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Reviewer #1:

Remarks to the Author:

In this manuscript, the authors generated in-house single-cell RNA-seq data in mouse ESC and
human fibroblast in order to characterize cell cycle dynamic. To analyze the data, the authors
propose using an autoencoder approach called DeepCycle to compress the high-dimensional input
(spliced UMI + unspliced UMI per gene for 2N input size) into a one-dimension manifold theta.

Strength of the paper:

- Overall, the paper is well written and easy to follow for general audience

- Authors have done extensively exploratory analysis by sorting cells based on theta and observe
cells are mainly sorted by their cell cycle phase, which is biologically interesting.

- All figures are of high quality and nicely displayed with clear labels

Main comments:

1. The authors should tune down the language of novel method because the method is essentially
a straight application of autoencoder, and no obvious methodological innovation is made.

2. If authors do want to claim method novelty, quantitative evaluation such as ablation analysis is
needed. In particular, how does DeepCycle perform when only spliced or unspliced read (but not
both) are provided in terms of recapitulating known cell phase cycle?

3. Only one method called Cyclum is compared with DeepCycle and showed poor UMAP clustering
(Suppl. Fig. 6). How does DeepCycle (which is just an autoencoder) compare with other
approaches such as scVI, scVI-LD, scGAN, scETM, which properly takes into account distribution of
the latent encoded variable in a variational autoencoder framework while addressing batch effects
in different ways.

4. How was the autoencoder network architecture derived? Was a validation set used here in terms
of reconstruction loss?

5. Given known gene markers, can authors show the model can predict accurately the cell cycle
phase in a classification tasks using standard quantitative metric such as prediction accuracy? This
may help others to annotate their single-cell data with unknown cell cycle phases.

Reference:

1. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-
cell transcriptomics. Nature Methods 15, 1-11 (2018).

2. Svensson, V., Gayoso, A., Yosef, N. & Pachter, L. Interpretable factor models of single-cell RNA-
seq via variational autoencoders. Bioinformatics (Oxford, England) 36, 3418-3421 (2020).

3. Bahrami, M. et al. Deep feature extraction of single-cell transcriptomes by generative
adversarial network. 570, 1-21 (2020).

4. Zhao, Y., Cai, H., Zhang, Z., Tang, J. & Li, Y. Learning interpretable cellular and gene signature
embeddings from single-cell transcriptomic data. bioRxiv 2021.01.13.426593 (2021).

Reviewer #2:

Remarks to the Author:

The manuscript 'Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning'
descrives a deep learning-based algorithm (Deep Cycle) to predict cell cycle state from scRNA-seq
velocity data. The algorithm can be used to analyze genes for their cell cycle involvement once fit,
including TFs and potentiall novel cyclce-regulated genes.

While not being a cell cycle specialist, I think the validation experiments and biological insights
gained with Deep Cycle are compelling. The authors provide good evidence that their algorithm
outperforms other existing tools in cell cycle fitting. The paper is written in good English.

While I think the biological part is convincing (while not being an expert) I think some other parts
could improve or have shortcomings.



Major points

1) I think the technical sections are way too short to be understandable. In other words, I think
the description of the model and training of it are insufficient. Layer sizes, primary training, why
two training steps? How do you map from vectors to an angle, do you make sure to keep unit
length vectors through layer norm? What optimizer, loss function, when do you stop training?
None of this information is supplied in the git page, one would have to dig deeply into the code to
figure everything out.

2) When I read up on Cyclum (to understand how different their algorithm might be to Deep
Cycle) I came to understand that most of Deep Cyclce seems to be based on Cyclum. Again, this is
a bit tricky to judge as there is hardly any information on the Deep Cycle algorithm but suffice it to
say that I started do understand how Deep Cycle might work by reading the Cyclym paper. The
main difference seems to be that Deep Cycle uses RNA velocity information as input from scVelo,
Cyclum does not. In other words, Deep Cycle's algorithmic novelty seems incremental, at best. It
bothered me that the authors don't clearly state that their 'algorithm' is heavily based on Cyclum,
while I have to admit that it is hard to judge, due to the extremely limited technical information
given in this paper.

Minor points

1) To me, it is really hard to understand what exactly this paper is about purely from the abstract.
It is very high-level claims and no examples or concrete results. I would definitely rewrite this a
bit.

2) Many figures have very short legends, to the degree that it is virtually impossible to understand
what is shown in the figures by just reading the legends. Examples are: Figura S3 - no details on
the three inputs, no details on the sizes of the layers (no activation information), no info on the
sigma layer; Figure S6 - no mention of A and B, no description of what x and y are, no mention of
which data was used. These are just two examples but this lack of desciption is pervasive.

3) The introduction is incoherent and not complete. The authors talk early on about the 'unspliced-
spliced RNA space' without ever mentioning what this is and how this is relevant to cell cycle
prediction. They never mention the RNA velocity theory in the introduction, which is the basis of
this paper. When they mention the theory in the results section, they don't explain what it is (I
had to piece it together from the text).

Stefan Bonn

Reviewer #3:

Remarks to the Author:

Riba et al. proposed DeepCycle, an autoencoder model which uses a single latent variable to
describe the cell cycle status. DeepCycle is conceptually novel and might potentially provide great
biological insights. The DeepCycle algorithm per se was well described and the corresponding
benchmarking analysis was rigorous. However, I think further clarification is needed for the
biological applications, especially in sections “identification of cell-cycle core transcription factors”
and “characterization of cycling cells shifting to the cycle-arrested state”, to make the study
scientifically sound. I thus have the following comments:

1. Throughout the paper, the dot size in scatterplots might be too big. I fully acknowledge that the
authors used density plots to describe the distribution of cells, but it would be better if the authors
could also provide a clear representation of individual cells.

2. For Figure 1D, the scrutiny of data quality is highly appreciated. Based on my experience, in
general 1) primary cells have less mRNA compared to cultured cells, 2) human cells have more
mRNA compared to mouse cells, and 3) “stem-like” cells have more mRNA compared to
“differentiated” cells. So the #UMIs per cell differences might be a piece of “real biology”, rather
than only a quality issue. Since they authors also provided spliced/unspliced% reads in Figure 1E
so I'm convinced about the quality of the datasets used here.



3. For Figure 1F, are the two axes represent the fraction of spliced/unspliced reads? Or some
integrated “velocity scores” from the spliced-unspliced space? A short explanation would be really
appreciated. The same comment applies to other “velocity plots”.

4. For citations 21-28, considering DeepCycle is based on AE, I would suggest the authors only cite
other algorithms based on AE, since VAE is generative model and might not be directly
comparable.

5. For Figure 2C, The “un” represents abundance of unspliced gene #n, and the “sn” represents
abundance of spliced gene #n, correct? I think the authors should clarify the two terms in the
figure caption.

6. For Figure 2C, the red circle was constructed from the theta angle latent variable, correct? Then
my question is how the authors correspond sin/cos theta trajectory on the “velocity space”.

7. For Supplementary Figure S3, the decoder takes u and s to calculate the Atan2, meanwhile
imputes Gaussian noise to the data to increase the robustness, correct? As for the decoder, it
recapitulates the expression matrix by “circularization” from theta, correct? I think the authors
should provide a more detailed explanation to the framework. Some intuitions on the design
strategy of the framework would be highly appreciated.

8. For "GOterm:cell_cycle", have the authors tried using all genes? The reason I'm asking is that
the scLVM paper (https://www.nature.com/articles/nbt.3102) claimed other genes might also be
affected by cell cycle. Further, maybe extending the analysis to all genes will introduce additional
biological features besides cell cycle in the latent variable, especially when analyzing multiple cell
types together? Could the authors please comment?

9. For Supplementary Figure S4, I think the authors should specify which dataset is presented in
the figure.

10. For Supplementary Figure S5, I would suggest the authors to describe how the “cell cycle
score” represented by the x-axis is calculated. Also, I would suggest the authors to use density
plot here, considering there is an aggregation of dots at the top-left corner. The authors should
confirm that most of the dots are on the diagonal.

11. For Supplementary Figure S6, again, I think the authors should specify which dataset is
presented in the figure.

12. For Supplementary Figure S7, are the authors using the same UMAP layouts as Figure 3A and
Supplementary Figure S8? Seems the same layouts are used so the claim here is valid. I would
suggest the authors to put the UMAP plots color-coded by scVelo scores and DeepCycle theta
values side-by-side to better support the claim here.

13. For the flow cytometry analysis, I really appreciate the experimental validation here. However,
it seems that the authors didn't describe the cell staining strategy. Was Hoechst staining
performed to determine cell cycle stages?

14. For section "identification of cell-cycle core transcription factors" in general, I think the correct
way of demonstrating “identification” would be 1) identify top TFs that are correlated with theta,
and 2) show these top TFs are biological meaningful. So I think the authors should either 1)
perform a real “identification” analysis, or 2) only claim they could recapitulate known biology as
an additional support for validating the theta value.

15. Specifically, for Figure 4B, are the r values calculated against the abundance of all, spliced or
unspliced mRNA abundance? Maybe unspliced since “they remove the effect of mRNA stability”?

16. Also, for Figure 4C, what do “input” and “computation” mean here?



17. For the discussion of GO cells in section "characterization of cycling cells shifting to the cycle-
arrested state", shouldn’t GO be outside the cell cycle? I'm a little bit confused why these
hypothesized GO cells are mapped as within the mid-G1 phase. Could the authors please
comment? I'm particularly concerned about how the GO cells will be treated. Please also see me
comment to the discussion section below.

18. For the discussion section, I'm wondering how DeepCycle will handle cells that are at GO stage,
e.g. terminally differentiated PBMCs. A further question would be, considering an ensemble of
cycling and non-cycling cells, can DeepCycle distinguish them? The reason I'm asking is sometimes
cycling cells might form separate clusters and cause artifacts for cell type analysis. I totally
understand if DeepCycle has difficulty in handling GO cells of the same/different types, since 1) the
current design only takes cell cycle genes, and 2) the latent space only has one variable. Maybe
the authors should only focus on cells within the cell cycle by adding a cellular state filter prior to
DeepCycle analysis? This will make the study more focused without losing the novelty of the
algorithm. Could the authors please comment?

