form of sexual intercourse. Male patients must use a condom during treatment and for 3 months after last dose of study drug when having sexual intercourse with a pregnant woman or with a woman of childbearing potential. Female partners of male patients should also use a highly effective form of contraception (see Appendix E in the protocol for acceptable methods) if they are of childbearing potential.

12. Patient is willing and able to comply with the protocol for the duration of the study including undergoing treatment and scheduled visits and examinations

13. Formalin fixed, paraffin embedded (FFPE) tumour sample from the primary tumour, mandatory*. *NOTE: For adjuvant patients, this refers to the surgical specimen; for neoadjuvant patients, both the pretreatment core biopsy and the surgical specimen with residual disease are requested but only one is mandatory. If the surgery tumour blocks are available, but cannot be submitted, sites may submit a portion of invasive tumour from the original block, either by taking at least one core of at least 3 mm in diameter, or by splitting the original block in two parts, and re-embedding one in a new block for central submission. If blocks containing pre-neoadjuvant treatment core biopsies are available but cannot be submitted, sections mounted on glass slides prepared from the block can be provided. If tumour sample can't be provided as requested above or if it's not available, approval by Study Team for patient's entry into the trial is required.

14. Patient should be randomised in the trial ideally within a maximum of 8 weeks of completion of their last treatment (surgery, chemotherapy or radiotherapy), but in no case longer than 12 weeks.

Exclusion criteria (protocol text abbreviated)

- 1. Involvement in the planning and/or conduct of the study
- 2. BRCA1 and/or BRCA2 mutations that are considered non detrimental
- 3. Previous randomisation in the present study
- 4. Evidence of metastatic breast cancer
- 5. Exposure to an investigational product within 30 days or 5 half-lives (whichever is longer) prior to randomisation
- 6. Previous treatment with a PARP inhibitor and/or known hypersensitivity to any of the excipients of study treatment
- 7. Patients with second primary cancer, unless they meet protocol-specified exceptions
- 8. Resting ECG with QTc > 470 msec detected on 2 or more time points within a 24-hour period or family history of long QT syndrome
- 9. Patients receiving systemic chemotherapy within 3 weeks prior to randomisation
- 10. Patients receiving adjuvant radiotherapy within 2 weeks prior to randomisation
- 11. Concomitant use of known strong or moderate CYP3A inhibitors or Concomitant use of known strong or moderate CYP3A inducers.
- 12. Persistent toxicities (>=CTCAE grade 2) caused by previous cancer therapy
- Patients with current or past history of hematologic malignancies and any clonal non-malignant haematological disorder which predisposes the patient to develop a haematological malignancy. Exception: lymphoma (refer to Exclusion Criterion 7).
- 14. Major surgery within 2 weeks of starting study treatment
- 15. Patients considered a poor medical risk due to a serious, uncontrolled medical disorder, nonmalignant systemic disease or active, uncontrolled infection
- 16. Patients unable to swallow orally administered medication and patients with gastrointestinal disorders likely to interfere with absorption of the study medication
- 17. Pregnant or breastfeeding women
- 18. Patients with known active Hepatitis B or C or HIV
- 19. Previous allogeneic bone marrow transplant
- 20. Whole blood transfusions in the last 120 days prior to entry to the study which may interfere with gBRCA testing

3.3 CALCULATION FOR THE CPS&EG STAGING SYSTEM

The CPS&EG score is a staging system for disease specific survival in patients with breast cancer treated with neoadjuvant chemotherapy.¹ This incorporates pretreatment clinical stage, estrogen receptor status, nuclear grade and post-neoadjuvant chemotherapy pathological stage.

Calculation instructions: Add the points for Clinical Stage + Pathologic Stage + ER status + Nuclear grade to derive a sum (CPS&EG score) between 0 and 6.

Stage/feature		Points
Clinical Stage	0	0
(AJCC staging [1])	IIA	0
	IIB	1
	IIIA	1
	ШВ	2
	IIIC	2
Pathologic Stage (AJCC staging [1])	0	0
	1	0
	IIA	1
	ΙΙΒ	1
	IIIA	1
	IIIB	1
	IIIC	2
Receptor status	ER negative [2]	1
Nuclear grade [3]	Nuclear grade 3	1

[1] AJCC: American Joint Committee on Cancer (https://cancerstaging.org/Pages/default.aspx).

[2] ER: Estrogen receptor; definitions for ER negativity see eligibility criteria in the protocol Section 4.1.4.a.

[3] In the unlikely situation nuclear grade cannot be determined, regular histologic grade should be used; if

only Nottingham overall grade is reported, the Nottingham overall grade must be 9 to be scored as 1 point in the CPS&EG score (<u>http://pathology.jhu.edu/breast/grade.php</u>).

3.4 POOLING STRATEGY FOR STRATIFICATION FACTORS

The primary stratified log-rank test of IDFS will be based on the stratification factors determined from the following pooling strategy.

In the event that there are fewer than 5 IDFS events per treatment arm within any individual stratum (initially starting with 16 strata; 16=2x2x2x2 including treatment group), one stratification factor will be removed at a time until there are at least 5 IDFS events within each individual stratum in the following order:

- 1. Prior platinum use for breast cancer (yes/no)
- 2. Prior chemotherapy (neo-adjuvant vs. adjuvant)
- 3. Hormone receptor status (ER and/or PgR positive/HER2 negative vs. TNBC)

Result: When all three factors were included, there were strata with fewer than 5 IDFS events per treatment arm. Hence, prior platinum was removed as a stratification factor. When the remaining two factors were included, there were strata with fewer than 5 IDFS events per treatment arm. Hence, prior chemotherapy was removed as a stratification factor. Therefore, the primary stratified Cox proportional hazards model and the stratified log-rank test of IDFS were based on the stratification factor of hormone receptor status only.

3.5 SENSITIVITY ANALYSES

The protocol specified that seven (7) sensitivity analyses were to be performed if specific criteria were met. In this section we describe the sensitivity analyses, and, for those that met the criteria for conducting the sensitivity analysis, results are presented in tables within this Supplementary Appendix.

1: Confirmed (central Myriad test) germline *BRCA1* and *BRCA2* deleterious/suspected deleterious variant

The protocol specified that, If applicable, an analysis would be performed for IDFS based on all randomised patients confirmed to have *BRCA1* or *BRCA2* germline deleterious/suspected deleterious variant (gBRCA-D/SD-variant) by the central Myriad test. This analysis is only required if the analysis population differs from the primary ITT population (i.e. only required if any of the randomised patients are not confirmed to have gBRCA-D/SD-variant by the central Myriad test).

1539 patients had a Myriad confirmed gBRCA D/SD variant (see Table S2A in this Supplementary Appendix).

Results: The results of this analysis are presented within Table S9 in this Supplementary Appendix.

2: Mis-stratification in the randomisation system

Any patients mis-stratified in the randomisation system (i.e. incorrect details are entered at the time of randomisation) were included in the primary stratified analysis based on the information from the randomisation system. Cross-tabulations of stratification factors from the randomisation system and the correct baseline data from the eCRF were performed. If >5% of randomised patients are incorrectly stratified (i.e. randomisation system data does not match baseline data confirmed in the eCRF) then a sensitivity analysis would be performed for IDFS using the same model as described above but using the eCRF information instead of the randomisation system information. [Note: For all patients, the characteristics reported in the eCRF were used to determine subgroups for the subgroup analyses, while the randomisation system information was used to stratify the logrank and Cox model analyses.]

In accordance with the pooling strategy only hormone receptor status was fitted as a stratification factor. Of the 1836 in the ITT population, 32 (1.7%) had discordant hormone receptor status between what was reported in the randomisation system and what was reported on the eCRF.

Results: Because the 5% threshold was not met, this sensitivity analysis was not performed.

3: Central pathology review

The protocol specified that if the results of ER and PgR status from the local and central labs differ in >5% of randomised patients, then a sensitivity analysis would be performed for IDFS using the same model as described above, but using the central lab result to determine the HR status stratification factor and compared with the primary analysis result.

Of the 1452 patients that have both a central and a local hormone receptor status, 147 (10%) have discordant results (Table S5 in this Supplementary Appendix). 247 patients did not have material available for central pathology review because of regulatory requirements by authorities in China. Central receptor status review results excluding patients from China are shown in Table S4 in this Supplementary Appendix.

Results: Because the 5% threshold for discordance between local and central hormone receptor status was met, this sensitivity analysis was performed. The results of this analysis are presented in Table S9 in this Supplementary Appendix.

4: Important protocol deviations (IPDS)

Important protocol deviations (IPD)s are a concise list of pre-defined protocol deviations which have a very high likelihood of influencing the primary efficacy and/or the secondary safety results. The protocol stated that a 'deviation bias' sensitivity analysis may be performed excluding patients with IPD's that may affect the efficacy of the trial therapy. This sensitivity analysis would be performed excluding patients with IPD's that may affect that may affect the efficacy of the trial therapy if > 10% of patients in either treatment group did not have the intended disease or indication or did not receive any randomised therapy.

Of the 1836 patients in the ITT population, 30 (1.6%) did not have intended disease or indication, or did not receive any randomised treatment (see Table S18 in this Supplementary Appendix).

Results: Because the 10% threshold for IPDs was not met, this sensitivity analysis was not performed.

5. Unadjusted analysis

The protocol stated that an unadjusted (unstratified Cox model) analysis would be performed as a sensitivity analysis and compared with the primary results.

Results: This unstratified Cox model analysis was performed. The results of this analysis are presented in Table S9 in this Supplementary Appendix.

6. Assumption of proportional hazards

The protocol stated that the assumption of proportional hazards underlying the log-rank test and the Cox model used for the primary analysis would be assessed. Proportionality will be assessed using two approaches, firstly by inspecting plots of complementary log-log (time) versus log (time) and secondly by formally testing using the Grambsch–Therneau test (G-T) based on scaled Schoenfeld residuals from a Cox model including treatment group as a factor. If the G-T test is significant (p<0.05), and proportionality is rejected, Restricted Mean Survival Time (RMST) methods would be used to estimate and test the treatment difference while allowing for non-proportional hazards.

Results: The G-T tests reached the p<0.05 threshold. This indicates that proportional hazards cannot be assumed. a rejection of the null hypothesis of proportional hazards. The p-value for the G-T test with identity transformation of time was p=0.02, and the p-value for the G-T test with rank transformation of time was p=0.02 (see Table S9 in this Supplementary Appendix).

Because the null hypothesis of proportionality was rejected, as specified in the Statistical Analysis Plan, a sensitivity analysis was performed based on the restricted mean survival time (RMST) method, restricting the calculation of RMST to within the first 4.1 years (49 months) of follow-up. The restriction time was defined as the minimum of the maximum of the longest IDFS event time between the two treatment groups. Under non-proportional hazards, the estimated hazard ratio can be interpreted as an average hazard ratio over the observed follow-up period. This hazard ratio may under and overestimate the hazard during different periods of the follow-up. The results of the RMST analysis reach the same conclusion as the main analysis of IDFS, that there is a treatment benefit for the olaparib group. The results of the RMST analysis is presented in Table S9 in this Supplementary Appendix.