Reviewer #4:

Remarks to the Author:

Riba et al describes DeepCycle, based largely on RNA velocity concept, to infer the transcriptional
phase (0) in relation to the cell cycle based on scRNA-seq data obtained from mESCs, ductal cells
and human fibroblasts. This is a method that supposed to be presenting “to the scientific
community a broader understanding of RNA velocity and cell cycle maps, that we applied to
pluripotency and differentiation”. The idea of transcriptional phase (0) in relationship to cell cycle
is interesting, but the execution of the whole manuscript is poor -- it is very difficult to understand
what was done leading to the conclusion of many important points as detailed below. A big
problem in the experimental design is the comparison between the three chosen cell types that are
vastly different (e.g. Line 270-271" From a general perspective, a clear pattern emerges by
comparing the undifferentiated mESCs with the more differentiated human fibroblasts and ductal
cells.”). While I understand that training and actual application of the model is desired to be done
in diverse cell types, there is no confidence that much of the comparisons, therefore the
conclusions, are valid, especially in the absence of any biological validation or testing in datasets
that have been reported/validated by others.

Specific points:

1. Line 89 indicates that the sequencing depth is uncommon in most scRNA-seq datasets. How
deep does sequencing need to be done for DeepCycle to be applicable? This is a relevant and
important question that the authors did not address, which questions the general utility of their
method. In the abstract (line 22), the authors claims that they “can observe cycling patterns in the
unspliced-spliced RNA space for every gene.” This statement is misleading and/or overclaiming, as
line 91-92 spells out that only several thousand genes can be detected in each cell types, as
expected from typical scRNAseq. Further, how would lowly expressed genes compare in
performance as highly abundant genes? Gene expression level seems to matter as it was pointed
out later that low expression level seems to create inconsistency (line 212-214).

2. Line 97-98 “Cycling genes are expected to be characterized by fully circular patterns as they
complete both their activation and deactivation phases (Figure 2A).” and line 116-117 “*We expect
that genes whose expression is regulated during the cell cycle show a closed path in the unspliced-
spliced RNA space consisting of both an active and inactive phase”. What would a non cell cycle
regulated gene look like? A negative control would be informative.

3. Line 111-112: Figure S2 is used as support that “the complexity of gene regulation in the
context of the cell cycle cannot be approximated by the current models”. There is hardly any
explanation or quantitative measurement for the poor performance of the existing models: how
much deviation (Fig S2A) and how much inconsistence (Fig S2B) is driving such a conclusion?
Similarly, Cyclum is dismissed without sufficient explanation — very little description is provided for
Fig S6 provided.

4. Fig 2E: Why would different cell types show Ccn E and B at different 8? Are the authors
suggesting that these classical cell cycle drivers function differently across cell types? Similarly for
the claim later at line 208-210 “other DNA replication genes, such as components of the Origin



recognition complex proteins (Orc1-6/0ORC1-6), show different expression patterns across the
datasets, suggesting more heterogeneous regulation (Supplementary Figure S10).” These seem to
be rather unusual insights that need further elaboration and validation, absence of which question
their validity.

5. Line 160-161: No explanation provided for Fig S7 - what criteria is used to conclude “the cell
cycle scores calculated by scVelo match well with the transcriptional phases inferred by
DeepCycle”?

6. Line 175-176: “the variability of the transcriptomes across the transcriptional phase is stable
(Figure 3C)" - this conclusion is based on what? How was “transcriptome variabilities (y2)"
calculated? Line 178-179 “it could infer the correct dynamics of transcriptional changes at the cell
level (see the velocity plots in Supplementary Figure S8)” — what is the analysis that led to this
conclusion?

7. Line 183-185 Fig S9 is being used as evidence to support that DeepCycle performed to correctly
call the correct proportion of cells in each cell cycle phase. The evidence in Fig S9 is correlation at
best. To directly test the performance of DeepCycle, cells should be sorted according to known live
cell cycle phase reporters and perform scRNA-seq. These data then should be used to test how
well DeepCycle is working. Same problem with Fig 5B,C.

8. Fig 4C: Are the authors suggesting MEK/ERK to be active in pluripotent stem cells (green box)?
It is commonly accepted that the inhibition of MEK/ERK that maintains pluripotency, which is also
the condition that seems to have been used by the authors, i.e. the “2i” condition. This seriously
calls into question of the validity of the results.



We thank the reviewers for their positive and constructive feedback. We have answered their comments
in a deeply revised version of the manuscript (see point-by-point discussion below). Among the most
prominent changes are:

1. The rewriting of several parts of the paper to gain clarity. In particular, we think we were able
to show in a more convincing manner how DeepCycle outperforms other existing algorithms.

2. The development of an automatic approach to detect the cell cycle transitions between
phases.

3. The experimental validation of the gene expression patterns predicted by DeepCycle in
different cell-cycle phases by bulk RNA-seq experiments on FACS-sorted mESCs.

We thank again the reviewers since we believe the manuscript is now strongly improved as a result of
this revision.

REVIEWER COMMENTS
Reviewer #1 (Expertise: DL for scRNASeq data analysis):

In this manuscript, the authors generated in-house single-cell RNA-seq data in mouse ESC and human
fibroblast in order to characterize cell cycle dynamic. To analyze the data, the authors propose using an
autoencoder approach called DeepCycle to compress the high-dimensional input (spliced UMI +
unspliced UMI per gene for 2N input size) into a one-dimension manifold theta.

Strength of the paper:

- Overall, the paper is well written and easy to follow for general audience

- Authors have done extensively exploratory analysis by sorting cells based on theta and observe cells
are mainly sorted by their cell cycle phase, which is biologically interesting.

- All figures are of high quality and nicely displayed with clear labels

Main comments:

1. The authors should tone down the language of novel method because the method is essentially a
straight application of autoencoder, and no obvious methodological innovation is made.

In the new version of the manuscript, we ensured to clarify the structure of the neural network and the
procedure followed to obtain the results showing the important differences with a just straight application
of a simple autoencoder. It is important to notice that the special structure and the two training steps
adopted are crucial to fit the cycling patterns observed in the unspliced-spliced RNA space and to obtain
a meaningful cell-cycle transcriptional phase for each cell. This important point and the ablation
analysis in the next answer make us believe that it is possible to claim methodological innovation (see
the new Methods ‘Implementation of DeepCycle’ and the Supplementary Figure S3).

2. If authors do want to claim method novelty, quantitative evaluation such as ablation analysis is
needed. In particular, how does DeepCycle perform when only spliced or unspliced read (but not both)
are provided in terms of recapitulating known cell phase cycle?

As suggested by the reviewer, we performed an ablation analysis showing that using only unspliced or
spliced generates inconsistent results with the other cell cycle measures (e.g. cyclin-E and -B
expressions, RNA counts per cell) and the estimation of the transcriptional phase (see new
Supplementary Figure S7). Interestingly, using only the unspliced reads return a reversed transcriptional
phase that could lead to wrong order of expression of cell-cycle genes. Moreover, it is not possible to
establish if the fitting procedure for the two ablations worked properly since the gene-specific cycling
patterns are only apparent in the joint unspliced-spliced RNA space. One of the advantages and
methodological novelties of DeepCycle is exactly to exploit the cycling patterns to obtain a biologically
meaningful fitting and have a validation on the fitting procedure that can be supervised by the user.

3. Only one method called Cyclum is compared with DeepCycle and showed poor UMAP clustering
(Suppl. Fig. 6). How does DeepCycle (which is just an autoencoder) compare with other approaches
such as scVI, scVI-LD, scGAN, scETM, which properly takes into account distribution of the latent



encoded variable in a variational autoencoder framework while addressing batch effects in different
ways.

Regarding the mentioned methods, DeepCycle is not an imputation tool and works explicitly only to
detect the cell cycle. We clarified this in the main text, so it is not comparable to scVI, scVI-LD, scGAN
and scETM. In the main text, we added a discussion about the imputation methods where we envision a
possible extension of DeepCycle to a Variational AutoEncoder. Thanks to VAE, DeepCycle could take
into account the distribution of the latent encoded variable (e.g. FACS distribution) but as we performed
one first attempt to implement DeepCycle as a VAE, the neural network was not converging to the
correct result.

Supplementary Figure S6 shows the 2d projection of the angle (transcriptional phase) inferred by
Cyclum, DeepCycle, and random uniform distribution of angles. For clarity, we have added an example
of what one should expect when Cyclum correctly identifies the cycling signature of the data.

4. How was the autoencoder network architecture derived? Was a validation set used here in terms of
reconstruction loss?

DeepCycle is mainly composed of Dense layers (fully connected layers) that are the most basic
structures for a neural network. There are some important additions: 1) the circularization layer to
transform the output of the encoder into a circle; 2) the estimated phase from the input gene was
included as an additional input to the last Dense layer of the encoder; 3) the Gaussian noise layers to
avoid overfitting.

Yes, 17% of the input cells are used as validation.

We now significantly expanded the Methods and Supplementary Materials to provide extensive detailed
information on the autoencoder structure and the training procedure.

5. Given known gene markers, can authors show the model can predict accurately the cell cycle phase
in a classification tasks using standard quantitative metric such as prediction accuracy? This may help
others to annotate their single-cell data with unknown cell cycle phases.

Since the lack of labels, we could not train any model to predict accuracy. Instead, we focused on
developing a strategy to automatically detect the cell cycle transitions. The detection uses the
transcriptional phase and cell cycle gene markers, see the new Supplementary Figure S9 and Methods
section ‘Detection of the cell cycle phase transitions’. It has also been implemented in python and
distributed in the Github repository.

Reference:

1. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell
transcriptomics. Nature Methods 15, 1-11 (2018).

2. Svensson, V., Gayoso, A., Yosef, N. & Pachter, L. Interpretable factor models of single-cell RNA-seq
via variational autoencoders. Bioinformatics (Oxford, England) 36, 3418-3421 (2020).

3. Bahrami, M. et al. Deep feature extraction of single-cell transcriptomes by generative adversarial
network. 570, 1-21 (2020).

4. Zhao, Y., Cai, H., Zhang, Z., Tang, J. & Li, Y. Learning interpretable cellular and gene signature
embeddings from single-cell transcriptomic data. bioRxiv 2021.01.13.426593 (2021).