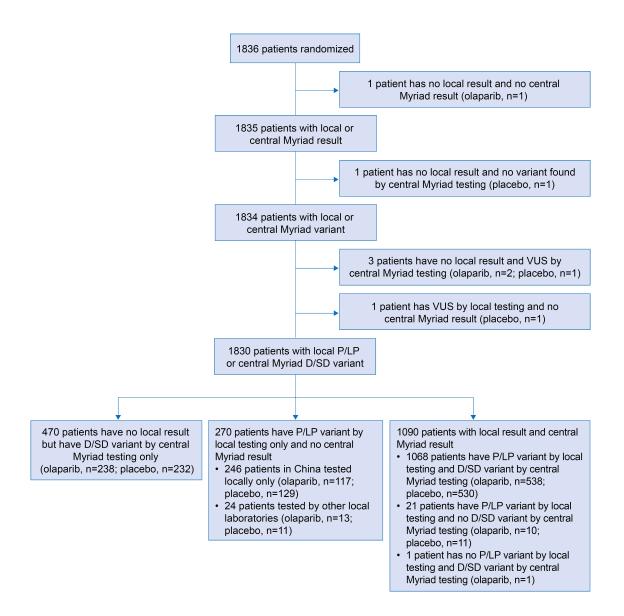
7. Interval censored cox regression

The protocol stated that an interval censored analysis would be performed as a sensitivity analysis and compared with the primary results. Patients whose visit schedule has not been according to the protocol are fitted in the Cox model using interval censoring,

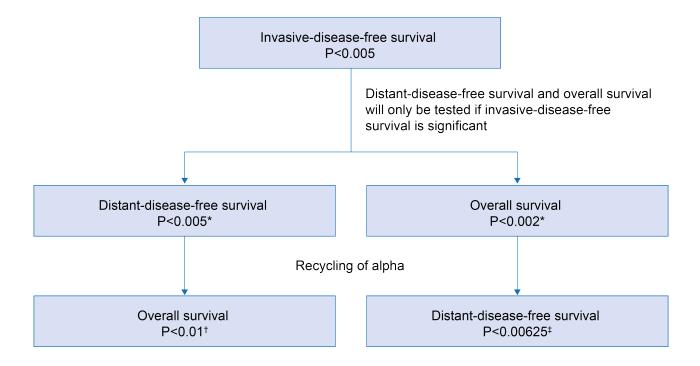
- For patients experiencing an event, and without follow-up according to the protocol (defined as over 18 months between the event and the last visit), the interval from the last date at which the subject was known to be IDFS free to the date of recurrence or death, will be used.
- For patients that were previously censored, or had an event and were seen according to the protocol defined visit schedule, the lower limit of the interval will be set to the censoring/event date, while the upper limit will be set to missing.

Results: No patients met the criteria to initiate this sensitivity analysis.

4. SUPPLEMENTARY FIGURES


FIGURE S1: OLYMPIA TRIAL SCHEMA

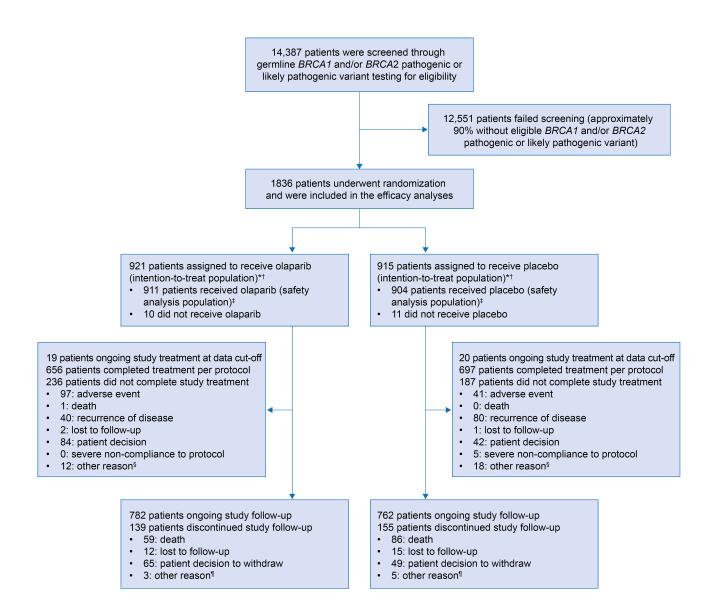
Germline BRCA1 or BRCA2 pathogenic/likely pathogenic variant breast cancer · HER2-negative (hormone receptor-positive Olaparib 300 mg or TNBC) twice daily for 1 year · Completed local treatment and at least six cycles of neoadjuvant or adjuvant chemotherapy containing anthracycline and/or taxanes N=1836 1:1 randomization* TNBC Placebo twice daily Neoadjuvant: non-pCR for 1 year • Adjuvant: ≥pT2 or ≥pN1 Hormone receptor-positive • Neoadjuvant: non-pCR and CPS+EG score ≥3 • *Adjuvant:* ≥4 positive lymph nodes **Secondary End Points Primary End Point** Distant-disease-free survival Invasive-disease-free survival • Overall survival


CPS+EG score (see Section 3.3) incorporates pretreatment clinical stage, estrogen receptor status, nuclear grade and pathological stage after neoadjuvant chemotherapy¹; HER2 denotes human epidermal growth factor receptor 2; pCR denotes pathologic complete response; TNBC denotes triple negative breast cancer.

* Stratification factors: (i) hormone receptor-positive vs. TNBC; (ii) neoadjuvant vs. adjuvant; (iii) prior platinum-based chemotherapy (yes vs. no).

FIGURE S2: AVAILABILITY OF BRCA TESTING RESULTS: LOCALLY (INCLUDING BGI GENOMICS FOR ALL PATIENTS IN CHINA) AND CENTRALLY BY MYRIAD GENETICS [1]

[1] This schema illustrates the availability of *BRCA1* and *BRCA2* testing in OlympiA. If testing results were not available for patients who otherwise appeared to be eligible, screening was conducted using BGI Genomics in China and Myriad elsewhere. 6 patients who enrolled in the study without confirmed evidence of a gBRCA-P/LP (D/SD)-variant are described in the top 4 boxes on the right side of the figure (the 1 patient with VUS was screened in China at BGI Genomics). The bottom 3 boxes describe 470 patients with gBRCA-D/SD-variant by central Myriad test but no local result available, 270 patients with gBRCA-P/LP-variant by local test but no central Myriad test result available (246 of whom were screened in China at a single laboratory - BGI Genomics), and 1090 patients with both local and central Myriad results available, showing that 22 of these 1090 patients (2.0%) had discordant local versus central results. Please see Table S2B for the P/LP (D/SD) BRCA 1/2 variants occurring in more than 1 patient. These have been reviewed by a Genetic Advisory Committee made up of academic cancer geneticists and oncologists independent of the sponsors and Co-chaired by J Garber (Co-PI and author) and J Balmana (author) with membership listed on page 4).


FIGURE S3: MULTIPLE TESTING PROCEDURE AT THE INTERIM ANALYSIS

* Distant-disease-free survival and overall survival will be tested only if invasive-disease-free survival is significant.

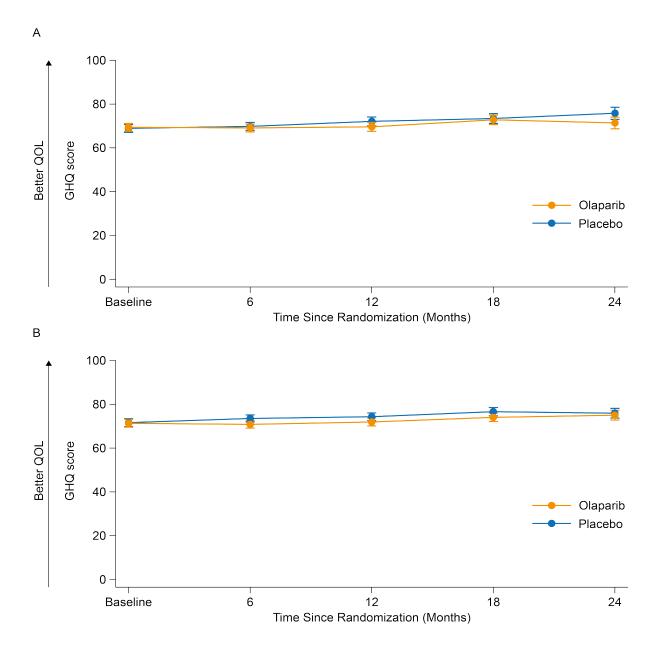
+ If distant-disease-free survival is significant, overall survival will be tested at P<0.01.

‡ If overall survival is significant, distant-disease-free survival will be tested at P<0.00625.

FIGURE S4: CONSORT DIAGRAM FOR THE OLYMPIA TRIAL - PATIENT POPULATION AND DISPOSITION

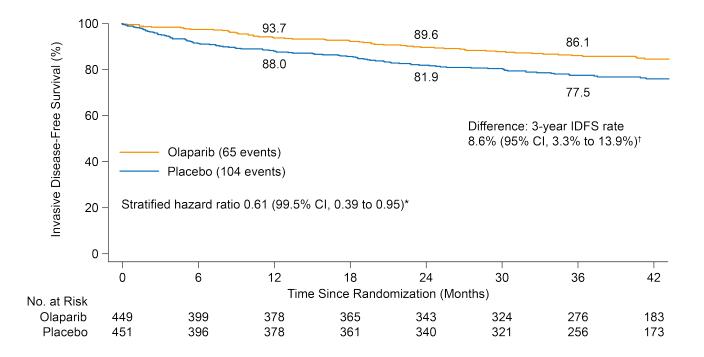
*All randomized patients were included in the intention-to-treat population. The invasive disease free survival time was censored at 0.5 days for 14 patients because: a) they had had an event prior to randomization (olaparib, n = 2; placebo, n = 3); b) were identified as inadvertent randomisations (i.e. patient was randomised and the site later realised that they should not have been randomised, they have had no follow-up nor did they receive treatment) (olaparib, n = 1; placebo, n = 2); or c) have withdrawn consent, received no treatment, and will not be providing any follow-up data (olaparib, n = 2; placebo, n = 4).

⁺ The first 900 patients randomized were included in the mature cohort evaluated by the Independent Data Monitoring Committee at the time of the prospectively planned interim analysis (olaparib, n = 449; placebo, n = 451).


‡ 21 patients who did not receive any study treatment were not included in the safety populations (olaparib, n=10; placebo, n=11).

§ Other reasons for discontinuation of treatment include: For olaparib: site error (n=8); surgery (n=2); Investigator's decision (n=1); Patient has lost insurance and could no longer come in for the study treatment (n=1); Patient was waiting to initiate IP (never started) and then was diagnosed with second primary (n=1). For placebo: site error (n=14); surgery (n=2); Treating investigator's decision (n=1); Patient had a chronic infection that did not resolve for months following her registration to study (n=1).

¶ Other reasons for discontinuation of study follow-up include; For olaparib: Investigator and sponsor decision (n=1); Randomized by mistake while waiting for radiotherapy treatment (n=1); Recurrence prior to randomization (n=1). For placebo: Incorrect randomization (unmet inclusion criteria 3b) (n=1); MD and patient decision to come off study (n=1); Non-compliance to protocol, patient is RAD51C and BRCA negative (n=1); Patient was randomized by mistake, in study physician's opinion patient was not eligible as ER+ and node negative (n=1); physician decision to withdraw patient (n=1).