Reviewer #2 (Expertise: deep learning, biomedical data, single cell data):

The manuscript 'Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning'
describes a deep learning-based algorithm (Deep Cycle) to predict cell cycle state from scRNA-seq
velocity data. The algorithm can be used to analyze genes for their cell cycle involvement once fit,
including TFs and potentially novel cycle-regulated genes.

While not being a cell cycle specialist, | think the validation experiments and biological insights gained
with Deep Cycle are compelling. The authors provide good evidence that their algorithm outperforms
other existing tools in cell cycle fitting. The paper is written in good English.



While | think the biological part is convincing (while not being an expert) | think some other parts could
improve or have shortcomings.

Major points

1) I think the technical sections are way too short to be understandable. In other words, | think the
description of the model and training of it are insufficient. Layer sizes, primary training, why two training
steps? How do you map from vectors to an angle, do you make sure to keep unit length vectors through
layer norm? What optimizer, loss function, when do you stop training? None of this information is
supplied in the git page, one would have to dig deeply into the code to figure everything out.

The Methods section about DeepCycle has been extended providing all the necessary details and a
more comprehensive Supplementary Figure S3 shows the fine structure of the autoencoder and the
training parameters. Also, the GitHub repository has been updated and contains detailed information
about the structure of the network and the training procedure.
The sizes of the layers are specified in Supplementary Figure S3 and are equal to 4 times the number
of genes.
The first step is used to provide an initial guess of the transcriptional phase to the encoder and trains
the encoder to predict a phase from the provided input gene. The second step trains both encoder and
decoder with a standard autoencoder training.
We didn’t use any layer normalization since the domain of an angle is (-infinity,+infinity) and it can
always be mapped back to 2m * [0,1].
The mean squared error was used as a loss function and minimized using Adam, which was the best
performing optimizer among the ones tested (SGD, RMSprop, and Adam). In addition, an early
stopping criterion was used when the loss function evaluated on the validation data reached a plateau
(see details in Methods and Supplementary Figure S3.).

2) When | read up on Cyclum (to understand how different their algorithm might be to Deep Cycle) |
came to understand that most of Deep Cyclum seems to be based on Cyclum. Again, this is a bit tricky
to judge as there is hardly any information on the Deep Cycle algorithm but suffice it to say that | started
to understand how Deep Cycle might work by reading the Cyclum paper. The main difference seems to
be that Deep Cycle uses RNA velocity information as input from scVelo, Cyclum does not. In other
words, DeepCycle's algorithmic novelty seems incremental, at best. It bothered me that the authors
don't clearly state that their 'algorithm' is heavily based on Cyclum, while | have to admit that it is hard to
judge, due to the extremely limited technical information given in this paper.

DeepCycle uses the unspliced-spliced values and does not use the velocities as inputs. We added in
the revision the ablation analysis, see Supplementary Figure S7, which shows that using only the
spliced or unspliced gives inconsistent results and you’re not assured to have the right cell cycle
directionality. Further, each run of Cyclum returns different results without any warnings, so not only the
algorithm has several pitfalls but also the implementation is not stable and it cannot be controlled
(Supplementary Figure S6). On the other hand, combining unspliced-spliced information allows
DeepCycle to infer the right directionality and can be supervised by checking the cycling genes. Thus,
the novelty of DeepCycle relies on the combination of theoretical expectations with data leading to the
estimation of a transcriptional cell-cycle phase that is biologically meaningful as opposed to returning
incoherent and inconsistent results. Importantly, the DeepCycle results can easily be scrutinized and the
user knows immediately when to trust the estimated cell cycle phase.

Minor points
1) To me, it is really hard to understand what exactly this paper is about purely from the abstract. It is
very high-level claims and no examples or concrete results. | would definitely rewrite this a bit.

The abstract has been rewritten almost completely to state the aim of the paper and the main results. In
addition, we have included a concise but intuitive explanation of the key rationale behind DeepCycle.

2) Many figures have very short legends, to the degree that it is virtually impossible to understand what
is shown in the figures by just reading the legends. Examples are: Figura S3 - no details on the three
inputs, no details on the sizes of the layers (no activation information), no info on the sigma layer; Figure
S6 - no mention of A and B, no description of what x and y are, no mention of which data was used.
These are just two examples but this lack of description is pervasive.

We thank the reviewer for pointing out the lack of clarity and in the revised version of the manuscript, we
extend all the Supplementary Figures and the related captions.



3) The introduction is incoherent and not complete. The authors talk early on about the
'unspliced-spliced RNA space' without ever mentioning what this is and how this is relevant to cell cycle
prediction. They never mention the RNA velocity theory in the introduction, which is the basis of this
paper. When they mention the theory in the results section, they don't explain what it is (I had to piece it
together from the text).

The introduction has been rephrased to accommodate a sentence about the RNA velocity idea and link
it to the cell cycle and the cycling genes (red text).

Reviewer #3 (Expertise: DL for scRNASeq data analysis):

Riba et al. proposed DeepCycle, an autoencoder model which uses a single latent variable to describe
the cell cycle status. DeepCycle is conceptually novel and might potentially provide great biological
insights. The DeepCycle algorithm per se was well described and the corresponding benchmarking
analysis was rigorous. However, | think further clarification is needed for the biological applications,
especially in sections “identification of cell-cycle core transcription factors” and “characterization of
cycling cells shifting to the cycle-arrested state”, to make the study scientifically sound. | thus have the
following comments:

1. Throughout the paper, the dot size in scatterplots might be too big. | fully acknowledge that the
authors used density plots to describe the distribution of cells, but it would be better if the authors could
also provide a clear representation of individual cells.

The size of the dots in the main scatter plots presenting the datasets, has been decreased to better
highlight the number of cells.

2. For Figure 1D, the scrutiny of data quality is highly appreciated. Based on my experience, in general
1) primary cells have less mMRNA compared to cultured cells, 2) human cells have more mRNA
compared to mouse cells, and 3) “stem-like” cells have more mRNA compared to “differentiated” cells.
So the #UMIs per cell differences might be a piece of “real biology”, rather than only a quality issue.
Since they authors also provided spliced/unspliced% reads in Figure 1E so I'm convinced about the
quality of the datasets used here.

Thanks

3. For Figure 1F, are the two axes represent the fraction of spliced/unspliced reads? Or some integrated
“velocity scores” from the spliced-unspliced space? A short explanation would be really appreciated.
The same comment applies to other “velocity plots”.

The two axes represent the z-score values for unspliced and spliced reads. The z-score values are
necessary to input to DeepCycle values that are around 0 and with a similar range across different
genes. This information has been added to the plots in the main figures.

4. For citations 21-28, considering DeepCycle is based on AE, | would suggest the authors only cite
other algorithms based on AE, since VAE is generative model and might not be directly comparable.

We discussed in the revised version the possibility to extend DeepCycle to a VAE and make sure to
clarify the difference.

5. For Figure 2C, The “un” represents abundance of unspliced gene #n, and the “sn” represents
abundance of spliced gene #n, correct? | think the authors should clarify the two terms in the figure
caption.

Thanks for noticing the missing information, this has been clarified in the corresponding caption.

6. For Figure 2C, the red circle was constructed from the theta angle latent variable, correct? Then my
question is how the authors correspond sin/cos theta trajectory on the “velocity space”.

We reconstructed the red circular pattern by mapping the latent variable (angle/theta) with the decoder
to the spliced-unspliced space.



7. For Supplementary Figure S3, the decoder takes u and s to calculate the Atan2, meanwhile imputes
Gaussian noise to the data to increase the robustness, correct? As for the decoder, it recapitulates the
expression matrix by “circularization” from theta, correct? | think the authors should provide a more
detailed explanation to the framework. Some intuitions on the design strategy of the framework would
be highly appreciated.

Yes, one side of the encoder uses an estimation of the phase from the input gene and feeds it to the last
Dense layer of the encoder itself (see the orange box in Supplementary Figure S3). This step has been
added to provide the neural network a first guess of the correct theta. Theta is then circularized as a first
step of the decoder to enforce a 1-dimensional circular manifold. We explained more extensively the
framework and the training procedure in the Methods and Supplementary Figure S3.

8. For "GOterm:cell_cycle", have the authors tried using all genes? The reason I'm asking is that the
scLVM paper (https://www.nature.com/articles/nbt.3102) claimed other genes might also be affected by
cell cycle. Further, maybe extending the analysis to all genes will introduce additional biological features
besides cell cycle in the latent variable, especially when analyzing multiple cell types together? Could
the authors please comment?

We observed a trade-off between signal and noise. A restricted subset of genes that are truly cycling
makes the fit more robust and, afterward, it is possible to identify unknown cycling genes.

9. For Supplementary Figure S4, | think the authors should specify which dataset is presented in the
figure.

11. For Supplementary Figure S6, again, | think the authors should specify which dataset is presented in
the figure.

In both analyses, the mESC dataset was used. We explicitly write it in the figure captions.

10. For Supplementary Figure S5, | would suggest the authors to describe how the “cell cycle score”
represented by the x-axis is calculated. Also, | would suggest the authors to use density plot here,
considering there is an aggregation of dots at the top-left corner. The authors should confirm that most
of the dots are on the diagonal.

Supplementary Figure S5 has been updated with histograms to show that the distribution of
transcriptional phases is rather uniform on both axes. The ‘accumulation’ of dots in the corners is due to
the fact that the estimated theta is shifted by an arbitrary angle (in this case small).

After each run of DeepCycle, the estimated phase might be shifted, so to clarify this we added a plot
representing the possible expected behaviors in case of robust phase inference and extended its
caption.

12. For Supplementary Figure S7, are the authors using the same UMAP layouts as Figure 3A and
Supplementary Figure S8? Seems the same layouts are used so the claim here is valid. | would suggest
the authors to put the UMAP plots color-coded by scVelo scores and DeepCycle theta values
side-by-side to better support the claim here.

We joined together the figures into Supplementary Figure S10 and a third column has been added
showing the S and G2M scores from scVelo across the transcriptional phase.

13. For the flow cytometry analysis, | really appreciate the experimental validation here. However, it
seems that the authors didn’t describe the cell staining strategy. Was Hoechst staining performed to
determine cell cycle stages?

We performed propidium iodide staining as reported in the Methods. The information has been added in
the main text, accordingly.