FIGURE S5: EORTC QLQ-C30 GHQ SCORE

The Patient Reported Outcomes (PRO) sub-study will be reported separately. In order to provide some quality of life data for this report of the primary outcome, we have analyzed the 2-item General Health Status/Quality of Life (GHQ) scale of the EORTC QLQ-C30 questionnaire. The PRO data analysis plan stratifies the study sample and considers separate analyses for those who received neoadjuvant or adjuvant chemotherapy prior to trial randomization. Here we show plots of mean EORTC QLQ-C-30 GHQ score by treatment assignment for patients who received neoadjuvant therapy and adjuvant chemotherapy. These indicate that GHQ did not decline during the 12 months of treatment with either olaparib or placebo and improved slightly in both groups between 12 and 24 months. A clinically meaningful difference in GHQ would be greater than 10 points, and the difference between the treatment arms is clinically insignificant.

Legend: Mean response of EORTC QLQ-C30 GHQ score over time by treatment group. Panel A: patients who have completed neoadjuvant chemotherapy. Panel B: patients who have completed adjuvant chemotherapy. GHQ score ranges from 0 to 100, higher score indicates better QOL. Adjusted least-square mean responses and 95% CI for time points other than baseline are obtained from mixed model for repeated measures analysis of the GHQ score. The model includes treatment, time and treatment by time interaction, corresponding baseline score, and the baseline score by time interaction. Mean and 95% CI at baseline are based on the raw data.

FIGURE S6: KM PLOTS FOR IDFS IN THE MATURE COHORT

CI denotes confidence interval.

* Stratified Cox proportional hazards model.

+ Kaplan–Meier estimates.

5. SUPPLEMENTARY TABLES

TABLE S1: PATIENTS RANDOMIZED IN OLYMPIA, BY COUNTRY

	Olapari	b	Place	ebo	Т	otal
	(N = 92	1)	(N = 9	915)	(N =	1836)
Country			no. of pati	ents (%)		
Argentina	16	(1.7)	12	(1.3)	28	(1.5)
Australia	30	(3.3)	30	(3.3)	60	(3.3)
Austria	28	(3.0)	25	(2.7)	53	(2.9)
Belgium	12	(1.3)	26	(2.8)	38	(2.1)
Canada	11	(1.2)	23	(2.5)	34	(1.9)
China	117	(12.7)	130	(14.2)	247	(13.5
France	77	(8.4)	65	(7.1)	142	(7.7)
Germany	106	(11.5)	92	(10.1)	198	(10.8
Hungary	8	(0.9)	9	(1.0)	17	(0.9)
Iceland	5	(0.5)	1	(0.1)	6	(0.3)
Israel	30	(3.3)	35	(3.8)	65	(3.5)
Italy	30	(3.3)	27	(3.0)	57	(3.1)
Japan	64	(6.9)	76	(8.3)	140	(7.6)
Korea (Republic of)	53	(5.8)	44	(4.8)	97	(5.3)
Netherlands	11	(1.2)	18	(2.0)	29	(1.6)
Poland	50	(5.4)	59	(6.4)	109	(5.9)
Portugal	7	(0.8)	6	(0.7)	13	(0.7)
Spain	63	(6.8)	46	(5.0)	109	(5.9)
Sweden	20	(2.2)	15	(1.6)	35	(1.9)
Switzerland	4	(0.4)	17	(1.9)	21	(1.1)
Taiwan	8	(0.9)	4	(0.4)	12	(0.7)
United Kingdom of	60	(6.5)	46	(5.0)	106	(5.8)
Great Britain and						
Northern Ireland						
United States of	111	(12.1)	109	(11.9)	220	(12.0)
America						

TABLE S2A: *BRCA1/2* VARIANT STATUS ANALYSED LOCALLY AND/OR CENTRALLY AT MYRIAD GENETICS [1]

	Olaparib 300 mg bd	Placebo	Overall
	(N=921)	(N=915)	(N=1836)
	n	o. of patients (%)	
Local germline BRCA1 or BRCA2			
status [2]			
gBRCA-P/LP variant	679 (73.7)	680 (74.3)	1359 (74.0)
Variant of Uncertain Significance	1 (0.1)	1 (0.1)	2 (0.1)
(VUS)			
No variant	0 (0.0)	0 (0.0)	0 (0.0)
No local result available	241 (26.2)	234 (25.6)	475 (25.9)
BRCA1			
gBRCA-P/LP variant	490 (53.2)	508 (55.5)	998 (54.4)
Variant of Uncertain Significance	0 (0.0)	1 (0.1)	1 (0.1)
(VUS)			
BRCA2			
gBRCA-P/LP variant	188 (20.4)	168 (18.4)	356 (19.4)
Variant of Uncertain Significance	1 (0.1)	0 (0.0)	1 (0.1)
(VUS)			
BRCA1 & BRCA2			
gBRCA1-P/LP variant + gBRCA2-	1 (0.1)	4 (0.4)	5 (0.3)
P/LP variant			
Central Myriad germline BRCA1 or			
BRCA2 status [3]			
gBRCA-D/SD-variant	777 (84.4)	762 (83.3)	1539 (83.8)
Variant of Uncertain Significance (VUS)	12 (1.3)	8 (0.9)	20 (1.1)
No variant	1 (0.1)	4 (0.4)	5 (0.3)
No central Myriad result available [4]	131 (14.2)	141 (15.4)	272 (14.8)
BRCA1			
gBRCA1-D/SD-variant	552 (59.9)	553 (60.4)	1105 (60.2)
Variant of Uncertain Significance	6 (0.7)	5 (0.5)	11 (0.6)
(VUS)			
BRCA2			
gBRCA2-D/SD-variant	224 (24.3)	206 (22.5)	430 (23.4)
Variant of Uncertain Significance	6 (0.7)	3 (0.3)	9 (0.5)
(VUS)			
BRCA1 & BRCA2			
gBRCA1-D/SD-variant + gBRCA2-D/SD-	1 (0.1)	3 (0.3)	4 (0.2)
variant			

[1] Local results include BGI Genomics results for China. Central testing was done by Myriad. OlympiA eligibility required either local results considered Pathogenic (P)/ Likely Pathogenic (LP) variants, as now reported by convention in cancer genetics, or Myriad central laboratory results reported as Deleterious (D)/ Suspected Deleterious (SD) for the same variant status.

[2] Local BRCA results are available only for patients for whose germline *BRCA1* or *BRCA2* variant status was known prior to study entry. Central Myriad results are not available for 247 patients enrolled from China. For countries other than China, central Myriad results are available for 1564 of the 1589 patients (98.4%) (see Supplementary Appendix Figure S2).

[3] Result of confirmatory test carried out centrally by Myriad.

[4] Includes 246 patients randomized in China (olaparib, n=117, placebo, n=129) whose local result from BGI Genomics in China confirmed gBRCA-P/LP-variant that meets study eligibility criteria and 1 patient screened in China with a variant of uncertain significance in the placebo arm. Also includes 25 patients from other countries (olaparib, n=14, placebo, n=11) tested locally with eligible gBRCA1- or gBRCA2-P/LP-variants for whom central Myriad results are not available, 2 of whom (olaparib, n=1; placebo, n=1) have neither local nor central Myriad P/LP variant.

Gene Name	Variant listing	No. patients with variant
BRCA1	c.5266dupC (p.Gln1756Profs*74)	N = 134
BRCA1	c.68_69del (p.Glu23Valfs*17)	N = 72
BRCA1	c.181T>G (p.Cys61Gly)	N = 44
BRCA1	c.188T>A (p.Leu63*)	N = 29
BRCA1	c.5470_5477DEL	N = 24
BRCA1	c.1687C>T (p.Gln563*); c.3700_3704del (p.Val1234Glnfs*8); c.4065_4068del (p.Asn1355Lysfs*10); c.2800C>T (p.Gln934*); c.4327C>T (p.Arg1443*); c.211A>G (p.Arg71Gly); c.5333-36_5406+400del; c.5251C>T (p.Arg1751*); c.3756_3759del (p.Ser1253Argfs*10); c.3607C>T (p.Arg1203*)	N = 10 - 19 (total = 121)
BRCA2	c.5946del (p.Ser1982Argfs*22); c.2808_2811del (p.Ala938Profs*21); c.6275_6276del (p.Leu2092Profs*7); c.7480C>T (p.Arg2494*)	N = 10 - 19 (total = 56)
BRCA1	c.3481_3491del (p.Glu1161Phefs*3); c.4186-1787_4358-1668dup; c.2722G>T (p.Glu908*); c.5095C>T (p.Arg1699Trp); c.3485del (p.Asp1162Valfs*48); c.5123C>A (p.Ala1708Glu); c.2338C>T (p.Gln780*); c.66dupA (p.Glu23Argfs*18); c.1961del (p.Lys654Serfs*47); c.2685_2686del (p.Pro897Lysfs*5); c.3048_3052dup (p.Asn1018Metfs*8); c.4035del (p.Glu1346Lysfs*20); c.5030_5033del (p.Thr1677Ilefs*2); c.798_799del (p.Ser267Lysfs*19); c.815_824dup (p.Thr276Alafs*14); C.5521DEL; C.981_982DEL; c.5503C>T (p.Arg1835*); c.5445G>A (p.Trp1815*); c.390C>A (p.Tyr130*); c.4689C>G (p.Tyr1563*); c.3018_3021del (p.His1006Glnfs*17); c.5496_5506delinsA (p.Val1833Serfs*7); c.470_471del (p.Ser157*); c.843_846del (p.Ser282Tyrfs*15); c.(134+1_135-1)_(441+1_442-1)del; c.427G>T (p.Glu143*); c.5080G>T (p.Glu1694*); c.212+3A>G; c.5324T>G (p.Met1775Arg); c.4065_4068DEL; c.5444G>A (p.Trp1815*); c.1016dupA (p.Val340Glyfs*6); c.1504_1508del (p.Leu502Alafs*2); c.2269del (p.Val757Phefs*8); c.2681_2682del (p.Lys894Thrfs*8); c.3331_3334del (p.Glu1111Asnfs*5); c.3442del (p.Glu148Argfs*7); c.3627dupA (p.Glu1210Argfs*9); c.5137del (p.Val1713*); c.191G>A (p.Cys64Tyr); c.(5193+1_5194-1)_(5277+1_5278-1)del; c.4675+1G>A; c.213-11T>G; c.213-12A>G; c.1A>G (p.Met1?); c.2572C>T; C.3770_3771DEL; c.4183C>T (p.Gln1395*); c.962G>A (p.Trp321*); c.4287C>A (p.Tyr1429*); c.930del (p.Gln310Hisfs*4); c.2125_2126insA (p.Phe709Tyrfs*3); c.2433del (p.Lys812Argfs*3); c.2475del (p.Asp825Glufs*21); c.3228_3229del (p.Val6275erfs*4); c.2125_2126insA (p.Phe709Tyrfs*3); c.2433del (p.Lys812Argfs*3); c.3770_3771del (p.Glu1257Glyfs*9); c.4335_4338dupAGAA (p.Gln1447Argfs*16); c.4936del (p.Val1646Serfs*12); c.4964_4982del (p.Ser1655Tyrfs*16); c.5035_5039del (p.Leu1679Tyrfs*2); c.676del (p.Cys226Valfs*8); c.190T>C (p.Cys64Arg); c.(134+1_135-1)_(212+1_213-1)del;	N = 2 - 9 (total = 509)