14. For section "identification of cell-cycle core transcription factors" in general, | think the correct way of
demonstrating “identification” would be 1) identify top TFs that are correlated with theta, and 2) show
these top TFs are biological meaningful. So | think the authors should either 1) perform a real
“identification” analysis, or 2) only claim they could recapitulate known biology as an additional support
for validating the theta value.


https://igbmcmail.igbmc.fr/owa/redir.aspx?REF=xh2ZyQ3ru681WaQxDPd916kTwcWUIdHLKTye_UAqktgcxkRCHyvZCAFodHRwczovL3d3dy5uYXR1cmUuY29tL2FydGljbGVzL25idC4zMTAy

We rephrased the section title as ‘Prediction of cell-cycle core transcription factors’. For the rest of the
sections, we make sure not to overstate the results of the analysis.

15. Specifically, for Figure 4B, are the r values calculated against the abundance of all, spliced or
unspliced mRNA abundance? Maybe unspliced since “they remove the effect of mMRNA stability”?

The r values are computed between the motif activity and the spliced RNAs since we expected the latter
to reflect better the level of stable proteins, compared to the unspliced RNAs. The caption has been
extended accordingly.

16. Also, for Figure 4C, what do “input” and “computation” mean here?

Dunn et al Science 2016 identified the transcriptional network responsible for the maintenance of the
pluripotent state in mESC. The TFs identified as input are responsible to integrate the pluripotency
maintenance signal and the ‘computation’ ones to make a decision about the cell fate. We removed the
panel of ‘input’ and ‘computation’ because it generated some confusion and clarified this in the caption.

17. For the discussion of GO cells in section "characterization of cycling cells shifting to the
cycle-arrested state", shouldnt GO be outside the cell cycle? I'm a little bit confused why these
hypothesized GO cells are mapped as within the mid-G1 phase. Could the authors please comment? I'm
particularly concerned about how the GO cells will be treated. Please also see my comment to the
discussion section below.

Notice that in the case of human fibroblasts two subpopulations (proliferative and non-proliferative) were
clearly observed from the beginning. Thus, we trained DeepCycle using only proliferative cells, and cells
in GO were excluded. Afterward, we run the trained DeepCycle on GO cells as if they were proliferating
cells to assess what phase DeepCycle would assign. Interestingly, they were mapped to the early G1
phase as one would expect due to the fact the cell cycle tends to stop in G1. One possible extension of
DeepCycle that we envision in the future would be to automatically classify proliferative and
non-proliferative cells in a first step and then estimate the transcriptional cell-cycle transcription phase of
cells from the proliferative subpopulation.

18. For the discussion section, I'm wondering how DeepCycle will handle cells that are at GO stage, e.g.
terminally differentiated PBMCs. A further question would be, considering an ensemble of cycling and
non-cycling cells, can DeepCycle distinguish them? The reason I'm asking is sometimes cycling cells
might form separate clusters and cause artifacts for cell type analysis. | totally understand if DeepCycle
has difficulty in handling GO cells of the same/different types, since 1) the current design only takes cell
cycle genes, and 2) the latent space only has one variable. Maybe the authors should only focus on
cells within the cell cycle by adding a cellular state filter prior to DeepCycle analysis? This will make the
study more focused without losing the novelty of the algorithm. Could the authors please comment?

Currently, DeepCycle is designed to work on cycling cells, if the population of cells is too heterogeneous
the overlap of processes different from the cell cycle will mask the cell cycle signature. We extended the
analysis to automatically detect the transitions between cell phases, see the section in the Methods,
‘Detection of the cell cycle phase transitions’. We are exploring the possibility to infer the proliferative
state from marker genes but did not find a good general measure yet.

Reviewer #4 (Expertise: Stem cell biology):

Riba et al describes DeepCycle, based largely on RNA velocity concept, to infer the transcriptional
phase (0) in relation to the cell cycle based on scRNA-seq data obtained from mESCs, ductal cells and
human fibroblasts. This is a method that supposed to be presenting “to the scientific community a
broader understanding of RNA velocity and cell cycle maps, that we applied to pluripotency and
differentiation”. The idea of transcriptional phase (0) in relationship to cell cycle is interesting, but the
execution of the whole manuscript is poor -- it is very difficult to understand what was done leading to
the conclusion of many important points as detailed below. A big problem in the experimental design is
the comparison between the three chosen cell types that are vastly different (e.g. Line 270-271” From a
general perspective, a clear pattern emerges by comparing the undifferentiated mESCs with the more
differentiated human fibroblasts and ductal cells.”). While | understand that training and actual
application of the model is desired to be done in diverse cell types, there is no confidence that much of



the comparisons, therefore the conclusions, are valid, especially in the absence of any biological
validation or testing in datasets that have been reported/validated by others.

We indeed believe that showing that DeepCycle works in vastly different cell types is compelling
evidence of the applicability of our method. Notice that the fact that our approach doesn’t require
synchronizing or genetically modifying cells, makes it suitable to study gene regulation during the cell
cycle in vivo, from model organisms to even patients. In this new version of our manuscript, we have
rewritten several parts of the paper to gain clarity and in particular we have shown in a more convincing
manner how DeepCycle outperforms other existing algorithms. More importantly, we have
experimentally validated the gene expression patterns predicted by DeepCycle in different cell-cycle
phases by bulk RNA-seq experiments on FACS-sorted mESCs. All together, we strongly believe that
DeepCycle is able to produce reliable gene expression dynamics throughout the cell cycle in
unperturbed cell populations which may open the possibility to study cell-cycle related gene regulation
in a myriad of systems in the future.

Specific points:

1. Line 89 indicates that the sequencing depth is uncommon in most scRNA-seq datasets. How deep
does sequencing need to be done for DeepCycle to be applicable? This is a relevant and important
question that the authors did not address, which questions the general utility of their method. In the
abstract (line 22), the authors claims that they “can observe cycling patterns in the unspliced-spliced
RNA space for every gene.” This statement is misleading and/or overclaiming, as line 91-92 spells out
that only several thousand genes can be detected in each cell types, as expected from typical
scRNAseq. Further, how would lowly expressed genes compare in performance as highly abundant
genes? Gene expression level seems to matter as it was pointed out later that low expression level
seems to create inconsistency (line 212-214).

The maijority of the scRNA-seq datasets we analyzed do not show genes with cycling patterns, for either
technical (shallow sequencing), biological reasons (lower number of expressed mRNAs, not proliferating
cells, etc), or both. The mESC and the human fibroblasts are less differentiated cell types compared to
ductal cell progenitors and, this reflects in a large amount of expressed mRNAs as we could infer from
the low saturation levels (~20%) from the 10x Chromium platform. Our current recommendation is to
have numbers comparable to our mESC and human fibroblast datasets, but even with datasets as
shallow as the ductal cell, the method can give reliable results (~3k genes and ~8k UMI per cell).

The inclusion of genes with low expressions and therefore noisier does not allow the neural network to
converge. For that reason, we implemented a filtering step (flag --hotelling) to select among the list of
cell cycle genes the ones showing higher variability in expression (see Methods ‘Identification of cycling
genes and high-density paths’). We rewrote most of the abstract to avoid misunderstandings and gain
clarity.

2. Line 97-98 “Cycling genes are expected to be characterized by fully circular patterns as they
complete both their activation and deactivation phases (Figure 2A).” and line 116-117 “We expect that
genes whose expression is regulated during the cell cycle show a closed path in the unspliced-spliced
RNA space consisting of both an active and inactive phase”. What would a non cell cycle regulated
gene look like? A negative control would be informative.

By selecting only genes whose spliced expression is above 1, we can detect that the majority of the
genes in the 3 datasets are quite stable in expression levels across the cell cycle. Among these genes
the genes showing 2-fold change across the cell cycle are 218 out of 790 for the ductal cells, 442 out of
3533 for the fibroblasts, and 116 out of 4101 for the mESC. This information has been included in the
caption of Supplementary Figure S15. We added examples of non-cycling genes in Supplementary
Figure S8.

3. Line 111-112: Figure S2 is used as support that “the complexity of gene regulation in the context of
the cell cycle cannot be approximated by the current models”. There is hardly any explanation or
quantitative measurement for the poor performance of the existing models: how much deviation (Fig
S2A) and how much inconsistency (Fig S2B) is driving such a conclusion? Similarly, Cyclum is
dismissed without sufficient explanation — very little description is provided for Fig S6 provided.

We added in Figure S2 the expected behavior of the models when identifying the correct cell-cycle
dynamics. ScVelo captures neither the circular patterns nor the correct latent time (bold purple lines in



Figure S2). Regarding Cyclum Figure S6, we added the results expected from a random distribution of
angles and DeepCycle to clarify that Cyclum does not work properly. Further, running Cyclum multiple
times returns different angle distributions that suggest it is unstable and unreliable.

4. Fig 2E: Why would different cell types show Ccn E and B at different 87 Are the authors suggesting
that these classical cell cycle drivers function differently across cell types? Similarly for the claim later at
line 208-210 “other DNA replication genes, such as components of the Origin recognition complex
proteins (Orc1-6/ORC1-6), show different expression patterns across the datasets, suggesting more
heterogeneous regulation (Supplementary Figure S10).” These seem to be rather unusual insights that
need further elaboration and validation, absence of which question their validity.

Theta represents an arbitrary state across the cell cycle and is not shared between datasets. The full
cycle in the theta space has a length of 1 for all the cell types. We synchronized the thetas to have
mitosis in 1, see the section in the Methods, ‘Detection of the cell cycle phase transitions’. Now, if in
real-time the length of the cell cycle is different we should see mainly a change in the G1 phase.
According to the literature, the S and M phases are quite constant, constrained by the structural events
happening in the cells, and do not depend on the different cell types. To have a more realistic
visualization of the length of the cell cycles we set the same length for the S phase and rescale
accordingly the thetas (see Supplementary Figure S12). It becomes clear that the cell cycle lasts much
longer in ductal cells compared to mMESCs and that CcnE and B show similar dynamics with respect to
the G1/S and M/G1 transitions respectively.

We couldn’t provide more evidence about the Origin Recognition Complex so decided to remove it from
the text.

5. Line 160-161: No explanation provided for Fig S7 — what criteria is used to conclude “the cell cycle
scores calculated by scVelo match well with the transcriptional phases inferred by DeepCycle”?

We merged Supplementary Figures S7 and S8 into S10 and added a comparison between the scores
and the transcriptional phase to improve the clarity of the statement. The Supplementary Figure S10
now includes a plot of the S and G2M scores, inferred by scVelo, across the transcriptional phases for
the three datasets.

6. Line 175-176: “the variability of the transcriptomes across the transcriptional phase is stable (Figure
3C)” — this conclusion is based on what? How was “transcriptome variabilities (y2)” calculated? Line
178-179 “it could infer the correct dynamics of transcriptional changes at the cell level (see the velocity
plots in Supplementary Figure S8)” — what is the analysis that led to this conclusion?

The chi-squared has been calculated using the expected value of the average for the bin. Anyway, In
the last version of the draft, we decided to remove panel 3C to improve the flow of the text since it was
not adding much information to the manuscript. The velocity maps are consistently pointing in the
direction in which the transcriptional phase is increasing (see Supplementary Figure S10). For that
reason, we can conclude that at the cell level the velocity estimation is consistent with our estimation of
the cell cycle progression.

7. Line 183-185 Fig S9 is being used as evidence to support that DeepCycle performed to correctly call
the correct proportion of cells in each cell cycle phase. The evidence in Fig S9 is correlation at best. To
directly test the performance of DeepCycle, cells should be sorted according to known live cell cycle
phase reporters and perform scRNA-seq. These data then should be used to test how well DeepCycle
is working. Same problem with Fig 5B,C.

We agree with the reviewer that a nice validation would be to sort live cells according to phase
reporters, like FUCCI, but we would need to repeat the experiment with a cell line that is not comparable
with our dataset since the introduction of reporters. As an alternative, we bulk sequenced mESCs sorted
with FACS in the three main phases, showing the results are consistent with our cell cycle phases in
Supplementary Figure S11. Further, we extensively checked cell cycle genes (Fig. 2E, 3A
Supplementary Figure S14), general cell cycle markers (Supplementary Figure S10), and the cell sizes
(Figure 3C). All these together strongly indicate, we believe, that DeepCycle is working properly
successfully sorting cells according to their cell-cycle progression.

8. Fig 4C: Are the authors suggesting MEK/ERK to be active in pluripotent stem cells (green box)? It is
commonly accepted that the inhibition of MEK/ERK that maintains pluripotency, which is also the



condition that seems to have been used by the authors, i.e. the “2i” condition. This seriously calls into
question of the validity of the results.

The genes reported in the boxes are from https://science.sciencemag.org/content/344/6188/1156 and
correspond to the transcription factors relevant for the maintenance of pluripotency. We used this list to
select relevant TFs and observe their activity across the cell cycle Figure 4C. Unfortunately, the motif of
MEK/ERK is not in the database we used to infer the TF activities and it is indeed missing from the
heatmap 4C. The main idea was to show the subsequent activation of the input genes during the late
G2M phase and the computation genes in early G1. To avoid any confusion, we decided to remove the
list of TFs.


https://science.sciencemag.org/content/344/6188/1156

eviewers' Comments:
R 'C t

Reviewer #1:

Remarks to the Author:

1. A general comment on the style of the response letter. It would be a lot more helpful to write
down the revised content as part of the response as opposed to directing the reviewer to general
section.

2. VAEs are not “imputation methods to correct for capture rate and noise in scRNA-seq data”.
They are general Bayesian framework to infer the posterior distribution of the latent manifold from
typically high-dimensional data [Kingma & Welling, 2013]. The authors wrote in the main text
under Results section that they tried VAE but not able to obtain a convergent neural network
without showing any results. I found this very unsatisfactory especially that there is no detail
provided in how the VAE was implemented and what defines “convergent” in their VAE model. In
VAE, the objective function is evidence lower bound that is the reconstruction loss (i.e., likelihood)
minus Kullback-Leibler divergence (i.e., KL[q||p]). What exactly do you mean by “We tested VAE
but without being able to obtain a convergent neural network”?

3. Authors mentioned that the lack of gold-standard labels for cell-cycle does not allow them to do
proper method comparison. But in Figure 3A,C and Fig 4A they did label the cells with cell cycles
based on marker genes. What I was asking in original comment was to define cells based on the
marker genes and then the Theta to predict these cells.

4. On line 463,464, the symbols do not show up properly on the pdf file probably due to
conversion issue.

Reviewer #2:

Remarks to the Author:

The authors have done a good job addressing the comments of the reviewers. The algorithmic
details have sufficient depth in writing and in the figures. The github page and abstract are heavily
extended / modified. Overall I think this work could be published in its current state, with minor
fixes of spelling and grammatical mistakes.I have no further questions or concerns.

Stefan Bonn

Reviewer #3:

Remarks to the Author:

All my concerns have been addressed. Besides, the authors also did great amount of additional
work to significantly improve the quality of the paper, which I really appreciate. I thus would
recommend the publication of the paper.

Two minor comments:
1. It seems that the theta cannot be displayed, e.g. line 123.

2. The genes listed at the end of the main text file should be Supplementary Table S1 “cycling
genes not yet considered in the GO term:cell_cycle that could be added as markers of the cell
cycle”, right?

Reviewer #5:

Remarks to the Author:

Review of Ms entitled “Cell cycle gene regulation dynamics revealed by RNA velocity and deep-
learning” by Riba et al submitted to Nature Communicationsis,

Summary:
In this study, the authors use a computational analysis of deep scRNAseq data to assign the cell
cycle phase of individual cells in unperturbed populations. Using RNA velocity, and parameters



derived from the ratio of spliced to un-spliced transcripts they have projected the dynamic
temporal activity of individual loci in single cells. The main finding is that the temporal oscillations
of cell cycle-regulated genes can be detected by projecting a trajectory from (static) single time-
point data of a cycling population to yield a specific signature of cyclic transcriptional activity in the
“RNA velocity space”. This index can be used to infer the cell cycle phase of individual cells. The
study is performed in mouse embryonic stem cells (MESC) and somatic human fibroblasts
(IMR90), and then tested using published data from ductal progenitor cells.

The study provides a potentially very useful tool for deriving cell cycle status from single cell
transcriptomic data. Overall, the results are intriguing and the authors make some compelling
arguments for the utility of this approach. However, there are a number of issues that require
clarification, and potentially would make the study more accessible and therefore more widely
applicable.

I will restrict my comments to the biology of the systems used, and the biological inferences drawn
from the computational approaches. Overall, I found that the paper is written more for the
computational biologist than the cell biologist. From the viewpoint of the biologists who might find
the approach very useful, and in the interest of wider applicability, there are several
statements/inferences/conclusions that would benefit from a more detailed explanation.

Example 1: The statement “The fits naturally generate gene expression series that can be
analyzed to obtain detailed kinetic parameters” s

An explicit statement is essential to explain how dynamic patterns can be computed from static
single time-point data to infer cyclic activity, else it is difficult to appreciate the results.
Example 2: There is a very basic explanation of what TFs do, which I presume is for the
computational expert, but the equivalent basic treatment of very complex computational
inferences for the cell biologist are completely missing.

The Introduction does not provide the uninitiated with sufficient insight as to what ‘RNA space’
may refer to, why un-spliced vs. spliced reads are more useful that total reads, and how RNA
velocity theory has come to be an accepted mode of investigation of transcriptomic data. Some
explanation is found in the Discussion but in my opinion, this is better positioned in the
Introduction so as to provide a clear framework from which to view this study. Can be reiterated in
the Discussion if space is not an issue.

From a biological perspective, it is not clear that the choice of three very different cell types is
relevant. It would have been better to use comparisons between different states of a single cell
type (for example undifferentiated mESC with their differentiated derivatives robust protocols exist
for different lineages such as cardiac or neural or endothelial). From such data if the cell cycle
changes that accompany differentiation (and cell cycle) could be mapped using DeepCycle, it
would have been more convincing, and if then applied to mouse or human somatic cells such as
fibroblasts or other cell types, one could appreciate the broader generalizability of the method.
However, given that substantial work has been done with the 3 very diverse cell types compared
in the current ms., it would be important to tone down the claims of biological relevance and
generalizability and restrict them to the specific results obtained.

A major concern is the derivation of inferences about the behavior of GO (quiescent) cells from a
data set derived from a continuously cycling population.

The authors make a strong point about the application of their method to cells that have not been
perturbed (synchronized) with drugs or by engineering with fluorescent markers. However,
designation of a sub-population as GO/G1 based on FACS refers to the 2n DNA content (even a
DNA/RNA ratio would have been more helpful to grossly distinguish GO from G1). Data from
cycling cells does not take into account the differences in behavior of truly quiescent cells (G0)
which have entered into a qualitatively different state based on activation of a specific quiescence
program coincident with cell cycle withdrawal. In this study, it is not at all clear that individual cells
have actually reached a stationary phase, so it is a stretch to say whether cells are quiescent or
will start cycling again, since no phenotyping in terms of kinetics of cell cycle have been done.
Designation of a quiescent state relies on not just the DNA/RNA content or transcriptional profile,
but critically, the kinetics and expression profile of cell cycle re-entry (the GO-G1 transition) which



distinguishes these cells from G1 cells (even pre-R point), for discussions see Coller 2006; Goodell,
2004; 2006; Dhawan and Laxman 2015).

Therefore, the rather strong statements about whether cells are entering GO are not justified, and
need to be toned down or qualified substantially. GO markers were derived from the Cheung and
Rando data set, but these are from quiescent muscle stem cells (or very early after activation), not
a continuously cycling population. It is not clear why the data from human fibroblasts was not
used (Coller 2006) or from the core quiescence signature (Qsig) as derived by the Goodell group.

It is important to note that unperturbed populations of quiescent and exponentially cycling cells of
the same type can be derived from normal and regenerating adult muscle (see Machado et al,
2017; van Velthoven et al, 2017), and might provide a much more stringent test of the ability of
this computational approach to identify cells in different cell cycle phases, particularly GO.

From this perspective, several statements relating to Figure 5 therefore did not seem warranted or
were overly emphatic:

Specifically:

(i) FoxM1 being designated as a marker of quiescence when it is specifically down-regulated after
M phase is rather strange; normally one would designate an up-regulated gene to be a bona fide
marker of a state if used alone; if used in conjunction with a signature, then up and down
regulated genes provide more power. Further, since FoxM1 targets do not follow its expression,
there may be many layers of regulation, which are not captured by this approach so it is not clear
how this statement supports the conclusions.