TABLE S2B: P/LP BRCA1/2 VARIANTS FOR >1 PATIENT [1]

c.(441+1 442-1) (547+1 548-1)del; c.(80+1 81-1) (4986+1 4987-1)del; c.4986+3G>C; c.4986+6T>C; c.5278-1G>C; c.5467+1G>A; c.2035A>T (p.Lys679*); c.3442DEL; c.3607C>T; c.4801A>T; c.5074G>A; c.5332+1G>A; c.5333-2A>G; c.3841C>T (p.Gln1281*); c.928C>T (p.Gln310*); c.1082_1092del (p.Ser361*); c.1121_1123delinsT (p.Thr374Ilefs*3); c.1175_1214del (p.Leu392Glnfs*5); c.1380dupA (p.Phe461Ilefs*19); c.1508del (p.Lys503Serfs*29); c.70 80del (p.Cys24Serfs*13); c.1823 1826del (p.Lys608Ilefs*3); c.1892dupT (p.Ser632Lysfs*4); c.2019del (p.Glu673Aspfs*28); c.2110 2111del (p.Asn704Cysfs*7); c.2197_2201del (p.Glu733Thrfs*5); c.2214dupT (p.Lys739*); c.117_118del (p.Cys39*); c.124del (p.Ile42Tyrfs*8); c.2359dupG (p.Glu787Glyfs*3); c.131_132del (p.Cys44*); c.2679_2682del (p.Lys893Asnfs*106); c.2940del (p.Pro981Hisfs*19); c.3013del (p.Glu1005Asnfs*19); c.3108dupT (p.Lys1037*); c.3296del (p.Pro1099Leufs*10); c.3549_3550delinsT (p.Lys1183Asnfs*27); c.3820dupG (p.Val1274Glyfs*13); c.3839_3843delinsAGGC (p.Ser1280*); c.3901_3902del (p.Ser1301*); c.4041 4042del (p.Gly1348Asnfs*7); c.4165 4166del (p.Ser1389*); c.4243del (p.Glu1415Lysfs*4); c.116G>A (p.Cys39Tyr); c.131G>T (p.Cys44Phe); c.5074G>A (p.Asp1692Asn); c.(80+1_81-1)_(134+1_135-1)del; c.(4357+1_4358-1)_(4986+1_4987-1)del; c.(441+1_442-1)_(4357+1_4358-1)del; c.(547+1_548-1)_(4185+1_4186-1)del; c.(5074+1_5075-1)_(5193+1_5194-1)dup; c.3661G>T (p.Glu1221*); c.3748G>T (p.Glu1250*); c.5092G>T (p.Glu1698*); c.4357+1G>C; c.4986+4A>T; c.5193+1G>A; c.213-2A>C; c.5339T>C (p.Leu1780Pro); c.1916T>A (p.Leu639*); c.1608DEL; c.1660G>T; c.2012_2013DUP; c.2110_2111DEL; c.212G>A; c.2960DEL; c.3359_3363DEL; c.3472G>T; c.4185+1G>A; c.4755DEL; c.5030 5033DEL; c.5074+1G>A; c.5153-1G>T; c.5511G>C; c.66DUP; EXON13DELETION; EXON18-19DELETION; EXON18-20DELETION; EXON2-22DELETION; c.4186C>T (p.Gln1396*); c.2309C>A (p.Ser770*); c.5072C>A (p.Thr1691Lys); c.5154G>A (p.Trp1718*); c.1266T>G (p.Tyr422*); c.1965C>A (p.Tyr655*)

BRCA2 c.5576 5579del (p.lle1859Lysfs*3); c.6952C>T (p.Arg2318*); c.9371A>T N = 2 - 9(p.Asn3124lle); c.3264dupT (p.Gln1089Serfs*10); c.6405_6409del (total = 203)(p.Asn2135Lysfs*3); c.9117G>A (p.Pro3039Pro); c.1813dupA (p.Ile605Asnfs*11); c.3847_3848del (p.Val1283Lysfs*2); c.5722_5723del (p.Leu1908Argfs*2); c.9097dupA (p.Thr3033Asnfs*11); c.9076C>T (p.Gln3026*); c.5682C>G (p.Tyr1894*); c.1310_1313del (p.Lys437llefs*22); c.658_659del (p.Val220llefs*4); c.7007G>A (p.Arg2336His); c.9382C>T (p.Arg3128*); c.5645C>A (p.Ser1882*); c.2701del (p.Ala902Leufs*2); c.3545 3546del (p.Phe1182*); c.3975_3978dupTGCT (p.Ala1327Cysfs*4); c.5351dupA (p.Asn1784Lysfs*3); c.8904del (p.Val2969Cysfs*7); c.9403del (p.Leu3135Phefs*28); c.771_775del (p.Asn257Lysfs*17); c.8167G>C (p.Asp2723His); c.5857G>T (p.Glu1953*); c.9004G>A (p.Glu3002Lys); c.156 157insAlu; c.2312T>G (p.Leu771*); c.7558C>T (p.Arg2520*); c.1599 1600del (p.Glu534Serfs*3); c.3170 3174del (p.Lys1057Thrfs*8); c.3195_3198del (p.Asn1066Leufs*10); c.3680_3681del (p.Leu1227Glnfs*5); c.3744 3747del (p.Ser1248Argfs*10); c.3860del (p.Asn1287llefs*6); c.4449del (p.Asp1484Thrfs*2); c.4936 4939del (p.Glu1646Glnfs*23); c.5073dupA (p.Trp1692Metfs*3); c.5197_5198del (p.Ser1733Argfs*9); c.5213_5216del (p.Thr1738llefs*2); c.5217_5223del (p.Tyr1739*); c.5303_5304del (p.Leu1768Argfs*5); c.6024dupG (p.Gln2009Alafs*9); c.6468_6469del (p.Gln2157llefs*18); c.6486_6489del

(p.Lys2162Asnfs*5); c.469_470del (p.Lys157Valfs*25); c.7913_7917del (p.Phe2638*); c.8575del (p.Gln2859Lysfs*4); c.662_663del (p.Phe221Serfs*3); c.9026_9030del (p.Tyr3009Serfs*7); c.156_157insAlu; c.(7007+1_7008-1)_(7805+1_7806-1)del; c.8629G>T (p.Glu2877*); c.7806-2A>G; c.8487+1G>A; NM_000059.3(BRCA2):C.3109C>T; c.3860DEL; c.5164_5165DEL; c.6591_6592DEL; c.7007G>T; c.9401DEL; c.3883C>T (p.Gln1295*); c.8002A>T (p.Arg2668*); c.9154C>T (p.Arg3052Trp); c.4965C>G (p.Tyr1655*)

[1] Variants are listed for patients with a P/LP variant, either by central Myriad result, BGI, or by other local test for those with no central Myriad P/LP variant. Variants are only presented if they were seen in more than one patient. There are 2 patients with P/LP variants in both *BRCA1* and *BRCA2* genes listed in Table S2B.

TABLE S3: DISCORDANT LOCAL *BRCA1/2* STATUS VS CENTRAL MYRIAD *BRCA1/2* STATUS FOR 22 (2.0%) PATIENTS AMONG THE 1090 PATIENTS WITH BOTH LOCAL AND CENTRAL MYRIAD RESULTS AVAILABLE [1]

		Central Myriad germline BRCA1 or BRCA2 status					
			no. of patients (%)				
			Variant of Uncertain				
Overall	Local germline BRCA1 or BRCA2 status	gBRCA D/SD variant	Significance (VUS)	No variant			
Olaparib 300 mg bd (N=550)	gBRCA-P/LP variant	N/A	10 (1.8)	1 (0.2)			
	Variant of Uncertain Significance (VUS)	1 (0.2)	N/A	0 (0.0)			
	No variant	0 (0.0)	0 (0.0)	N/A			
Placebo (N=540)	gBRCA-P/LP variant	N/A	7 (1.3)	3 (0.6)			
	Variant of Uncertain Significance (VUS)	0 (0.0)	0 (0.0)	N/A			
	No variant	0 (0.0)	N/A	0 (0.0)			
Total (N=1090)	gBRCA-P/LP variant	N/A	17 (1.6)	4 (0.4)			
	Variant of Uncertain Significance (VUS)	1 (0.1)	N/A	0 (0.0)			
	No variant	0 (0.0)	0 (0.0)	N/A			

[1] Local results include BGI Genomics results for China; central testing was done by Myriad. Percentages presented are based on those for whom both local results and central Myriad results are available. (See Figure S2 in this Supplementary Appendix)

	Olaparib 300 mg bd	Placebo	Overall
	(N=921)	(N=915)	(N=1836)
		no. of patients (%)	
Patients with central	781	767	1548
pathology results			
HER2 IHC results			
0	661 (84.6)	652 (85.0)	1313 (84.8)
1+	64 (8.2)	57 (7.4)	121 (7.8)
2+	16 (2.0)	12 (1.6)	28 (1.8)
3+	0 (0.0)	2 (0.3)	2 (0.1)
Not interpretable	0 (0.0)	0 (0.0)	0 (0.0)
Missing	40 (5.1)	44 (5.7)	84 (5.4)
HER2 ISH results [1]			
Amplified	1 (0.1)	3 (0.4)	4 (0.3)
Equivocal	0 (0.0)	0 (0.0)	0 (0.0)
Not amplified	15 (1.9)	11 (1.4)	26 (1.7)
Not interpretable	0 (0.0)	0 (0.0)	0 (0.0)
Missing	40 (5.1)	44 (5.7)	84 (5.4)
Hormone Receptor status			
Positive	169 (21.6)	177 (23.1)	346 (22.4)
Negative	563 (72.1)	543 (70.8)	1106 (71.4)
Missing	49 (6.3)	47 (6.1)	96 (6.2)
ER status			
Positive	149 (19.1)	156 (20.3)	305 (19.7)
Negative	591 (75.7)	571 (74.4)	1162 (75.1)
Missing	41 (5.2)	40 (5.2)	81 (5.2)
PgR status			
Positive	118 (15.1)	115 (15.0)	233 (15.1)
Negative	616 (78.9)	604 (78.7)	1220 (78.8)
Missing	47 (6.0)	48 (6.3)	95 (6.1)

TABLE S4: CENTRAL RECEPTOR STATUS EXCLUDING CHINESE PATIENTS

Percentages based on those with central pathology results. Central pathology review was performed at the European Institute of Oncology (IEO) in Milan, Italy.

HR+ is defined as ER positive and/or PgR positive, where positive is defined as \geq 1% of cells stained positive.

Missing includes status 'not done', 'unknown' or 'missing'.

[1] Only reported for those that are not IHC 0 or 1+

			Central status[1]	
	-	HR(+)	HR(-)	Missing [2]
	Local Status		no. of patients (%)	
Olaparib 300 mg bd (N=921)	HR(+)	121 (13.1)	25 (2.7)	22 (2.4)
	HR(-)	48 (5.2)	538 (58.4)	167 (18.1)
Placebo (N=915)	HR(+)	119 (13.0)	16 (1.7)	23 (2.5)
	HR(-)	58 (6.3)	527 (57.6)	172 (18.8)
Overall (N=1836)	HR(+)	240 (13.1)	41 (2.2)	45 (2.5)
	HR(-)	106 (5.8)	1065 (58.0)	339 (18.5)

TABLE S5: LOCAL VS CENTRAL LABORATORY RESULTS: HORMONE RECEPTOR STATUS

HR+ is defined as ER positive (\geq 1%) and/or PgR positive (\geq 1%).

[1] Central laboratory review was not possible for patients recruited in China. Central pathology review was performed at the European Institute of Oncology (IEO) in Milan, Italy.

[2] Missing includes HR status 'unknown' or 'missing', as well as all patients from China.

Of the 1452 patients that have both a central and a local hormone receptor status, 147 (10%) have discordant results.

Characteristic	Olaparib (N=9	•		Placebo Group (N=915)		all 836)
Age - median (IQR)	42	(36-49)	43	(36-50)	43	(36-50)
Female - no. of patients (%)	919	(99.8)	911	(99.6)	1830	(99.7)
Male - no. of patients (%)	2	(0.2)	4	(0.4)	6	(0.3)
BRCA gene - no. of patients (%)[1]						
BRCA1	657	(71.3)	670	(73.2)	1327	(72.3)
BRCA2	261	(28.3)	239	(26.1)	500	(27.2)
BRCA1 & BRCA2	2	(0.2)	5	(0.5)	7	(0.4)
Missing	1	(0.1)	1	(0.1)	2	(0.1)
Local or central Myriad <i>BRCA1</i> or <i>BRCA2</i> germline testing result available [1]	920	(99.9)	915	(100)	1835	(99.9)
Local or central Myriad <i>BRCA1</i> or <i>BRCA2</i> P/LP variant [2]	918	(99.7)	912	(99.7)	1830	(99.7)
Local testing only [3]	130	(14.1)	141	(15.4)	271	(14.8)
Central Myriad testing only	240	(26.0)	234	(25.6)	474	(25.8)
No local or central Myriad testing available	1	(0.1)	0	(0.0)	1	(0.1)
Local and central BRCA result [4]	550	(59.7)	540	(59.0)	1090	(59.4)
Local (+)/Central (+)	538/550	(97.8)	530/540	(98.1)	1068/1090	(98.0)
Local (-)/Central (+)	1/550	(0.2)	0/540	(0.0)	1/1090	(0.1)
Local (+)/central (-)	11/550	(2.0)	10/540	(1.9)	21/1090	(1.9)
Race - no. of patients (%)						
White	626	(68.0)	599	(65.5)	1225	(66.7)
Black/African-American	19	(2.1)	29	(3.2)	48	(2.6)
Asian	259	(28.1)	272	(29.7)	531	(28.9)
Other	17	(1.8)	15	(1.6)	32	(1.7)
Ethnicity - no. of patients (%)						
Hispanic or Latino	34	(3.7)	24	(2.6)	58	(3.2)
Not Hispanic or Latino	805	(87.4)	812	(88.7)	1617	(88.1)
Not known, not recorded or refused	82	(8.9)	79	(8.6)	161	(8.8)
Jewish descent - no. of patients (%) [5]						
Yes, of Ashkenazi descent	41	(4.5)	36	(3.9)	77	(4.2)
Not of Ashkenazi descent	880	(95.5)	876	(95.7)	1756	(95.6)
Geographic region - no. of patients (%)						
North America	122	(13.2)	132	(14.4)	254	(13.8)
South America	16	(1.7)	12	(1.3)	28	(1.5)
Europe	481	(52.2)	452	(49.4)	933	(50.8)
Asia Pacific and South Africa	302	(32.8)	319	(34.9)	621	(33.8)
Prior Neo/Adjuvant chemotherapy - no. of patients (%)						

TABLE S6: DEMOGRAPHIC AND BASELINE DISEASE CHARACTERISTICS OF THE PATIENTS

Adjuvant	461	(50.1)	455	(49.7)	916	(49.9)
Neoadjuvant	460	(49.9)	460	(50.3)	920	(50.1)
Anthracycline and taxane regimen	871	(94.6)	849	(92.8)	1720	(93.7)
Anthracycline regimen (without taxane)	7	(0.8)	13	(1.4)	20	(1.1)
Taxane regimen (without anthracycline)	43	(4.7)	52	(5.7)	95	(5.2)
Regimen not reported	0	(0.0)	1	(0.1)	1	(0.1)
Less than 6 cycles (neo)adjuvant chemotherapy	7	(0.8)	15	(1.6)	22	(1.2)
Neo/ Adjuvant platinum therapy - no. of patients (%)						
No	674	(73.2)	676	(73.9)	1350	(73.5)
Yes	247	(26.8)	239	(26.1)	486	(26.5)
Concurrent hormone therapy (hormone receptor positive only) - no. of patients (%)	146/168	(86.9)	142/157	(90.4)	288/325	(88.6)
Grade - no. of patients (%) [6]						
Gx: Cannot be assessed	11/714	(1.5)	7/720	(1.0)	18/1434	(1.3)
G1: Well differentiated	2/714	(0.3)	3/720	(0.4)	5/1434	(0.3)
G2: Moderately differentiated	128/714	(17.9)	114/720	(15.8)	242/1434	(16.9)
G3: Poorly differentiated/	562/714	(78.7)	582/720	(80.8)	1144/1434	(79.8)
undifferentiated						
Not done	11/714	(1.5)	14/720	(1.9)	25/1434	(1.7)
Pathological AJCC stage (adjuvant chemotherapy only) - no. of patients (%)						
0	0/461	(0.0)	0/455	(0.0)	0/916	(0.0)
IA [7]	5/461	(1.1)	2/455	(0.4)	7/916	(0.8)
IB	15/461	(3.3)	11/455	(2.4)	26/916	(2.8)
IIA	264/461	(57.3)	250/455	(54.9)	514/916	(56.1)
IIB	70/461	(15.2)	75/455	(16.5)	145/916	(15.8)
IIIA	73/461	(15.8)	70/455	(15.4)	143/916	(15.6)
IIIB	0/461	(0.0)	2/455	(0.4)	2/916	(0.2)
IIIC	28/461	(6.1)	41/455	(9.0)	69/916	(7.5)
NA [8]	6/461	(1.3)	4/455	(0.9)	10/916	(1.1)
CPS + EG score (neo adjuvant chemotherapy only)						
no. of patients (%)						
CPS+EG score of 2, 3 or 4	398/460	(86.5)	387/460	(84.1)	785/920	(85.3)
CPS+EG score of 5 or 6	22/460	(4.8)	15/460	(3.3)	37/920	(4.0)
HR+/HER2-						
CPS+EG score ≤2 [7]	13/460	(2.8)	6/460	(1.3)	19/920	(2.1)
CPS+EG score of 3 or 4	88/460	(19.1)	85/460	(18.5)	173/920	(18.8)
CPS+EG score of 5 or 6	3/460	(0.7)	1/460	(0.2)	4/920	(0.4)

Not recorded	0/460	(0.0)	0/460	(0.0)	0/920	(0.0)
Triple Negative Breast Cancer		()	/			(
CPS+EG score ≤2	151/460	(32.8)	144/460	(31.3)	295/920	(32.1)
CPS+EG score of 3 or 4	179/460	(38.9)	197/460	(42.8)	376/920	(40.9)
CPS+EG score of 5 or 6 Not recorded	19/460	(4.1) (1.5)	14/460 13/460	(3.0)	33/920	(3.6)
	7/460	(1.5)	13/460	(2.8)	20/920	(2.2)
Hormone receptor status - no. of patients (%) [9]						
Hormone receptor + / HER2- [10]	168	(18.2)	157	(17.2)	325	(17.7)
Triple Negative Breast Cancer [11]	751	(81.5)	758	(82.8)	1509	(82.2)
Menopausal status (females only) - no. of patients (%)						
Premenopausal	572/919	(62.2)	553/911	(60.7)	1125/1830	(61.5)
Postmenopausal	347/919	(37.8)	358/911	(39.3)	705/1830	(38.5)
Bilateral invasive breast cancer - no. of patients (%)						
No	881	(95.7)	888	(97.0)	1769	(96.4)
Yes	40	(4.3)	27	(3.0)	67	(3.6)
Primary breast cancer surgery - no. of patients (%)						
Mastectomy	698	(75.8)	673	(73.6)	1371	(74.7)
Conservative surgery only	223	(24.2)	240	(26.2)	463	(25.2)
Missing	0	(0.0)	2	(0.2)	2	(0.1)
Local therapy for primary breast cancer - no. of patients (%)						
Mastectomy plus radiation therapy	426	(46.3)	410	(44.8)	836	(45.5)
Mastectomy without radiation therapy	272	(29.5)	263	(28.7)	535	(29.1)
Conservative surgery plus radiationtherapy	215	(23.3)	231	(25.2)	446	(24.3)
Conservative surgery without radiation therapy	8	(0.9)	9	(1.0)	17	(0.9)
Missing	0	(0.0)	2	(0.2)	2	(0.1)
Bilateral mastectomy prior to randomisation - no. of patients (%)	332	(36.0)	317	(34.6)	649	(35.3)
Bilateral mastectomy after randomisation - no. of patients (%)	98	(10.6)	108	(11.8)	206	(11.2)
Bilateral oophorectomy and/or salpingectomy prior to randomisation - no. of patients (%)	185	(20.1)	166	(18.1)	351	(19.1)
Bilateral oophorectomy and/or salpingectomy after randomisation - no. of patients (%)	375	(40.7)	386	(42.2)	761	(41.4)

[1] For a detailed description of local and central Myriad *BRCA1/2* testing in patients enrolled on OlympiA please see Figure S2 in this Supplementary Appendix.

Variant interpretation by Myriad Genetics (BRCAnalysis) (n=1564) and BGI Genomics (n=247) is performed using multiple established databases (e.g., ClinVar, ClinGen, ENIGMA) and published and internal functional and clinical data, compliant with ACMG published guidelines. The 24 P/LP variants from local labs without central Myriad confirmation were confirmed by the OlympiA Genetics Advisory Committee using published databases as above. Discordant data are enumerated.

[2] There are 6 patients with an important protocol deviation reported for no documented gBRCA-P/LPvariant in *BRCA1* or *BRCA2* (olaparib, n= 3; placebo n = 3) including 5 patients entered (olaparib, n= 2; placebo n = 3) where either the local or central Myriad testing was done, but with no evidence of a gBRCA-P/LP-variant, and 1 patient in the olaparib group where no local or central Myriad result is available. (See Supplementary Appendix Figure S2).

[3] Includes 246 patients randomized in China (olaparib, n=117, placebo, n=129) whose local result from BGI Genomics in China confirmed gBRCA-P/LP-variant that meets study eligibility criteria and 1 patient screened in China with a variant of uncertain significance in the placebo arm all of whom have no central Myriad result available. Also includes 24 patients from other countries (olaparib, n=13, placebo, n=11) for whom central Myriad results are not available. (See Supplementary Appendix Figure S2).

[4] Patients eligible for the trial are those with a gBRCA-P/LP (D/SD)-variant defined by local testing or central Myriad testing. Patients randomised based on a local test result should also have central Myriad testing done. *BRCA1* and *BRCA2* testing was done by BGI Genomics in China, there are no Myriad results available for these or 25 other patients tested locally only (See Supplementary Appendix Figure S2).

[5] Not Ashkenazi Jewish can mean that the patient is either Jewish but not Ashkenazi Jewish, not Jewish or descent recorded as unknown.

[6] Includes only those patients receiving neoadjuvant chemotherapy for whom eCRF indicates histological grade was assessed on treatment naïve core biopsy and on all patients receiving adjuvant chemotherapy

[7] Reported as protocol deviations.

[8] These include 2 occult BC (placebo, n = 2), 6 pTx (olaparib, n = 4; placebo, n = 2) and 2 pNx (olaparib, n = 2).

[9] Defined by local test results.

[10] The original protocol activated in 2014 was developed for patients with HER2-negative disease but included only patients with TNBC following regulatory review. When hormone-receptor-positive recurrence risk and combination olaparib and endocrine combination safety rationale was accepted by regulators the protocol was amended in 2015 to include patients with high-risk hormone-receptor positive disease and increase the sample size to the current 1800 level (see Protocol History on www.nejm.org). The first patient with hormone-receptor positive disease was enrolled in December 2015.