(ii) One would expect quiescence markers to be highly changed only in truly quiescent cells, not
necessarily in the lagging cells of a G1 subpopulation of a cycling population, as their induction
comes from extended period of time in GO, activating a new program. So this comparison did not
seem compelling.

(iii) While there is a reasonable case to be made for using DeepCycle, many new insights about the
quiescence decision point have gained from experiments in the Meyer and Spencer labs, using
unperturbed cycling populations of fibroblasts (albeit engineered with fluorescent markers, which I
do not believe alters their conclusions). It would be important to acknowledge the utility of that
approach.

(iv) Inferring master regulators of GO from this data feels like quite a stretch- as mentioned above,
one cannot really derive strong conclusions about GO since this is based on G1 cells from a cycling
population.

Therefore, the authors may want to substantially tone down their description and inferences from
Fig5, and take into account the altered state of GO cells compared to G1. Indeed, it is important to
describe more carefully the entry into quiescence, its maintenance and exit from this type of data.
But while some elements of the transition from G1 towards GO may be captured from these data, I
am not convinced that the GO state is captured.

Can the authors do experiments to show that cells isolated on the basis of the RNA velocity index
are kinetically distinct? Where do they fall in the cell cycle?

Some specific issues include:

Is it not surprising that despite differences in read depth and very different transcriptional
landscapes, all the data sets show ~15% unspliced reads? Would the ratio not be significantly
different at different times/cells? Authors should comment on why regulation at splicing does not
appear to be a feature, or provide a reference.

Figl # of genes per cell- is it not more correct to express as # of transcriptionally active genes per
cell since the gene number per se should identical for the two mouse cell types and slightly
different for human cells?

Fig3D does not exist in the revised version, but has been cited: harmonize



YY1 is both an activator and a repressor-how will that affect inferences?

Fig5 why not use DNA-RNA ratio, which is a better separator of G1 from G0?

Statement: Ybx1 expression is linked to poor prognosis in pancreatic ductal adenocarcinoma -why
is this relevant in the context of this paper?

Line 308 i&"G1 are bigger than the cells in S and G2/M suggesting that the cells waiting in G0O/G1
are increasing in size, it remains unclear whether they will re-enter the cycle later. The cell
velocities are consistent with our interpretation and do not clarify if the cells in GO will start cycling
Again: designating G1 cells from a cycling population as quiescent is not warranted as they just
represent a continuum of lagging G1 not GO

Need explicit statement of why spliced to unspliced transcripts is a better measure of
transcriptional status of a given locus than total transcripts

Comparison of ESC and somatic cells is not strictly useful since they have a very different cell cycle
structure and regulation and mESC never enter GO

Clarifications required for the following:
Abstract: rather than pluripotent vs. differentiated cells more correct to say embryonic vs. somatic
since from the cell cycle perspective both are cycling but with different characteristics

Supp Fig 1: indicate what the blue and orange traces in the gene expression plot (lower panel)
represent. The current figure legend has no explanation. This figure is skewed for genes that are
highly expressed in cycling cells, where only Dek represents a gene more highly expressed in non-
cycling cells- more examples of these should be shown; genes that are known to be expressed
only in S phase or early G1 could also be shown to give a sense of the robustness of this approach.

Supp figs often refer to main figs (eg S17), but they should be self-explanatory, and the legends
should be more detailed to allow appreciation of the point being made. Perhaps a title based on
the inference being drawn from each sup fig can be included to enable understanding?



REVIEWER COMMENTS
Reviewer #1 (Remarks to the Author):

1. A general comment on the style of the response letter. It would be a lot more helpful to
write down the revised content as part of the response as opposed to directing the
reviewer to general section.

We sincerely apologize for the inconvenience it has caused to the reviewers to not
include the revised content in our answers. We thought that highlighting the text in red in
the manuscript was enough. This time, to ease the reviewing process we have provided
more details directly in the answers below.

2. VAEs are not “imputation methods to correct for capture rate and noise in scRNA-seq
data”. They are general Bayesian framework to infer the posterior distribution of the
latent manifold from typically high-dimensional data [Kingma & Welling, 2013]. The
authors wrote in the main text under Results section that they tried VAE but not able to
obtain a convergent neural network without showing any results. | found this very
unsatisfactory especially that there is no detail provided in how the VAE was
implemented and what defines “convergent” in their VAE model. In VAE, the objective
function is evidence lower bound that is the reconstruction loss (i.e., likelihood) minus
Kullback-Leibler divergence (i.e., KL[qg||p]). What exactly do you mean by “We tested
VAE but without being able to obtain a convergent neural network”?

We fully agree with the reviewer: in general VAEs are not imputation methods. However,
we didn't intend to convey that statement in our manuscript. Below we attempt to clarify
this misunderstanding.

The reviewer’s original question in the previous revision was: “How does DeepCycle
(which is just an autoencoder) compare with other approaches such as scVI, scVI-LD,
ScGAN, scETM, which properly takes into account distribution of the latent encoded
variable in a variational autoencoder framework while addressing batch effects in
different ways”

To answer this question we wanted first to stress the fact that the VAE methods
mentioned by the reviewer are focused mainly on the imputation of missing data and not
on inferring the cell cycle progression in single cells. This impeded the direct comparison
of the output and performance of these methods with DeepCycle. Nevertheless, in the
revised manuscript we explicitly stated the potential utility of VAEs, as opposed to the AE
implemented in DeepCycle, to model the distribution of spliced and unspliced reads:

“.. . A similar approach can be implemented with a Variational Autoencoder (VAE). VAEs
have already been applied as imputation methods to correct for capture rate and noise in
ScRNA-seq data?"#-%'. Though DeepCycle is not an imputation method, and is designed
to detect 1-dimensional circular manifolds, VAE could allow the inference of a
transcriptional phase together with the whole distribution of unspliced-spliced RNAs. ...”

Regarding the implementation of the VAE, the parameters of the neural network were
optimized using the ELBO as an objective function as mentioned by the reviewer. As
opposed to standard VAEs, we chose a von Mises distribution on the latent space to
model cyclic boundary conditions. The attempts to train the network were inconclusive as
it was not able to correctly fit the circular patterns in the unspliced-spliced RNA space.
We do not exclude that future attempts may be more successful and will be included in a


https://paperpile.com/c/Gg6zDJ/Jqxd6+pTe1G+40coL+HgHir

newer version of DeepCycle. However, for the purpose of this paper, sorting cells
according to their cell cycle state, we found the performance of a simple AE suitable and
robust.

To improve the clarity and avoid any misunderstanding we have rewrote the text
regarding the VAEs and moved it to the discussion section. We have also removed the
mention of our attempts to fit a VAE. The new text in the discussion section is:

“Furthermore, we envision extending DeepCycle as a Variational Autoencoder (VAE), a
neural network capable of modelling distributions over the input data. VAEs have already
been applied on scRNA-seq data as imputation methods to correct for capture rate and
noise?"?%31In our case, it will allow us to learn the posterior distribution of the
transcriptional phase and model the whole distribution of unspliced-spliced RNAs.”

3. Authors mentioned that the lack of gold-standard labels for cell-cycle does not allow
them to do proper method comparison. But in Figure 3A,C and Fig 4A they did label the
cells with cell cycles based on marker genes. What | was asking in original comment was
to define cells based on the marker genes and then the Theta to predict these cells.

In this new revision of the manuscript we have compared DeepCycle with two other
methods that sort cells according to their cell cycle progression: Cyclone (Scialdone
2015) and Revelio (Schwabe 2002). Both methods rely on a predefined set of gene
markers of the cell cycle phases. Cyclone assigns cells to broad cell cycle phases while
Revelio sorts cells also in a continuous cell-cycle time similar in spirit as DeepCycle. We
believe the comparison between the three methods highlights well the difficulty to
address the reviewer’s comment. Depending on the markers/tools the assignment to the
phases are different. For instance, Cyclone’s and Revelio’s phase assignments are not
consistent. Furthermore, Cyclone’s assignments for the mESC (bottom left) are
completely inconsistent with the DeepCycle and Revelio. Adjusted Rand Index (ARI)
between DeepCycle and Cyclone assignments are -0.026 for mESC, 0.65 for ductal cell
progenitors, and 0.25 for human fibroblasts. Finally, we cannot classify the cell phases
from Revelio’'s markers because these markers are assigned to mixed phases, e.g.
G1/S, M/G1. However, overall, Revelio’s assignments are consistent with our phase
subdivisions in all the datasets (see Supplementary Figure S9 attached below).

In DeepCycle, we used cyclin-E(1-2) peaks to define the G1/S transition (Alberts et al.
MBC) and we exploit the decrease in total RNA counts to determine the beginning of
mitosis. We used markers from Tyrosh et al. 2016 to set the S/G2 transition that is
otherwise difficult to define based on few genes at the RNA level. This allows us to
highlight transitions between broad cell-cycle phases. However, defining a standard list
of marker genes for the different phases is out of the scope of our method. We believe
that the major contribution of DeepCycle is instead to correctly sorting cells across the
cycle revealing the continuous gene expression dynamics during the cell cycle.
Nevertheless, our analysis suggests that there is no consensus about phase specific
markers at the RNA level, consistently with the view that markers defined on different
cellular models may vary, lacking in generalizability. We added this point to the
Discussion:

“.... Given the variability in the cell cycle signatures among cellular models, defining the
cell cycle phases in RNA data based solely on gene markers lacks generalizability. In the
future, the usage of gene markers needs to be replaced by adopting methods relying on



dynamical features of gene expression, able to accommodate changes in the regulation
of the cell cycle. ...”

On the other hand, the sorted cells across the cell cycle from DeepCycle and Revelio are
in almost perfect agreement (below or Supplementary Figure S9), even if they are based
on completely different methods. Notice though that Revelio still relies on marker genes
for each of the transitions and phases to infer the cell cycle time. DeepCycle on the
contrary, by exploiting information on unspliced and spliced RNA levels contained in the
sequencing data, is able to select automatically for each cell-type (or condition) the
subset of genes that have a cycling pattern in the unspliced-spliced RNA space.
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Finally, we also tested other approaches. reCAT should also provide a cell cycle time,
but it does not run on our datasets because of their large sizes (we contacted the
authors to have further hints without receiving any answer). Oscope is not designed to
return sorted cells but only clusters of cycling genes, therefore we were not able to make
any comparison with it.

4. On line 463,464, the symbols do not show up properly on the pdf file probably due to
conversion issue.

We apologize for the inconvenience and will make sure that the pdf visualizes the thetas
properly.

Reviewer #2 (Remarks to the Author):

The authors have done a good job addressing the comments of the reviewers. The
algorithmic details have sufficient depth in writing and in the figures. The github page and
abstract are heavily extended / modified. Overall | think this work could be published in
its current state, with minor fixes of spelling and grammatical mistakes.l have no further
questions or concerns.

Stefan Bonn



We thank the reviewer for acknowledging our efforts to improve our manuscript. We
appreciate very much his support for publication.

Reviewer #3 (Remarks to the Author):

All my concerns have been addressed. Besides, the authors also did great amount of
additional work to significantly improve the quality of the paper, which | really appreciate.
| thus would recommend the publication of the paper.

We are very happy to hear that the additional work has significantly improved the
manuscript. We very much appreciate the reviewer's support for publication.

Two minor comments:
1. It seems that the theta cannot be displayed, e.g. line 123.

We apologize for the inconvenience and will make sure that the pdf visualizes the thetas
properly.

2. The genes listed at the end of the main text file should be Supplementary Table S1
“cycling genes not yet considered in the GO term:cell_cycle that could be added as
markers of the cell cycle”, right?

It contains both the list of genes used to infer the phase in MESC and the one not yet
annotated in the GO term:cell_cycle. We updated the table and added labels to each
column to clarify their content.

Reviewer #5 (Remarks to the Author):

Review of Ms entitled “Cell cycle gene regulation dynamics revealed by RNA velocity
and deep-learning” by Riba et al submitted to Nature Communications

Summary:

In this study, the authors use a computational analysis of deep scRNAseq data to assign
the cell cycle phase of individual cells in unperturbed populations. Using RNA velocity,
and parameters derived from the ratio of spliced to un-spliced transcripts they have
projected the dynamic temporal activity of individual loci in single cells. The main finding
is that the temporal oscillations of cell cycle-regulated genes can be detected by
projecting a trajectory from (static) single time-point data of a cycling population to yield a
specific signature of cyclic transcriptional activity in the “RNA velocity space”. This index
can be used to infer the cell cycle phase of individual cells. The study is performed in
mouse embryonic stem cells (MESC) and somatic human fibroblasts (IMR90), and then
tested using published data from ductal progenitor cells.

The study provides a potentially very useful tool for deriving cell cycle status from single
cell transcriptomic data. Overall, the results are intriguing and the authors make some
compelling arguments for the utility of this approach. However, there are a number of
issues that require clarification, and potentially would make the study more accessible
and therefore more widely applicable.



I will restrict my comments to the biology of the systems used, and the biological
inferences drawn from the computational approaches. Overall, | found that the paper is
written more for the computational biologist than the cell biologist. From the viewpoint of
the biologists who might find the approach very useful, and in the interest of wider
applicability, there are several statements/inferences/conclusions that would benefit from
a more detailed explanation.

Example 1: The statement “The fits naturally generate gene expression series that can
be analyzed to obtain detailed kinetic parameters”

An explicit statement is essential to explain how dynamic patterns can be computed from
static single time-point data to infer cyclic activity, else it is difficult to appreciate the
results.

Example 2: There is a very basic explanation of what TFs do, which | presume is for the
computational expert, but the equivalent basic treatment of very complex computational
inferences for the cell biologist are completely missing.

The Introduction does not provide the uninitiated with sufficient insight as to what ‘RNA
space’ may refer to, why un-spliced vs. spliced reads are more useful that total reads,
and how RNA velocity theory has come to be an accepted mode of investigation of
transcriptomic data. Some explanation is found in the Discussion but in my opinion, this
is better positioned in the Introduction so as to provide a clear framework from which to
view this study. Can be reiterated in the Discussion if space is not an issue.

We thank the reviewer for pointing this out. We would like our paper to be accessible to
the widest possible readership and especially to experimental biologists that may find our
method useful to study gene regulation during the cell cycle. Therefore, we have
significantly changed the introduction and include a detailed explanation of the idea
behind RNA velocity to introduce the reader to the concept. We hope that the new text
together with Fig 1F for some examples of RNA velocity patterns and Fig 2A for a
scheme of the idea improves the understanding of our method.

From a biological perspective, it is not clear that the choice of three very different cell
types is relevant. It would have been better to use comparisons between different states
of a single cell type (for example undifferentiated mESC with their differentiated
derivatives robust protocols exist for different lineages such as cardiac or neural or
endothelial). From such data if the cell cycle changes that accompany differentiation
(and cell cycle) could be mapped using DeepCycle, it would have been more convincing,
and if then applied to mouse or human somatic cells such as fibroblasts or other cell
types, one could appreciate the broader generalizability of the method.

However, given that substantial work has been done with the 3 very diverse cell types
compared in the current ms., it would be important to tone down the claims of biological
relevance and generalizability and restrict them to the specific results obtained.

We fully agree with the reviewer that there are very interesting and relevant questions
that can be addressed by comparing the gene regulation dynamics during the cell cycle
in mESCs and their differentiated derivatives. However, the main scope of this paper was
to introduce a new computational method able to extract gene expression dynamics from
scRNA-seq experiments and show its robustness and broad applicability. Thus, we
believe that testing the performance of DeepCycle in three very different systems shows
that the method is not tightly tailored to work on a particular cell type but on the contrary
is flexible enough to adapt to different cellular systems. Remarkably, we obtain main
differences in the cell cycle structure (different G1 lengths) without including any prior
knowledge in the model showing the potential of DeepCycle to extract interesting



information regarding the cell cycle. More importantly, we are able to estimate gene
expression continuous dynamics throughout the cell cycle genome-wide without the
need of synchronizing or genetically modifying cells. This in principle opens the
possibility to study gene regulation during the cell cycle in vivo, from model organisms to
even patients. Finally, we predict transcription factors that may play an important role in
regulating gene expression during the cell cycle which can be selected for further
experimental validation. For all this we think the paper, although mainly computational,
has certain biological relevance.

In this new revised manuscript, we checked carefully not to overstate the biological
findings of our study. Whenever possible we stated clearly that our findings may suggest
interesting biology but further experiments would be required to fully validate the results,
for instance regarding the TF activity inference.

A major concern is the derivation of inferences about the behavior of GO (quiescent) cells
from a data set derived from a continuously cycling population.

The authors make a strong point about the application of their method to cells that have
not been perturbed (synchronized) with drugs or by engineering with fluorescent
markers. However, designation of a sub-population as G0/G1 based on FACS refers to
the 2n DNA content (even a DNA/RNA ratio would have been more helpful to grossly
distinguish GO from G1). Data from cycling cells does not take into account the
differences in behavior of truly quiescent cells (G0O) which have entered into a
qualitatively different state based on activation of a specific quiescence program
coincident with cell cycle withdrawal. In this study, it is not at all clear that individual cells
have actually reached a stationary phase, so it is a stretch to say whether cells are
quiescent or will start cycling again, since no phenotyping in terms of kinetics of cell
cycle have been done. Designation of a quiescent state relies on not just the DNA/RNA
content or transcriptional profile, but critically, the kinetics and expression profile of cell
cycle re-entry (the GO-G1 transition) which distinguishes these cells from G1 cells (even
pre-R point), for discussions see Coller 2006; Goodell, 2004; 2006; Dhawan and Laxman
2015).

Therefore, the rather strong statements about whether cells are entering GO are not
justified, and need to be toned down or qualified substantially. GO markers were derived
from the Cheung and Rando data set, but these are from quiescent muscle stem cells (or
very early after activation), not a continuously cycling population. It is not clear why the
data from human fibroblasts was not used (Coller 2006) or from the core quiescence
signature (Qsig) as derived by the Goodell group.

We thank the reviewer for pointing out these sets of markers of quiescence. We included
the markers from Coller 2006 in the Supplementary materials (see figures below). They
are consistent with the idea of an early GO-like state, and we extended the discussions
about the nature of the non proliferative subpopulation. Our suggestion given the new
evidence is that the cells are starting their transition towards quiescence.



Supplementary Figure S19

GO downregulated (Coller 2006)
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Supplementary Figure S21

GO upregulated (Coller 2006)
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It is important to note that unperturbed populations of quiescent and exponentially
cycling cells of the same type can be derived from normal and regenerating adult muscle
(see Machado et al, 2017; van Velthoven et al, 2017), and might provide a much more
stringent test of the ability of this computational approach to identify cells in different cell
cycle phases, particularly GO.

We apologize for having misled the reviewer. Our method does not detect GO directly,
indeed we performed the cell cycle analysis on the proliferative subpopulation of
fibroblasts. Once the cell cycle model is learned by DeepCycle, it can be run on the non
proliferative subpopulation, to predict the closest cycling cells. This analysis shows that
the non proliferative cells are transcriptionally more similar to cycling cells in mid-G1,
which led us to investigate whether the non proliferative cells are related to quiescent
cells. To avoid misleading future readers, the color of the non proliferative subpopulation
in Fig. 5A has been changed to gray and the related text has been clarified.
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From this perspective, several statements relating to Figure 5 therefore did not seem
warranted or were overly emphatic:

Specifically:

(i) FoxM1 being designated as a marker of quiescence when it is specifically
down-regulated after M phase is rather strange; normally one would designate an
up-regulated gene to be a bona fide marker of a state if used alone; if used in
conjunction with a signature, then up and down regulated genes provide more power.
Further, since FoxM1 targets do not follow its expression, there may be many layers of
regulation, which are not captured by this approach so it is not clear how this statement
supports the conclusions.

FOXM1 is a marker gene listed in Coller 2006 and we added the corresponding
reference in the text. The anticorrelation between FOXM1 expression and its targets may
suggest its role as a transcriptional repressor. Indeed, experimental evidence indicates
that FOXM1 may have different regulatory roles depending on the expressed isoform
https://doi.org/10.1515/BC.2007.159. To further investigate and charaterize the exact role
of FOXM1 is out of the scope of our paper.