[11] Triple negative breast cancer was defined in eligibility criteria as: ER and PgR negative defined as IHC nuclear staining <1%. AND HER2 negative (not eligible for anti-HER2 therapy) defined as: IHC 0, 1+ without ISH OR IHC 2+ and ISH non-amplified with ratio less than 2.0 and if reported, average HER2 copy number < 4 signals/cells OR ISH non-amplified with ratio less than 2.0 and if reported, average HER2 copy number < 4 signals/cells (without IHC)</p>

Two patients are excluded from the summary of the TNBC subset because they do not have confirmed negative HER2 status.

TABLE S7: TYPE OF FIRST IDFS EVENT [1]

	Olaparib 300 mg bd	Placebo
	(N=921)	(N=915)
	no. of patients (%)	
IDFS events	106 (11.5)	178 (19.5)
Distant	72 (7.8)	120 (13.1)
Distant CNS recurrence	22 (2.4)	36 (3.9)
Brain metastasis	21 (2.3)	36 (3.9)
Meningitis carcinomatosa	1 (0.1)	0 (0.0)
Distant excl. CNS recurrence	50 (5.4)	84 (9.2)
Bone	5 (0.5)	14 (1.5)
Lymph nodes (other than local or regional)	5 (0.5)	9 (1.0)
Lung	16 (1.7)	34 (3.7)
Liver	20 (2.2)	23 (2.5)
Pleural effusion	3 (0.3)	4 (0.4)
Other	1 (0.1)	0 (0.0)
Regional (ipsilateral) recurrence	6 (0.7)	14 (1.5)
Axillary lymph nodes	6 (0.7)	9 (1.0)
Supraclavicular lymph nodes	0 (0.0)	3 (0.3)
Internal mammary lymph nodes	0 (0.0)	1 (0.1)
Skin or soft tissue within the regional area	0 (0.0)	1 (0.1)
Local (ipsilateral) recurrence	7 (0.8)	11 (1.2)
Breast surgical scar	1 (0.1)	3 (0.3)
Breast	3 (0.3)	4 (0.4)
Anterior chest wall	2 (0.2)	2 (0.2)
Skin or soft tissue within the local area	1 (0.1)	2 (0.2)
Contralateral invasive breast cancer	8 (0.9)	12 (1.3)
Second primary malignancies	11 (1.2)	21 (2.3)
Second primary invasive non-breast ovarian/fallopian	2 (0.2)	8 (0.9)
tube malignancy		
Second primary invasive non-breast non-ovarian	9 (1.0)	13 (1.4)
malignancies		
Deaths without a prior IDFS event [2]	2 (0.2)	0 (0.0)

[1] If two recurrence events are reported within 2 months of each other this is referred to as a

simultaneous event and will be considered as a single event. In this situation the worst case will be taken as the event 'type' but the date of recurrence will be the earliest date of the two events. (reference Hudis et al, 2007)

[2] The 2 deaths without a prior IDFS event were a cardiac arrest and cause unknown.

TABLE S8: ALL DEATHS

	Olaparib 300 mg bd	Placebo	
	(N=921)	(N=915)	
	no. of patie	ents (%)	
Total number of deaths	59 (6.4)	86 (9.4)	
Primary cause of death			
Breast cancer	55 (93.2)	82 (95.3)	
Adverse event [1]	1 (1.7)	3 (3.5)	
Other [2]	3 (5.1)	1 (1.2)	
Missing	0 (0.0)	0 (0.0)	

[1] Olaparib: Cardiac arrest (n = 1); Placebo: AML (n = 2), Ovarian cancer (n = 1)

[2] Olaparib: Pulmonary embolism (n = 1), Unknown (n= 1), Pneumonia (n = 1); Placebo: Unknown (n=1)

TABLE S9: RESULTS OF SENSITIVITY ANALYSES

	Olaparib	Placebo
Sensitivity analysis of IDFS in confirmed Myriad gB	RCA D/SD patients (n= 153	89) [1]
Number of patients	777	762
Number of events (%)	89 (11.5)	163 (21.4)
Estimate of hazard ratio	0.51	
99.5% CI for hazard ratio	(0.35 , 0.73)	
Sensitivity analysis of DDFS in confirmed Myriad g	BRCA D/SD patients (n= 15	39) [1]
Number of patients	777	762
Any distant recurrence of disease, second	74 (9.5)	138 (18.1)
primary cancer, or death (%)		
Estimate of hazard ratio	0.50	
99.5% CI for hazard ratio	(0.33 , 0.75)	
Sensitivity analysis of OS in confirmed Myriad gBR	CA D/SD patients (n= 1539)[1]
Number of patients	777	762
Number of deaths (%)	47 (6.0)	79 (10.4)
Estimate of hazard ratio	0.58	
99% CI for hazard ratio	(0.35 , 0.92)	
Number of deaths deemed attributable to	44 (5.7)	75 (9.8)
breast cancer		
Central pathology review IDFS analysis (n = 1452) [2]	
Number of patients	732	720
Number of events (%)	86 (11.7)	151 (21.0)
Estimate of IDFS hazard ratio	0.54	
99.5% CI for IDFS hazard ratio	(0.36 , 0.78)	
Unadjusted IDFS analysis (n= 1836) [3]		
Number of patients	921	915
Number of events (%)	106 (11.5)	178 (19.5)
Estimate of IDFS hazard ratio	0.58	
99.5% CI for hazard ratio	(0.41,0.82)	
Restricted mean survival time (RMST) for IDFS (n =	1836) [3]	
Number of patients	921	915
RMST ratio (olaparib/placebo) [4]	1.085	
99.5% CI for RMST ratio	(1.034,1.139)	
Chi-square: p-value	< 0.0001	
Proportionality test p-value for IDFS (n=1836)		
GT test: Identity transformation of time [5]	0.02	
GT test: Rank transformation of time [6]	0.02	

Proportionality test p-value for DDFS (n=1836)		
GT test: Identity transformation of time [5]	0.20	
GT test: Rank transformation of time [6]	0.10	
Proportionality test p-value for OS (n=1836)		
GT test: Identity transformation of time [5]	0.79	
GT test: Rank transformation of time [6]	0.71	

CI, confidence interval

[1] Patients with confirmed Myriad gBRCA-D/SD-variant, excludes 247 patients randomised in China who do not have central Myriad testing available + another 50 patients from other countries who do not have a central confirmed gBRCA-D/SD-variant result.

[2] Includes patients with both central and local hormone receptor results (see Table S5 in this Supplementary Appendix). Excludes 247 from China and 137 from non-Chinese sites. Central pathology review was performed at the European Institute of Oncology (IEO) in Milan, Italy.

[3] Includes entire intention to treat population.

[4] RMST ratio is the RMST for olaparib divided by the RMST for placebo. Numbers greater than 1.0 reflect an increase in the average months free from an IDFS event for olaparib versus placebo - ie. numbers greater than 1.0 favor olaparib. Olaparib significantly increases restricted mean survival time compared with placebo.

[5] Grambsch-Therneau test using untransformed time in the scaled Schoenfeld residual test.

[6] Grambsch-Therneau test using rank transformation of time in the scaled Schoenfeld residual.

TABLE S10: INVASIVE DISEASE FREE SURVIVAL SUBGROUP ANALYSIS

	N	Events (%)	Hazard ratio
Subgroup	Olaparib/Placebo	Olaparib /Placebo	& 95% CI [1]
Overall	921 / 915	106 (11.5) / 178 (19.5)	0.58 (0.46, 0.74)
Prior Chemo			
Adjuvant	461 / 455	36 (7.8) / 61 (13.4)	0.60 (0.39, 0.90)
Neoadjuvant	460 / 460	70 (15.2) / 117 (25.4)	0.56 (0.41, 0.75)
Prior Platinum			
Yes	247 / 239	34 (13.8) / 43 (18.0)	0.77 (0.49, 1.21)
No	674 / 676	72 (10.7) / 135 (20.0)	0.52 (0.39, 0.69)
HR status			
HR+/HER2- [2]	168 / 157	19 (11.3) / 25 (15.9)	0.70 (0.38, 1.27)
TNBC [3]	751 / 758	87 (11.6) / 153 (20.2)	0.56 (0.43, 0.73)
BRCA variant type [4]			
BRCA1	558 / 558	70 (12.5) / 126 (22.6)	0.52 (0.39, 0.70)
BRCA2	230 / 209	22 (9.6) / 38 (18.2)	0.52 (0.30, 0.86)
BRCA1/2	1/3	0 (0.0) / 0 (0.0)	
HR status by prior chemotherapy			
setting			
HR+/HER2- with neoadjuvant	104 / 92	13 (12.5) / 20 (21.7)	0.52 (0.25, 1.04)
chemotherapy [2]			
HR+/HER2- with adjuvant	64 / 65	6 (9.4) / 5 (7.7)	1.36 (0.41, 4.71)
chemotherapy [2]			
TNBC with neoadjuvant	354 / 368	57 (16.1) / 97 (26.4)	0.57 (0.41, 0.79)
chemotherapy [3]			
TNBC with adjuvant	397 / 390	30 (7.6) / 56 (14.4)	0.54 (0.34, 0.83)
chemotherapy [3]			
BRCA status by prior platinum			
therapy setting			
BRCA1 with prior platinum	174 / 179	27 (15.5) / 35 (19.6)	0.78 (0.47, 1.28)
therapy for current breast			
cancer BRCA1 with no prior platinum	384 / 379	43 (11.2) / 91 (24.0)	0.43 (0.30, 0.62)
therapy for current breast	504 / 575	45 (11.2) / 91 (24.0)	0.43 (0.30, 0.02)
cancer			
BRCA2 with prior platinum	53 / 40	4 (7.5) / 8 (20.0)	
therapy for current breast			
cancer			
BRCA2 with no prior platinum	177 / 169	18 (10.2) / 30 (17.8)	0.55 (0.30, 0.98)
therapy for current breast		/	,
cancer			
BRCA1/2 both with prior	0/1	0 / 0 (0.0)	
platinum therapy for current			
breast cancer			

BRCA1/2 both with no prior platinum therapy for current breast cancer	1/2	0 (0.0) / 0 (0.0)	
Prior platinum by Chemo Prior platinum / ACT Prior platinum / NACT No prior platinum / ACT No prior platinum / NACT	78 / 70 169 / 169 383 / 385 291 / 291	8 (10.3) / 4 (5.7) 26 (15.4) / 39 (23.1) 28 (7.3) / 57 (14.8) 44 (15.1) / 78 (26.8)	0.66 (0.40, 1.07) 0.51 (0.32, 0.79) 0.51 (0.35, 0.73)
Prior platinum by HR status Prior platinum / TNBC Prior platinum / HR+/HER2- No prior platinum / TNBC No prior platinum / HR+/HER2-	218 / 216 28 / 23 533 / 542 140 / 134	28 (12.8) / 40 (18.5) 6 (21.4) / 3 (13.0) 59 (11.1) / 113 (20.8) 13 (9.3) / 22 (16.4)	0.70 (0.43, 1.13) 0.51 (0.37, 0.70) 0.55 (0.27, 1.08)
Type of prior Neoadjuvant/Adjuvant chemotherapy			
Anthracycline regimen (without taxane)	7 / 13	0 (0.0) / 2 (15.4)	
Taxane regimen (without Anthracycline)	43 / 52	5 (11.6) / 8 (15.4)	0.64 (0.19, 1.93)
Anthracycline and taxane regimen	871 / 849	101 (11.6) / 168 (19.8)	0.58 (0.45, 0.74)
Type of breast surgery prior to randomisation			
Breast conservation [5] Mastectomy [6]	223 / 240 698 / 673	20 (9.0) / 46 (19.2) 86 (12.3) / 131 (19.5)	0.46 (0.27, 0.76) 0.51 (0.33, 0.77)
Presence of at risk ovarian tissue prior to first dose of treatment			
No bilateral oophorectomy Bilateral oophorectomy	732 / 739 189 / 176	92 (12.6) / 140 (18.9) 14 (7.4) / 38 (21.6)	0.65 (0.50, 0.84) 0.34 (0.18, 0.62)
Pathology axillary node (pN) status at surgery in the TNBC adjuvant cohort [7]			
Node negative Node positive	203 / 192 174 / 177	13 (6.4) / 22 (11.5) 15 (8.6) / 31 (17.5)	0.61 (0.30, 1.19) 0.48 (0.25, 0.87)
CPS+EG score (for the post neoadjuvant group only)[8]			
CPS+EG score of 2, 3 or 4 CPS+EG score of 5 or 6	398 / 387 22 / 15	55 (13.8) / 96 (24.8) 11 (50.0) / 10 (66.7)	0.51 (0.37, 0.71) 0.44 (0.19, 1.06)
Age at randomisation	699 / 673	79 (11.3) / 133 (19.8)	0.56 (0.42, 0.73)
Age < 50 years Age 50 - 64 years	193 / 210	22 (11.4) / 41 (19.5)	0.58 (0.42, 0.73) 0.58 (0.34, 0.96)
Age ≥65 years Race	29 / 32	5 (17.2) / 4 (12.5)	
White Black/African-American	626 / 599 19 / 29	75 (12.0) / 124 (20.7) 4 (21.1) / 5 (17.2)	0.55 (0.41, 0.74)
	15/25	·····································	

Asian 259 / 272 25 (9.7) / 46 (16.9) 0.59 (0.36, 0.95) Other 17 / 15 2 (11.8) / 3 (20.0) 0.59 (0.36, 0.95) Ethnicity 34 / 24 7 (20.6) / 7 (29.2) 0.65 (0.22, 1.89)
Ethnicity 34 / 24 7 (20.6) / 7 (29.2) 0.65 (0.22, 1.89)
Hispanic or Latino 34 / 24 7 (20.6) / 7 (29.2) 0.65 (0.22, 1.89)
Hispanic or Latino 34 / 24 7 (20.6) / 7 (29.2) 0.65 (0.22, 1.89)
Not Hispanic or Latino 805 / 812 88 (10.9) / 153 (18.8) 0.58 (0.44, 0.75)
Not known, not recorded or 82 / 79 11 (13.4) / 18 (22.8) 0.51 (0.24, 1.07) refused
Jewish descent
Yes, of Ashkenazi descent 41 / 36 6 (14.6) / 9 (25.0) 0.49 (0.16, 1.35)
No, not of Ashkenazi descent 880 / 876 100 (11.4) / 169 (19.3) 0.58 (0.45, 0.74)
[9]
Primary Study Database
Breast International Group 810 / 806 95 (11.7) / 160 (19.9) 0.58 (0.45, 0.75)
(BIG)
NRG Oncology (US) 111 / 109 11 (9.9) / 18 (16.5) 0.57 (0.26, 1.18)
Geographic region
North America122 / 13211 (9.0) / 23 (17.4)0.48 (0.23, 0.97)
South America 16 / 12 3 (18.8) / 5 (41.7)
Europe481 / 45262 (12.9) / 95 (21.0)0.59 (0.43, 0.81)
Asia Pacific and South Africa 302 / 319 30 (9.9) / 55 (17.2) 0.59 (0.37, 0.91)

Hazard ratios are provided only if at least 5 IDFS events have occurred in each of the two treatment groups.

Even without correcting for multiple comparisons none of the tests for heterogeneity reached statistical significance

[1] The Cox model included factors for treatment group, subgroup factor and the treatment-by-subgroup interaction. All patients with non-missing subgroup data were included in the model. A hazard ratio <1 favors olaparib 300 mg bd. The CI was calculated using a profile likelihood approach. These analyses are not inferential. Statistics are provided only if at least 5 IDFS events have occurred in each of the two treatment groups.

[2] HR+ is defined as ER positive and/or PgR positive.

[3] Two patients are excluded from the summary of the TNBC subset because they do not have locally confirmed negative HER2 status.

[4] According to central Myriad testing.

[5] Breast conservation defined as partial mastectomy / breast quadrantectomy / breast segmentectomy / breast lumpectomy and breast re-excision of margins.

[6] Mastectomy defined as modified radical mastectomy, radical mastectomy (Halsted) or simple mastectomy, or bilateral mastectomy.

[7] TNBC, adjuvant patients only, with sentinel node sampling or axillary node dissection.

[8] Pre-specified subgroup analysis. Includes patients that received neoadjuvant chemotherapy, whether they had hormone receptor positive or triple negative disease.

[9] Not Ashkenazi Jewish can mean that the patient self identifies as either Jewish but not Ashkenazi Jewish, not Jewish or descent recorded as unknown.

	Olaparib 300 mg bd	Placebo
	(N=911)	(N=904)
Total intended exposure (days) [1]		
Mean	306.5	322.4
SD	114.80	97.54
Median	364.0	364.0
Min	1	2
Max	492	414
Actual treatment exposure (days) [2]		
Mean	294.4	315.1
SD	113.90	97.59
Median	350.0	358.0
Min	1	2
Max	420	404
Number of days on 300 mg treatment bd [3]		
Mean	245.2	306.3
SD	141.68	107.51
Median	338.0	358.0
Min	1	2
Max	420	404

TABLE S11: EXPOSURE TO STUDY TREATMENT (SAFETY ANALYSIS SET)

Patients with partial treatment end dates are excluded.

[1] Total intended exposure in days = (last dose date - first dose date + 1); does not take account of dose interruptions.

[2] Actual treatment exposure = intended exposure - total duration of dose interruptions, where intended exposure will be calculated as above.

[3] Number of days on 300mg olaparib/placebo bd (actual exposure for the assigned starting dose).

TABLE S12: DOSE INTENSITY (SAFETY ANALYSIS SET)

	Olaparib 300 mg bd	Placebo
	(N=911)	(N=904)
Relative dose intensity (RDI) [1,2]		
No. patients	910	903
Mean	91.9	96.7
SD	12.57	8.12
Median	99.6	100.0
Min	10	38
Q1	87	97
Q3	100	100
Max	103	100
Percentage intended dose (PID) [1,3]		
No. patients	910	903
Mean	81.1	92.0
SD	27.51	17.87
Median	94.8	98.9
Min	0	1
Q1	75	94
Q3	100	100
Max	100	100

Patients with partial treatment end dates are excluded.

[1] Treatment up to one year or until the date of invasive disease (whichever is earliest).

[2] Relative dose intensity (RDI) is the percentage of the actual total dose delivered relative to the intended total dose through to treatment discontinuation.

[3] Percentage intended dose (PID) is the percentage of the actual total dose delivered relative to the intended total dose through to invasive disease.

Due to the eCRF design, the actual cumulative dose does not capture all missed or forgotten doses within an individual day. This will be recorded as if the patient took a full daily dose, which could lead to an overestimation of RDI and PID.

	Olaparib 300 mg bd	Placebo
Cumulative exposure over time	(N=911)	(N=904)
(months) [1]	no. of patie	ents (%)
> 0 months	910 (99.9)	903 (99.9)
≥ 1 month	848 (93.1)	872 (96.5)
≥ 2 months	824 (90.5)	847 (93.7)
≥ 3 months	801 (87.9)	836 (92.5)
≥ 4 months	782 (85.8)	821 (90.8)
≥ 5 months	769 (84.4)	805 (89.0)
≥ 6 months	757 (83.1)	794 (87.8)
≥ 7 months	752 (82.5)	782 (86.5)
≥ 8 months	739 (81.1)	771 (85.3)
≥ 9 months	719 (78.9)	758 (83.8)
≥ 10 months	706 (77.5)	753 (83.3)
≥ 11 months	685 (75.2)	733 (81.1)

TABLE S13 OF CUMULATIVE EXPOSURE OVER TIME IN MONTHS (SAFETY ANALYSIS SET)

Patients with partial treatment end dates are excluded.

[1] Rows are cumulative and subjects are included if they have taken treatment up to and including that day.

TABLE S14A: BLOOD TRANSFUSIONS (SAFETY ANALYSIS SET)

	Olaparib 300 mg bd (N=911)	Placebo (N=904)
	no. of patients (%)	
Patients with at least one blood transfusion	53 (5.8)	8 (0.9)
With ≥ grade 3 anemia on treatment	42 (4.6)	2 (0.2)
With < grade 3 anemia on treatment	9 (1.0)	2 (0.2)
No anemia reported on treatment	2 (0.2)	4 (0.4)
Number of patients with only 1 transfusion	37 (4.1)	6 (0.7)
Number of patients with 2 transfusions	13 (1.4)	2 (0.2)
Number of patients with 3 transfusions	2 (0.2)	0 (0.0)
Number of patients with 5 transfusions	1 (0.1)	0 (0.0)

Includes blood transfusions up to and including 30 days following the date of last dose date.

TABLE S14B: BLOOD TRANSFUSIONS OVER TIME (SAFETY ANALYSIS SET)

	Olaparib 300 mg bd (N=911)		Placebo (N=904)	
	no. of patients (%)	Total no. of transfusions	no. of patients (%)	Total no. of transfusions
Treatment month during which				
blood transfusion is given[1]				
Up to month 1	2 (0.2)	2	0 (0.0)	0
>=1 - 2 months	2 (0.2)	2	1 (0.1)	2
>=2 - 3 months	21 (2.3)	22	0 (0.0)	0
>=3 - 4 months	8 (0.9)	10	1 (0.1)	1
>=4 - 5 months	5 (0.5)	5	1 (0.1)	1
>=5 - 6 months	7 (0.8)	8	1 (0.1)	1
>=6 - 7 months	4 (0.4)	4	0 (0.0)	0
>=7 - 8 months	8 (0.9)	8	0 (0.0)	0
>=8 - 9 months	3 (0.3)	3	0 (0.0)	0
>=9 - 10 months	2 (0.2)	2	1 (0.1)	1
>=10 - 11 months	3 (0.3)	3	1 (0.1)	1
>=11 months	5 (0.5)	5	2 (0.2)	3

Includes blood transfusions up to and including 30 days following the date of last dose date.

[1] Patients with multiple transfusions within the same monthly period are counted once for that period.

TABLE S15: TREATMENT DOSE REDUCTIONS (SAFETY ANALYSIS SET)[1]

	Olaparib 300 mg bd (N=911)	Placebo (N=904)
Patients with no dose reduction (%)	683 (75.0)	857 (94.8)
Patients with a dose reduction (%)	228 (25.0)	47 (5.2)
Total number of dose reductions	287	54
Number of patients with a dose reduction		
1 dose reduction (%)	170 (18.7)	40 (4.4)
2 dose reductions (%)	57 (6.3)	7 (0.8)
3 or more dose reductions (%)	1 (0.1)	0 (0.0)
Reason for reduction [2]		
Adverse event (%)	222 (24.4)	35 (3.9)
Dosing error (%)	6 (0.7)	10 (1.1)
Administrative reasons (%)	2 (0.2)	1 (0.1)
Other (%)	0 (0.0)	1 (0.1)

[1] Dose reductions are based on investigator initiated decisions, reductions due to 'Subject noncompliance' are omitted.