(i) One would expect quiescence markers to be highly changed only in truly quiescent
cells, not necessarily in the lagging cells of a G1 subpopulation of a cycling population,
as their induction comes from extended period of time in GO, activating a new program.
So this comparison did not seem compelling.

We extensively check markers of quiescence from Coller 2006 and Cheung and Rando
2013 and both show most of the genes consistent with our conclusion of GO-transitioning
cells, we acknowledged in the text also the possibility of these cells representing other
fibroblast states (Rognoni 2018):

“... . Therefore, nonproliferative fibroblasts might represent a differentiated state of the
fibroblasts and not simply reflect cells entering in GO®°. ...”

(i) While there is a reasonable case to be made for using DeepCycle, many new
insights about the quiescence decision point have gained from experiments in the Meyer
and Spencer labs, using unperturbed cycling populations of fibroblasts (albeit engineered
with fluorescent markers, which | do not believe alters their conclusions). It would be
important to acknowledge the utility of that approach.

We acknowledge papers linked to the cell cycle from the two labs in the discussion.
Further, in agreement with one of their main findings, CDK2 level decreases in cells
directed towards the quiescence-like state and increases in the cell undergoing a new
cycle (https://pubmed.ncbi.nim.nih.gov/24075009/). The figure below has been included
as Supplementary Figure S23 and discussed in the section ‘Characterization of cycling
cells shifting to a cycle-arrested state’.


https://pubmed.ncbi.nlm.nih.gov/24075009/

CDK2 bifurcation

UMAP2

UMAP1

(iv) Inferring master regulators of GO from this data feels like quite a stretch- as
mentioned above, one cannot really derive strong conclusions about GO since this is
based on G1 cells from a cycling population.

After considering in the revised version the set of GO markers in (Coller 2006) and
(Cheung and Rando 2013) we obtained additional evidence suggesting that indeed we
have a subpopulation of fibroblast cells that are transitioning towards a quiescent state.
However, as already mentioned in the comment (ii), we stated in the manuscript that we
cannot exclude alternative states of the fibroblasts (Rognoni 2018).

Therefore, the authors may want to substantially tone down their description and
inferences from Fig5, and take into account the altered state of GO cells compared to G1.
Indeed, it is important to describe more carefully the entry into quiescence, its
maintenance and exit from this type of data. But while some elements of the transition
from G1 towards GO may be captured from these data, | am not convinced that the GO
state is captured.

Since we do not think we captured fully quiescent cells, in agreement with the reviewer,
and based on the latest analysis, GO has been restated as an early GO phase or cells
transitioning to a quiescent state throughout the manuscript.

Can the authors do experiments to show that cells isolated on the basis of the RNA
velocity index are kinetically distinct? Where do they fall in the cell cycle?

We are sorry but we are not sure to understand what the reviewer means by sorting
according to the RNA velocity index. If the reviewer meant to sort cells according to
different cell cycle phases, in the previous revision, we performed 3 bulk RNA-seqs on
FACS-sorted mESCs in the three main phases G0/G1, S, and G2/M. The results are
consistent with our sorting see Supplementary Figure S13. This reensure us to believe
that our transcriptional phase estimated computationally is biologically meaningful. To be
able to sort cells in a more fine-grained manner would require a different experimental
approach which goes beyond the scope of the current paper.



Some specific issues include:

Is it not surprising that despite differences in read depth and very different transcriptional
landscapes, all the data sets show ~15% unspliced reads? Would the ratio not be
significantly different at different times/cells? Authors should comment on why regulation
at splicing does not appear to be a feature, or provide a reference.

The ratio of unspliced reads is rather constant across the cell cycle with a small but
detectable decrease during mitosis early G1 (see figure below). The signal is very noisy
and it is hard to draw further conclusions.

mouse embryonic
stem cells

0.200 0175

ductal cells human fibroblasts

0175 025
B 1 < o
gowe W,A\/\ Zous WN/\’\/\\J\ A\ go20
#0125 v o 3 & &

5 5 s
5 0.100 5 201s NAVA

§ § 0.075 §

g oors g £

0050

0.025 0.025

0.000 0.000 0.00
0.

However, the global pattern of splicing across the cell cycle is still unknown, see Petasny
et al. 2021:

“... . The exact splicing patterns in each of the cell-cycle phases remain to be rigorously
characterized. ...” in ref. PMID: 32950269.

Our analysis suggests that there is little change in global splicing compared to global
transcription and degradation across the whole transcriptome and across the cell cycle.
Interestingly, we observed a little decrease in the ratio of unspliced during mitosis, which
could be related to the global downregulation of transcription occurring in this phase.
However, due to the noise in the data it is difficult to carefully quantify this effect.

Fig1 # of genes per cell- is it not more correct to express as # of transcriptionally active
genes per cell since the gene number per se should identical for the two mouse cell
types and slightly different for human cells?

We relabeled it as “Number of detected genes per cell” because of space constraints.
Fig3D does not exist in the revised version, but has been cited: harmonize

Thanks for pointing that out, we redirected the reader to the correct figure (Fig. 3C).

YY1 is both an activator and a repressor-how will that affect inferences?

In the case of TF which is both a repressor and an activator, the activity measures the
average effect on its targets, so if most of the targets go up its activity will be positive
otherwise, the opposite. We rephrased the corresponding sentence in the main text to
reiterate that the TF activity is inferred from the change in expression of the targets:

“..., Yy1/YY1 targets are upregulated in the G1 phase ...”

In conclusion, the ISMARA approach underestimates the role of TFs with a bivalent

function. A more complex model would be required to correctly describe the action of
these TFs. However, for TFs that behave mostly as activators or as repressors our


https://www.sciencedirect.com/science/article/pii/S0168952520302134

approach should be able to infer their activities accurately. In addition, it has been shown
that the simplicity of the ISMARA approach avoids overfitting and yields robust results
PMID: 24515121.

Fig5 why not use DNA-RNA ratio, which is a better separator of G1 from G0?

Thanks to the reviewer for pointing out this possibility we were not aware of. We checked
the amount of RNA (UMI counts) in the non proliferative clusters and is comparable to
the cycling cells (see figure below, UMI counts for proliferative cells in blue and non
proliferative in orange). So we think that performing the flow cytometry experiments will
return a very similar result. Considering this together with the GO markers hinting at
GO-transitioning cells, we speculate that these cells did not have the time yet to decrease
their RNA production and did not yet reach a fully quiescent state.
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Statement: Ybx1 expression is linked to poor prognosis in pancreatic ductal
adenocarcinoma —why is this relevant in the context of this paper?

This information was added to give context to the role of Ybx1 in ductal cell progenitors
and has been removed in the last version of the manuscript. Ybx1 regulates cell cycle
progression and proliferation, because of that it is typically associated with papers
analyzing its function in pancreatic cancers (e.g. PMID: 32300640).

Line 308 "G1 are bigger than the cells in S and G2/M suggesting that the cells waiting in
GO0/G1 are increasing in size, it remains unclear whether they will re-enter the cycle later.
The cell velocities are consistent with our interpretation and do not clarify if the cells in
GO will start cycling again” (Supplementary Figure S16).

Again: designating G1 cells from a cycling population as quiescent is not warranted as
they just represent a continuum of lagging G1 not GO

See previous answers

Need explicit statement of why spliced to unspliced transcripts is a better measure of
transcriptional status of a given locus than total transcripts

Notice that spliced mRNA levels result from the balance between synthesis and
degradation. Thus, mRNA stability can obscure changes in the transcriptional status of a


https://genome.cshlp.org/content/24/5/869.long
https://www.cell.com/molecular-therapy-family/oncolytics/fulltext/S2372-7705(20)30027-9

gene. Unspliced mRNA, being a measure of pre-mRNAs, are more directly linked to
active transcription assuming a fast splicing process compared to the stability of the
spliced mRNA. Indeed, if the stability of spliced mRNA is larger than the splicing time,
the unspliced reads will accumulate faster than spliced reads when the gene is activated.
On the contrary, when the gene is deactivated the unspliced reads will decrease faster.
For cell-cycle regulated genes, we expect to observe an activation and deactivation
phase leading to a cycling pattern in the unspliced-spliced RNA space. Therefore,
comparing spliced and unspliced reads in each single cell allows to disentangle the
contribution of synthesis and degradation in gene expression. We have included a
parahaprs in the Introduction to clarify these ideas.

Comparison of ESC and somatic cells is not strictly useful since they have a very
different cell cycle structure and regulation and mESC never enter GO

As mentioned above, our main goal of the comparison was to show the approach is
reliable on different cellular models and to ensure its broad applicability. Further, studying
the cell cycle in very different cell lines facilitates the validation process, highlighting
macroscopic differences in the cycles, e.g. phase lengths, and specific genes related to
a specific model, e.g. Ybx1 in the ductal cells.

Clarifications required for the following:

Abstract: rather than pluripotent vs. differentiated cells more correct to say embryonic vs.
somatic since from the cell cycle perspective both are cycling but with different
characteristics

We modified the text as suggested by the reviewer.

Supp Fig 1: indicate what the blue and orange traces in the gene expression plot (lower
panel) represent. The current figure legend has no explanation. This figure is skewed for
genes that are highly expressed in cycling cells, where only Dek represents a gene more
highly expressed in non-cycling cells- more examples of these should be shown; genes
that are known to be expressed only in S phase or early G1 could also be shown to give
a sense of the robustness of this approach.

Supplementary Figure 1 includes the most differentially expressed genes between the
two subpopulations. We added a new Supplementary Figure (S2) with some markers of
the G2/M, S (Schwabe 2020) and GO phases (Coller 2006, Cheung and Rando 2013).
Figure reported below.
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Supp figs often refer to main figs (eg S17), but they should be self-explanatory, and the
legends should be more detailed to allow appreciation of the point being made. Perhaps
a title based on the inference being drawn from each sup fig can be included to enable
understanding?

Specific titles summarizing the supplementary figures have been added.



eviewers' Comments:
R 'C t

Reviewer #5:
Remarks to the Author:
The revised manuscript has addressed all the issues of concern, and has provided substantial

clarity to the design of experiments and conceptual framework. The additional supplementary
figures also help to locate the work in context.
I can recommend publication.
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