[2] Reasons for dose reductions are not mutually exclusive for patients with multiple reductions although are counted only once per category.

TABLE S16: MOST COMMON AES LEADING TO PERMANENT DISCONTINUATION OF TREATMENT (SAFETY ANALYSIS SET)

	Olaparib 300 mg bd	Placebo
	(N=911)	(N=904)
Preferred Term	no. of patients	(%)
Any AE leading to permanent	90 (9.9)	38 (4.2)
discontinuation		
Nausea	18 (2.0)	3 (0.3)
Anaemia	16 (1.8)	0 (0.0)
Fatigue	12 (1.3)	4 (0.4)
Neutrophil count decreased	9 (1.0)	1 (0.1)
Headache	7 (0.8)	2 (0.2)
Vomiting	7 (0.8)	0 (0.0)
White blood cell count decreased	6 (0.7)	1 (0.1)
Dizziness	2 (0.2)	3 (0.3)
Decreased appetite	2 (0.2)	2 (0.2)
Diarrhoea	3 (0.3)	1 (0.1)
Breast cancer	1 (0.1)	2 (0.2)
Drug hypersensitivity	3 (0.3)	0 (0.0)
Pruritus	3 (0.3)	0 (0.0)
Abdominal pain upper	1 (0.1)	1 (0.1)
Arthralgia	1 (0.1)	1 (0.1)

Table shows the number and percentage of patients with that adverse event

Includes AEs with an onset from date of first dose up to 30 days following date of last dose.

TABLE S17: ANY CONCURRENT HORMONE THERAPY FOR PRIMARY BREAST CANCER IN THE HR+/HER2- SUBGROUP

	Olaparib 300 mg bd	Placebo	Overall
	(N=921)	(N=915)	(N=1836)
	no. of patients (%)		
All HR+/HER2- patients [1]	168 (100.0)	157 (100.0)	325 (100.0)
Any concurrent hormone therapy [2]	146 (86.9)	142 (90.4)	288 (88.6)
Endocrine therapy	146 (86.9)	142 (90.4)	288 (88.6)
Anti-estrogens	72 (42.9)	61 (38.9)	133 (40.9)
Tamoxifen	72 (42.9)	59 (37.6)	131 (40.3)
Toremifene	0 (0.0)	2 (1.3)	2 (0.6)
Aromatase inhibitors	83 (49.4)	85 (54.1)	168 (51.7)
Anastrozole	25 (14.9)	30 (19.1)	55 (16.9)
Exemestane	23 (13.7)	23 (14.6)	46 (14.2)
Letrozole	41 (24.4)	37 (23.6)	78 (24.0)
Pituitary and hypothalamic hormones and analogues	39 (23.2)	33 (21.0)	72 (23.7)

Each treatment will be counted a maximum of once per patient. Percentages presented are based on those patients that have hormone receptor positive breast cancer.

Of the 325 patients with hormone-receptor positive disease, 147 had oophorectomy either before (n=74) or following (n=73) randomization. These numbers for olaparib are: 42, and 33; and for placebo are: 32 and 40.

[1] HR+ is defined as ER positive and/or PgR positive based on a cut-off for positivity of \geq 1% of cells stained positive.

[2] NB. The protocol defines hormone-receptor positivity as $\geq 1\%$ of cells stained positive but use of adjuvant endocrine therapy was determined by institutional and/ or national guidelines, which may not recommend endocrine therapy for patients with tumors with 1-9% staining of cells for estrogen receptor explaining the lack of endocrine therapy use in 11.4% of patients balanced between treatment arms.

TABLE S18: IMPORTANT PROTOCOL DEVIATIONS

Important protocol deviations (IPD)s are a concise list of pre-defined protocol deviations which have a very high likelihood of influencing the primary efficacy and/or the secondary safety results. IPD's are also distinct from simple protocol deviations.

	Olaparib 300 mg bd (N=921)	Placebo (N=915)	Overall (N=1836)
	no. of patients (%)		
Number of patients with at least one important protocol deviation triggering a sensitivity analysis [1]	16 (1.7)	14 (1.5)	30 (1.6)
No histologically confirmed non-metastatic primary invasive adenocarcinoma of the breast [2]	3 (0.3)	0 (0.0)	3 (0.2)
No documented germline pathogenic /likely pathogenic variant in <i>BRCA1</i> or <i>BRCA2</i> [2]	3 (0.3)	3 (0.3)	6 (0.3)
Randomized but did not receive any study treatment [2]	10 (1.1)	11 (1.2)	21 (1.1)
Number of patients with at least one important protocol deviation excl. important GCP violations [3]	130 (14.1)	122 (13.3)	252 (13.7)
No histologically confirmed non-metastatic primary invasive adenocarcinoma of the breast [2]	3 (0.3)	0 (0.0)	3 (0.2)
No documented germline pathogenic /likely pathogenic variant in <i>BRCA1</i> or <i>BRCA2</i> [2]	3 (0.3)	3 (0.3)	6 (0.3)
Randomized but did not receive any study treatment [2]	10 (1.1)	11 (1.2)	21 (1.1)
Not fulfilling criteria for high risk disease	25 (2.7)	12 (1.3)	37 (2.0)
Inadequate breast surgery and/or radiotherapy	7 (0.8)	8 (0.9)	15 (0.8)
Inadequate axilla surgery	5 (0.5)	1 (0.1)	6 (0.3)
Completed less than 6 cycles of neoadjuvant or adjuvant chemotherapy containing anthracyclines, taxanes or the combination of both	7 (0.8)	15 (1.6)	22 (1.2)
Peri-operative chemotherapy (patients who had both neoadjuvant and adjuvant therapy; 'unquantifiable risk of disease relapse')	4 (0.4)	6 (0.7)	10 (0.5)
Evidence of metastatic disease (to include only those patients who had suspicion or confirmation of recurrence prior to randomisation)	2 (0.2)	4 (0.4)	6 (0.3)
No staging or insufficient staging	67 (7.3)	66 (7.2)	133 (7.2)
Prior PARP inhibitor use	0 (0.0)	0 (0.0)	0 (0.0)
Prior cancer < 5 years ago including MDS/t-AML	0 (0.0)	2 (0.2)	2 (0.1)

Received no study treatment whatsoever for a period of more than 7 days due to errors in dispensing of medication	5 (0.5)	4 (0.4)	9 (0.5)
Received an alternative study treatment to that which they were randomized	0 (0.0)	0 (0.0)	0 (0.0)
Received prohibited concomitant medication	10 (1.1)	12 (1.3)	22 (1.2)
Received additional anti-cancer therapy prior to IDFS event [4]	0 (0.0)	0 (0.0)	0 (0.0)
Received other investigational agent prior to IDFS event	0 (0.0)	0 (0.0)	0 (0.0)
Lack of confirmatory exams for events that count towards the analysis end points, efficacy and safety	0 (0.0)	1 (0.1)	1 (0.1)

[1] Statistical Analysis Plan specified that a sensitivity analysis for primary efficacy be conducted if >10% of the full analysis set did not have the intended disease or indication or did not receive any study medication. This is shown in Table S9.

[2] An important protocol deviation (IPD) that triggers a sensitivity analysis

[3] The same patient may have had more than one important protocol deviation. Important protocol deviations are those that could have a strong influence on the interpretation of the efficacy or safety results.

[4] Other than hormone therapy or adjuvant bisphosphonates permitted in the protocol.

TABLE S19: SUMMARY OF ADVERSE EVENTS IN THE SAFETY ANALYSIS SET [1]

Adverse Event — no. of patients (%)	Olaparib (N=911)	Placebo (N=904)
Any adverse event	835 (91.7)	753 (83.3)
Serious adverse event	79 (8.7)	76 (8.4)
Adverse event of special interest [2]	30 (3.3)	46 (5.1)
MDS/AML	2 (0.2)	3 (0.3)
Pneumonitis [3]	9 (1.0)	11 (1.2)
New primary cancer [4]	19 (2.1)	32 (3.5)
New primary invasive breast cancer	7	8
New primary ductal carcinoma in situ	3	4
New primary ovarian malignancy [5]	1	4
New primary fallopian tube cancer	1	4
New primary lung cancer	1	2
Malignant melanoma	1	3
Non-melanoma skin cancer	3	2
Other [6]	3	6
Grade ≥3 adverse event	221 (24.3)	102 (11.3)
Grade 4 adverse event [7]	17 (1.9)	4 (0.4)
Decreased neutrophil count	5	0
Anemia	4	0
Decreased lymphocyte count	3	0
Depression	0	2
Other [8]	6	2
Adverse event leading to permanent discontinuation of treatment [9]	90 (9.9)	38 (4.2)
Adverse event leading to death [10]	1 (0.1)	2 (0.2)

[1] Included are adverse events with an onset date on or after the date of the first dose and up to and including 30 days after the date of the last dose of olaparib or placebo. The safety analysis set excludes patients who did not receive any olaparib or placebo. AML denotes acute myeloid leukemia, and MDS myelodysplastic syndrome.

[2] Included are adverse events of special interest with an onset at any date after the first dose of olaparib or placebo. One patient in the olaparib group had both pneumonitis and a nonmelanoma skin cancer and is counted in both the pneumonitis and new primary cancer categories.

[3] In the olaparib group, seven patients had pneumonitis, and two patients had radiation pneumonitis. In the placebo group, eight patients had pneumonitis, and three patients had radiation pneumonitis.

[4] In the olaparib group, nineteen patients had twenty new primary cancers: one patient had both new primary breast cancer and new primary lung cancer and is counted in both categories. In the placebo group, thirty-two patients had thirty-three new primary cancers: one patient had new primary breast cancer and new serous tubular intraepithelial carcinoma, and is counted in both new primary invasive breast cancer and the 'other' categories.

[5] In the olaparib group, one patient had new primary ovarian cancer (a possible recurrence of ovarian cancer > 5 years before randomization).

[6] In the olaparib group, one patient each in the 'other' category had colorectal cancer, endometrial adenocarcinoma, and meningioma. In the placebo group, one patient each in the 'other' category had cervical carcinoma, endometrial adenocarcinoma, pancreatic carcinoma, rectal carcinoma, transitional-cell carcinoma, and new serous tubular intraepithelial carcinoma (in a patient who also had new primary invasive breast cancer).

[7] A total of 18 grade 4 adverse events were reported in 17 patients who received olaparib; one patient had both grade 4 anemia and decreased neutrophil count and is counted in both of anemia and decreased neutrophil count categories.

[8] In the olaparib group, one patient each in the 'other' category had AML, bipolar disorder, fatigue, febrile neutropenia, abnormal hepatic function, and a suicide attempt. In the placebo group, one patient each in the 'other' category had increased aspartate aminotransferase level and acute cholecystitis.

[9] The most common adverse events, occurring in at least 1% of the patients, that led to discontinuation of olaparib were nausea (2.0%), anemia (1.8%), fatigue (1.3%), and decreased neutrophil count (1.0%); there were no adverse events that occurred in at least 1% of patients that led to discontinuation of placebo.

[10] In the olaparib group, cardiac arrest led to death in one patient. In the placebo group, AML and ovarian cancer led to death in one patient each.

6. **REFERENCE**

1. Mittendorf EA, Jeruss JS, Tucker SL, et al. Validation of a novel staging system for disease-specific survival in patients with breast cancer treated with neoadjuvant chemotherapy. J Clin Oncol 2011;29:1956–62.